Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged technology

Rss Feed Group items tagged

D'coda Dcoda

Economic Aspects of Nuclear Fuel Reprocessing [12Jul05] - 0 views

  • On Tuesday, July 12, the Energy Subcommittee of the House Committee on Science will hold a hearing to examine whether it would be economical for the U.S. to reprocess spent nuclear fuel and what the potential cost implications are for the nuclear power industry and for the Federal Government. This hearing is a follow-up to the June 16 Energy Subcommittee hearing that examined the status of reprocessing technologies and the impact reprocessing would have on energy efficiency, nuclear waste management, and the potential for proliferation of weapons-grade nuclear materials.
  • Dr. Richard K. Lester is the Director of the Industrial Performance Center and a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. He co-authored a 2003 study entitled The Future of Nuclear Power. Dr. Donald W. Jones is Vice President of Marketing and Senior Economist at RCF Economic and Financial Consulting, Inc. in Chicago, Illinois. He co-directed a 2004 study entitled The Economic Future of Nuclear Power. Dr. Steve Fetter is the Dean of the School of Public Policy at the University of Maryland. He co-authored a 2005 paper entitled The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Mr. Marvin Fertel is the Senior Vice President and Chief Nuclear Officer at the Nuclear Energy Institute.
  • 3. Overarching Questions  Under what conditions would reprocessing be economically competitive, compared to both nuclear power that does not include fuel reprocessing, and other sources of electric power? What major assumptions underlie these analyses?  What government subsidies might be necessary to introduce a more advanced nuclear fuel cycle (that includes reprocessing, recycling, and transmutation—''burning'' the most radioactive waste products in an advanced reactor) in the U.S.?
  • ...13 more annotations...
  • 4. Brief Overview of Nuclear Fuel Reprocessing (from June 16 hearing charter)  Nuclear reactors generate about 20 percent of the electricity used in the U.S. No new nuclear plants have been ordered in the U.S. since 1973, but there is renewed interest in nuclear energy both because it could reduce U.S. dependence on foreign oil and because it produces no greenhouse gas emissions.  One of the barriers to increased use of nuclear energy is concern about nuclear waste. Every nuclear power reactor produces approximately 20 tons of highly radioactive nuclear waste every year. Today, that waste is stored on-site at the nuclear reactors in water-filled cooling pools or, at some sites, after sufficient cooling, in dry casks above ground. About 50,000 metric tons of commercial spent fuel is being stored at 73 sites in 33 states. A recent report issued by the National Academy of Sciences concluded that this stored waste could be vulnerable to terrorist attacks.
  • Under the current plan for long-term disposal of nuclear waste, the waste from around the country would be moved to a permanent repository at Yucca Mountain in Nevada, which is now scheduled to open around 2012. The Yucca Mountain facility continues to be a subject of controversy. But even if it opened and functioned as planned, it would have only enough space to store the nuclear waste the U.S. is expected to generate by about 2010.  Consequently, there is growing interest in finding ways to reduce the quantity of nuclear waste. A number of other nations, most notably France and Japan, ''reprocess'' their nuclear waste. Reprocessing involves separating out the various components of nuclear waste so that a portion of the waste can be recycled and used again as nuclear fuel (instead of disposing of all of it). In addition to reducing the quantity of high-level nuclear waste, reprocessing makes it possible to use nuclear fuel more efficiently. With reprocessing, the same amount of nuclear fuel can generate more electricity because some components of it can be used as fuel more than once.
  • The greatest drawback of reprocessing is that current reprocessing technologies produce weapons-grade plutonium (which is one of the components of the spent fuel). Any activity that increases the availability of plutonium increases the risk of nuclear weapons proliferation.  Because of proliferation concerns, the U.S. decided in the 1970s not to engage in reprocessing. (The policy decision was reversed the following decade, but the U.S. still did not move toward reprocessing.) But the Department of Energy (DOE) has continued to fund research and development (R&D) on nuclear reprocessing technologies, including new technologies that their proponents claim would reduce the risk of proliferation from reprocessing.
  • The report accompanying H.R. 2419, the Energy and Water Development Appropriations Act for Fiscal Year 2006, which the House passed in May, directed DOE to focus research in its Advanced Fuel Cycle Initiative program on improving nuclear reprocessing technologies. The report went on to state, ''The Department shall accelerate this research in order to make a specific technology recommendation, not later than the end of fiscal year 2007, to the President and Congress on a particular reprocessing technology that should be implemented in the United States. In addition, the Department shall prepare an integrated spent fuel recycling plan for implementation beginning in fiscal year 2007, including recommendation of an advanced reprocessing technology and a competitive process to select one or more sites to develop integrated spent fuel recycling facilities.''
  • During floor debate on H.R. 2419, the House defeated an amendment that would have cut funding for research on reprocessing. In arguing for the amendment, its sponsor, Mr. Markey, explicitly raised the risks of weapons proliferation. Specifically, the amendment would have cut funding for reprocessing activities and interim storage programs by $15.5 million and shifted the funds to energy efficiency activities, effectively repudiating the report language. The amendment was defeated by a vote of 110–312.
  • But nuclear reprocessing remains controversial, even within the scientific community. In May 2005, the American Physical Society (APS) Panel on Public Affairs, issued a report, Nuclear Power and Proliferation Resistance: Securing Benefits, Limiting Risk. APS, which is the leading organization of the Nation's physicists, is on record as strongly supporting nuclear power. But the APS report takes the opposite tack of the Appropriations report, stating, ''There is no urgent need for the U.S. to initiate reprocessing or to develop additional national repositories. DOE programs should be aligned accordingly: shift the Advanced Fuel Cycle Initiative R&D away from an objective of laying the basis for a near-term reprocessing decision; increase support for proliferation-resistance R&D and technical support for institutional measures for the entire fuel cycle.''  Technological as well as policy questions remain regarding reprocessing. It is not clear whether the new reprocessing technologies that DOE is funding will be developed sufficiently by 2007 to allow the U.S. to select a technology to pursue. There is also debate about the extent to which new technologies can truly reduce the risks of proliferation.
  •  It is also unclear how selecting a reprocessing technology might relate to other pending technology decisions regarding nuclear energy. For example, the U.S. is in the midst of developing new designs for nuclear reactors under DOE's Generation IV program. Some of the potential new reactors would produce types of nuclear waste that could not be reprocessed using some of the technologies now being developed with DOE funding.
  • 5. Brief Overview of Economics of Reprocessing
  • The economics of reprocessing are hard to predict with any certainty because there are few examples around the world on which economists might base a generalized model.  Some of the major factors influencing the economic competitiveness of reprocessing are: the availability and cost of uranium, costs associated with interim storage and long-term disposal in a geologic repository, reprocessing plant construction and operating costs, and costs associated with transmutation, the process by which certain parts of the spent fuel are actively reduced in toxicity to address long-term waste management.
  • Costs associated with reducing greenhouse gas emissions from fossil fuel-powered plants could help make nuclear power, including reprocessing, economically competitive with other sources of electricity in a free market.
  •  It is not clear who would pay for reprocessing in the U.S.
  • Three recent studies have examined the economics of nuclear power. In a study completed at the Massachusetts Institute of Technology in 2003, The Future of Nuclear Power, an interdisciplinary panel, including Professor Richard Lester, looked at all aspects of nuclear power from waste management to economics to public perception. In a study requested by the Department of Energy and conducted at the University of Chicago in 2004, The Economic Future of Nuclear Power, economist Dr. Donald Jones and his colleague compared costs of future nuclear power to other sources, and briefly looked at the incremental costs of an advanced fuel cycle. In a 2003 study conducted by a panel including Matthew Bunn (a witness at the June 16 hearing) and Professor Steve Fetter, The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel, the authors took a detailed look at the costs associated with an advanced fuel cycle. All three studies seem more or less to agree on cost estimates: the incremental cost of nuclear electricity to the consumer, with reprocessing, could be modest—on the order of 1–2 mills/kWh (0.1–0.2 cents per kilowatt-hour); on the other hand, this increase represents an approximate doubling (at least) of the costs attributable to spent fuel management, compared to the current fuel cycle (no reprocessing). Where they strongly disagree is on how large an impact this incremental cost will have on the competitiveness of nuclear power. The University of Chicago authors conclude that the cost of reprocessing is negligible in the big picture, where capital costs of new plants dominate all economic analyses. The other two studies take a more skeptical view—because new nuclear power would already be facing tough competition in the current market, any additional cost would further hinder the nuclear power industry, or become an unacceptable and unnecessary financial burden on the government.
  • 6. Background
  •  
    Report from the Subcommitte on Energy, Committee on Science for House of Representatives. Didn't highlight the entire article, see site for the rest.
D'coda Dcoda

Short-Termism and Energy Revolutions [30Sep11] - 0 views

  • The calls these days for a technological “energy revolution” are widespread. But how do you spark breakthroughs when the natural bias of businesses, investors and governments is toward the here and now? In governance, politics creates a bias toward the short term. This is why bridges sometimes fall down for lack of maintenance. That’s also why it’s so hard to sustain public investment in the research and intellectual infrastructure required to make progress on the frontiers of chemistry, biology and physics, even though it is this kind of work that could produce leaps in how we harvest, harness, store and move energy. (This is why I asked, “Are Chemists and Engineers on the Green Jobs List?” back in 2008.)
  • To get the idea, you only have to look at the sputtering state of President Obama’s mostly unfunded innovation hubs, or look once again at the energy sliver in the graph showing America’s half-century history of public investment in basic scientific research. (There’s not much difference in research patterns in most other industrialized countries.) You can also look at the first Quadrennial Technology Review produced by the Department of Energy (summarized by Climate Progress earlier this week). The review was conducted after the President’s Council of Advisers on Science and Technology wisely recommended regular reviews of this sort as part of its prescription for accelerating change in energy technologies.
  • This excerpt from the new review articulates the tension pretty transparently for a government report: There is a tension between supporting work that industry doesn’t— which biases the department’s portfolio toward the long term—and the urgency of the nation’s energy challenges. The appropriate balance requires the department to focus on accelerating innovation relevant to today’s energy technologies, since such evolutionary advances are more likely to have near- to mid-term impact on the nation’s challenges. We found that too much effort in the department is devoted to research on technologies that are multiple generations away from practical use at the expense of analyses, modeling and simulation, or other highly relevant fundamental engineering research activities that could influence the private sector in the nearer term.
  • ...16 more annotations...
  • In finding that balance, I’m not sure it’s possible to overcome the political pressures tugging agencies and officials to stress refinement and deployment of known and maturing technologies (even though that’s where industry and private investors are most focused).
  • On the left, the pressure is for resources to deploy today’s “green” technology. On the right, as illustrated in a Heritage Foundation report on ways to cut President Obama’s budget for the Energy Department, the philosophy seems to be to discourage all government spending on basic inquiry related to energy.
  • According to Heritage, science “in service of a critical national interest that is not being met by the private sector” is fine if that interest is national defense, but not fine if it’s finding secure and sustainable (environmentally and economically) sources of energy.
  • I solicited reactions to the Energy Department review from a variety of technology and innovation analysts. The first to weigh in are Daniel M. Kammen, an energy technology researcher at the University of California, Berkeley, who is on leave working for the World Bank, and Robert D Atkinson, the founder and president of the Information Technology and Innovation Foundation. Here’s Kammen: The idea of a regular review and status report on both energy innovation and deployment spending is a good one. Some of the findings in the QTR review are useful, although little is new. Overall, though, this is a useful exercise, and one that should be a requirement from any major programmatic effort.
  • he real need in the R&D sector is continuity and matching an increasing portfolio of strategic research with market expansion. My former student and colleague Greg Nemet have written consistently on this: - U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion - Reversing the Incredible Shrinking Energy R&D Budget
  • Perhaps the biggest worry in this report, however, is the missing logic and value of a ’shift to near term priorities in energy efficiency and in electric vehicles.’ This may be a useful deployment of some resources, but a range of questions are simply never addressed. Among the questions that need firmer answers are:
  • There are some very curious omissions from the report, such as more detail on the need to both generate and report on jobs created in this sector — a political ‘must’ these days (see, e.g., the “green jobs” review by the Renewable and Appropriate Energy Laboratory at Berkeley) — and straightforward comparisons in the way of ‘report cards’ on how the US is stacking up relative to other key players (e.g. China, Germany…).
  • given the state-by-state laboratories we already have of differing approaches to energy efficiency, the logic of spending in this area remains to be proven (as much as we all rightly love and value and benefit from energy efficiency).
  • Near-term electric vehicle deployment. A similar story could be told here. As the director of the University of California at Berkeley’s Transportation Sustainability Research Center (http://tsrc.berkeley.edu) I am huge believer in electric vehicles [EVs]. However, the review does not make clear what advances in this area are already supported through [the Advanced Research Projects Agency for Energy], and what areas of near-term research are also not best driven though regulation, such as low-carbon fuel standards, R&D tax credits, ‘feebates’ that transfer funds from those individuals who purchase inefficient vehicles to those who purchase efficient ones. Similar to the story in energy efficiency, we do have already an important set of state-by-state experiments that have been in place for some time, and these warrant an assessment of how much innovation they have driven, and which ones do and do not have an application in scale-up at the federal level.
  • Finally, the electric vehicle landscape is already very rich in terms of plans for deployment by automakers. What are the barriers five-plus years out that the companies see research-versus-deployment and market-expansion support as the most effective way to drive change in the industry? Where will this focus put the U.S. industry relative to China?
  • Following record levels funding made available to the energy industry through the [stimulus package of spending], what are the clearly identified market failures that exist in this area that added funding will solve? Funding is always welcome, but energy efficiency in particular, can be strongly driven by regulation and standards, and because good energy efficiency innovations have such rapid payback times, would regulatory approaches, or state-federal partnerships in regulation and incentives not accomplish a great deal of what can be done in this area? Congressman Holt raises a number of key questions on related issues, while pointing to some very hopeful experiences, notably in the Apollo program, in his 16 September editorial in Science.
  • Here’s Robert Atkinson: If DOE is shifting toward a more short-term focus, this is quite disturbing.  It would mean that DOE has given up on addressing the challenge of climate change and instead is just focused on the near term goal of reducing oil imports and modestly reducing the expansion the coal fired power plants. If DOE thinks it is still focused on climate change, do they think they are fighting “American warming”?
  • If so, cutting the growth of our emissions make sense.  But its global warming and solving this means supporting the development of scalable, cheap low or no-carbon energy so that every country, rich and poor, will have an economic incentive to transitioning to cheap energy.  Increasing building efficiency, modernizing the electric grid, alternative hydrocarbon fuels, and increasing vehicle efficiency do virtually nothing to meet this goal. They are “American warming” solutions.
  • This is also troubling because (as you point out) who else is going to invest in the long-term, more fundamental, high risk, breakthrough research than the U.S. government.  It certainly won’t be VCs. And it won’t be the Chinese who are principally interested in cutting their energy imports and exporting current generation clean energy, not developing technology to save the planet.  Of course all the folks out there who have been pushing the mistaken view that we have all the clean technologies we need, will hail this as the right direction.  But it’s doing what the rest of the market has been doing in recent years – shifting from high risk, long-term research to short-term, low risk.  If the federal government is doing this it is troubling to say the least.
  • or those seeking more, here are the slides used by Steven Koonin, the physicist and former BP scientist who now is under secretary for science at the department, in presenting the review earlier this week:
  • Rolling Out the Quadrennial Technology Review Report
D'coda Dcoda

4 Ways the Department of Energy Is Tapping Tech for a Greener Future [03Aug11] - 0 views

  • This week, the U.S. Department of Energy (DOE) re-launched its website, Energy.gov, to provide tools to help individuals and businesses better understand how to save energy and money. You can type your zip code into the site and get hyper-local information about your city, county and state, including information on tax credits, rebates and energy saving tips.
  • The site presents DOE data visually using the open source MapBox suite of tools, and localized data and maps can be shared or embedded on any website or blog. Other data sets the DOE is mapping include alternative fuel locations and per capita energy usage. Anyone can now compare how his state’s energy usage compares with others across the country. In addition to making the data more palatable for the public, the DOE is offering open data sets for others to use.
  • Our goal is simple — to improve the delivery of public services online. We’re using government data to go local in a way that’s never been possible before. We’re connecting the work of the Energy Department with what’s happening in your backyard,” says Cammie Croft, senior advisor and director of new media and citizen engagement at the DOE. “We’re making Energy.gov relevant and accessible to consumers and small businesses in their communities.”
  • ...16 more annotations...
  • How else is the Energy Department working to bring better information about energy, renewable energies and energy technology to the public? Here are a few examples.
  • 1. Your MPG
  • The “Your MPG” feature on the site lets you upload data about your own vehicle’s fuel usage to your “cyber” garage and get a better picture of how your vehicle is doing in terms of energy consumption. The system also aggregates the personal car data from all of the site’s users anonymously so people can share their fuel economy estimates. “You can track your car’s fuel economy over time to see if your efforts to increase MPG are working,” says David Greene, research staffer at Oak Ridge National Lab. “Then you can compare your fuel data with others and see how you are doing relative to those who own the same vehicle.”
  • In the works for the site is a predictive tool you can use when you are in the market for a new or used vehicle to more accurately predict the kind of mileage any given car will give you, based on your particular driving style and conditions. The system, says Greene, reduces the +/- 7 mpg margin of error of standard EPA ratings by about 50% to give you a more accurate estimate of what your MPG will be.
  • Solar Decathlon
  • In response to the White House’s Startup America program supporting innovation and entrepreneurship, the Energy Department launched its own version — America’s Next Top Energy Innovator Challenge. The technology transfer program gives startups the chance to license Energy Department technologies developed at the 17 national laboratories across the country at an affordable price. Entrepreneurs can identify Energy Department technologies through the Energy Innovation Portal, where more than 15,000 patent and patent applications are listed along with more than 450 market summaries describing some of the technologies in layman’s terms.
  • 2. America’s Next Top Energy Innovator
  • 3. Products: Smarter Windows
  • DOE funding, along with private investments, supports a number of companies including the Michigan-based company Pleotint. Pleotint developed a specialized glass film that uses energy generated by the sun to limit the amount of heat and light going into a building or a home. The technology is called Sunlight Responsive Thermochromic (SRT™), and it involves a chemical reaction triggered by direct sunlight that lightens or darkens the window’s tint. Windows made from this glass technology are designed to change based on specific preset temperatures.
  • Another DOE-funded company, Sage ElectroChromics, created SageGlass®, electronically controlled windows that use small electric charges to switch between clear and tinted windows in response to environmental heat and light conditions. And Soladigm has an electronic tinted glass product that is currently undergoing durability testing.
  • Once a company selects the technology of interest to them, they fill out a short template to apply for an option — a precursor to an actual license of the patent — for $1,000. A company can license up to three patents on one technology from a single lab per transaction, and patent fees are deferred for two years. The program also connects entrepreneurs to venture capitalists as mentors.
  • Since 2002, the U.S. Department of Energy’s Solar Decathlon has challenged collegiate students to develop solar-powered, highly efficient houses. Student teams build modular houses on campus, dismantle them and then reassemble the structures on the National Mall. The competition has taken place biennially since 2005. Open to the public and free of charge, the next event will take place at the National Mall’s West Potomac Park in Washington, D.C. from September 23 to October 2, 2011. There are 19 teams competing this year.
  • Teams spend nearly two years planning and constructing their houses, incorporating innovative technology to compete in 10 contests. Each contest is worth 100 points to the winner in the areas of Architecture, Market Appeal, Engineering, Communications, Affordability, Comfort Zone, Hot Water, Appliances, Home Entertainment and Energy Balance. The team with the most points at the end of the competition wins.
  • Since its inception, the Solar Decathlon has seen the majority of the 15,000 participants move on to jobs related to clean energy and sustainability. The DOE’s digital strategy for the Solar Decathlon includes the use of QR codes to provide a mobile interactive experience for visitors to the event in Washington, D.C., as well as Foursquare checkin locations for the event and for each participating house. Many of the teams are already blogging leading up to the event and there are virtual tours and computer animated video walkthroughs to share the Solar Decathlon experience with a global audience. There will be TweetChats using the hashtag #SD2011 and other activities on Twitter, Facebook, Flickr and YouTube.
  • The Future
  • In terms of renewable energies, the DOE tries to stay on the cutting edge. Some of their forward-thinking projects include the Bioenergy Knowledge Discovery Framework (KDF), containing an interactive database toolkit for access to data relevant to anyone engaged with the biofuel, bioenergy and bioproduct industries. Another is an interactive database that maps the energy available from tidal streams in the United States. The database, developed by the Georgia Institute of Technology in cooperation with the Energy Department, is available online. The tidal database gives researchers a closer look at the potential of tidal energy, which is a “predictable” clean energy resource. As tides ebb and flow, transferring tidal current to turbines to become mechanical energy and then converting it to electricity. There are already a number of marine and hydrokinetic energy projects under development listed on the site.
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

IEA - OECD: Nearly 25 Percent Of Global Electricity Could Be Generated From Nuclear Pow... - 0 views

  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020
  • Almost one quarter of global electricity could be generated from nuclear power by 2050, making a major contribution to cutting greenhouse gas emissions. This is the central finding of the Nuclear Energy Technology Roadmap, published by the International Energy Agency (IEA) and the OECD Nuclear Energy Agency (NEA). Such an expansion will require nuclear generating capacity to more than triple over the next 40 years, a target the roadmap describes as ambitious but achievable.
  • Speaking from the East Asia Climate Forum in Seoul, IEA Executive Director Nobuo Tanaka said: “Nuclear energy is one of the key low-carbon energy technologies that can contribute, alongside energy efficiency, renewable energies and carbon capture and storage, to the decarbonisation of electricity supply by 2050.” NEA Director General Luis Echávarri stated: “Nuclear is already one of the main sources of low-carbon energy today. If we can address the challenges to its further expansion, nuclear has the potential to play a larger role in cutting CO2 emissions.”
  • ...6 more annotations...
  • Financing the construction of new nuclear plants is expected to be a major challenge in many countries
  • The latest reactor designs, now under construction around the world, build on over 50 years of technology development. The roadmap notes that these designs will need to be fully established as reliable and competitive electricity generators over the next few years if they are to become the mainstays of nuclear expansion after 2020.
  • No major technological breakthroughs will be needed to achieve the level of nuclear expansion envisaged, the roadmap finds. However, important policy-related, industrial, financial and public acceptance barriers to the rapid growth of nuclear power remain. The roadmap sets out an action plan with steps that will need to be taken by governments, industry and others to overcome these. A clear and stable policy commitment to nuclear energy as part of overall energy strategy is a pre requisite, as is gaining greater public acceptance for nuclear programmes. Progress in implementing plans for the disposal of high-level radioactive waste will also be vital. The international system of safeguards to prevent proliferation of nuclear technology and materials must be maintained and strengthened where necessary.
  • For the longer term, the continued development of reactor and fuel cycle technologies will be important for maintaining the competitiveness of nuclear energy
  • The Nuclear Energy Technology Roadmap is the result of joint work by the IEA and the OECD Nuclear Energy Agency (NEA) and is one of a series being prepared by the IEA in co operation with other organisations and industry, at the request of the G8 summit at Aomori (Japan) in June 2008. The overall aim is to advance development and uptake of key low-carbon technologies needed to reach the goal of a 50% reduction in CO2 emissions by 2050.
  • Nuclear generating capacity worldwide is presently 370 gigawatts electrical (GWe), providing 14% of global electricity. In the IEA scenario for a 50% cut in energy-related CO2 emissions by 2050 (known as the “BLUE Map” scenario), on which the roadmap analysis is based, nuclear capacity grows to 1 200 GWe by 2050, providing 24% of global electricity at that time. Total electricity production in the scenario more than doubles, from just under 20 000 TWh in 2007 to around 41 000 TWh in 2050.
D'coda Dcoda

Fast reactor advocates throw down gauntlet to MIT authors[24Jul11] - 0 views

  • Near the end of 2010, the Massachusetts Institute of Technology released a summary of a report titled The Future of the Nuclear Fuel Cycle as part of its MIT Energy Initiative. The complete report was released a few months ago. The conclusions published that report initiated a virtual firestorm of reaction among the members of the Integral Fast Reactor (IFR) Study group who strongly disagreed with the authors.
  • the following quote from the “Study Context” provides a good summary of why the fast reactor advocates were so dismayed by the report.
  • For decades, the discussion about future nuclear fuel cycles has been dominated by the expectation that a closed fuel cycle based on plutonium startup of fast reactors would eventually be deployed. However, this expectation is rooted in an out-of-date understanding about uranium scarcity. Our reexamination of fuel cycles suggests that there are many more viable fuel cycle options and that the optimum choice among them faces great uncertainty—some economic, such as the cost of advanced reactors, some technical such as implications for waste management, and some societal, such as the scale of nuclear power deployment and the management of nuclear proliferation risks. Greater clarity should emerge over the next few decades, assuming that the needed research is carried out for technological alternatives and that the global response to climate change risk mitigation comes together. A key message from our work is that we can and should preserve our options for fuel cycle choices by continuing with the open fuel cycle, implementing a system for managed LWR spent fuel storage, developing a geological repository, and researching technology alternatives appropriate to a range of nuclear energy futures.
  • ...10 more annotations...
  • The group of fast reactor supporters includes some notable scientists and engineers whose list of professional accomplishments is at least as long as those of the people who produced the MIT report. In addition, it includes people like Charles Till and Yoon Chang who were intimately involved in the US’s multi-decade long fast reactor development and demonstration program that resulted in demonstrating a passively safe, sodium cooled reactor and an integral recycling system based on metallic fuel and pyroprocessing.
  • That effort, known as the Integral Fast Reactor, was not just based on an out-dated concept of uranium availability, but also on the keen recognition that the public wants a clear solution to “the nuclear waste issue” that does not look like a decision to “kick the can down the road.”
  • he Science Council for Global Initiatives produced a detailed critique of the MIT paper and published that on Barry Brook’s Brave New Climate blog at the end of May 2011. The discussion has a great deal of interest for technical specialists and is supporting evidence that belies the often asserted falsehood (by people who oppose nuclear technology) that the people interested in developing and deploying nuclear technology speak with a single, almost brainwashed voice.
  • In recent days, however, the controversy has become more interesting because the IFR discussion group has decided to issue a public debate challenge and to allow people like me to write about that challenge in an attempt to produce some response.
  • I think your team is dead wrong on your conclusion that we don’t need fast reactors/closed fuel cycle for decades.Your study fails to take into account the political landscape the competitive landscape the safety issue environmental issues with uranium miningIt is unacceptable to the public to not have a solution to the waste issue. Nuclear power has been around for over 50 years, and we STILL HAVE NO OPTION FOR THE WASTE today other than interim dry cask storage. There is no national repository. Without that, the laws in my state forbid construction of a new nuclear power plant.
  • Other countries are pursuing fast reactors, we are not. Russia has 30 years of commercial operating history with fast reactors. The US has zero.We invented the best Gen IV technology according to the study done by the Gen IV International Forum. So what did we do with it? After spending $5B on the project, and after proving it met all expectations, we CANCELLED it (although the Senate voted to fund it).
  • An average investment of $300M a year could re-start our fast reactor program with a goal of actually commercializing our best reactor design (the IFR according the GIF study).
  • At least we’d have a bird in the hand that we know works, largely solves the waste problem, since the fast reactor waste needs only to be stored for a few hundred years at most, and doesn’t require electric power or any active systems to safely shut down.
  • Investing lots of money in a project and pulling the funding right before completion is a bad strategy for technology leadership.
  • MIT should be arguing for focusing and finishing what we started with the IFR. At least we’d have something that addresses safety, waste, and environmental issues. Uranium is cheap because we don’t have to pay for the environmental impact of uranium mining.
D'coda Dcoda

Federation of American Scientists :U.S. Leadership Essential for International Nuclear ... - 0 views

  • Global growth in the civilian nuclear energy sector represents an annual trade market estimated at $500 billion to $740 billion over the next 10 years.  As new nations consider nuclear energy technology to produce low-carbon electricity, the United States should take a leadership role that will enhance the safety and nuclear nonproliferation regimes globally, while creating tens of thousands of new American jobs. The United States is the world leader in safe and efficient operation of nuclear power plants, with an average capacity factor of 90 percent or higher in each of the past 10 years.  When ranked by 36-month unit capability factor, the United States has the top three best performing nuclear reactors in the world, seven of the top 10, and 16 of the top 20.  Nuclear energy facilities produce electricity in 31 states and have attained a four-fold improvement in safety during the past 20 years.  This underpinning in safety and reliability is one reason why America generates more electricity from nuclear energy than the next two largest nuclear programs combined.
  • Bilateral agreements on nuclear energy cooperation are vital to advancing global nonproliferation and safety goals as well as America’s interests in global nuclear energy trade.  A 123 agreement, named after section 123 of the Atomic Energy Act, establishes an accord for cooperation as a prerequisite for nuclear energy trade between the United States and other nations.  The agreement contains valuable nonproliferation controls and commitments.  One of the most significant elements of U.S. agreements is approval granted by our government as to how other countries process uranium fuel after it is used in a commercial reactor.  Under U.S. agreements, these nations cannot reprocess the fuel—chemically separating the uranium and plutonium—without U.S. notification and consent to do so.  This is a significant safeguard against the potential misuse of low-enriched uranium from the commercial sector.
  • Several public policy considerations must be weighed in evaluating the impact of 123 agreements, including those related to national security, economic development, energy production, and environmental protection. In the competitive global marketplace for commercial nuclear technology, inconsistent bilateral agreements will have unintended consequences for U.S. suppliers.  Imposing overly restrictive commercial restrictions or conditions in U.S. 123 agreements that are not matched by other nations’ bilateral agreements may significantly bias the country against selecting U.S.-based suppliers, even if the agreements don’t have malicious intentions. 
  • ...4 more annotations...
  • The imposition of requirements that seem unnecessary and unfair can affect commercial decision-making by the affected country.  Such conditions put U.S. commercial contracts and jobs at risk. Moreover, if the country does not use U.S.-based technology, fuels or services, the value of conditions in the 123 agreement (i.e., consent rights) would be lost. Some U.S. leaders are proposing a prohibition on uranium enrichment and reprocessing as part of all bilateral nuclear energy agreements for cooperation.  Ensuring enrichment technology and reprocessing technology are used only for peaceful purposes is a paramount goal for government and industry. But U.S. 123 agreements are neither the best, nor in most cases, the appropriate mechanism to achieve that goal. 
  • Multilateral agreements are more appropriate mechanisms for policy regarding the global challenge of nuclear proliferation.  Promising mechanisms include the decision by the International Atomic Energy Agency to establish a uranium fuel bank, potential nuclear fuel lease/takeback contracts, and other multilateral, institutional nonproliferation arrangements.  In addition, the Nuclear Suppliers Group (an international body of 46 nuclear technology supplier nations that sets standards for commercial nuclear trade) recently adopted new clear and strict criteria for the transfer of nuclear energy technology.  These institutional controls do not require the receiving country to cede sovereign rights, which the U.S. government and other countries with civilian nuclear energy programs would never give up. 
  • Fast-growing electricity needs in developing countries and concern about air quality and climate change are stimulating significant global demand for nuclear energy.  Sixty-six plants are being built worldwide and another 154 are in the licensing and advanced planning stage. U.S. suppliers are vying for business around the world – including China, Poland and India.  Continued U.S. leadership in global nuclear safety and nonproliferation matters go hand-in-hand with a strong presence in the global marketplace.  Both are critical to our national and global security.  We must continue to participate in worldwide trade and nonproliferation policy discussions, or cede leadership in these areas to other governments and industrial competitors.  Unless we choose engagement, America will lose tens of thousands of jobs and other benefits such trade has for our economy while forfeiting the nonproliferation benefits that 123 agreements are intended to achieve.
  • BIO- Everett Redmond is director of nonproliferation and fuel cycle policy at the Nuclear Energy Institute in Washington, D.C.
  •  
    From the "Opinion" section
D'coda Dcoda

"Green Nukes" - Important climate change mitigation tools [05Jul11] - 0 views

  • There are many terrific reasons to favor the rapid development of nuclear fission technology.
  • It is a reliable and affordable alternative to hydrocarbon combustionIt is a technology that can use less material per unit energy output than any other power sourceIt is a technology where much of the cost comes in the form of paying decent salaries to a large number of human beingsIt is a technology where wealth distribution is not dependent on the accident of geology or the force of arms in controlling key production areasIt is an energy production technology where the waste materials are so small in volume that they can be isolated from the environmentIt is a technology that is so emission free that it can operate without limitation in a sealed environment – like a submarineIt is an important climate change mitigation too
  • Our current economy is built on an industrial foundation that removes about 7-10 billion tons of stored hydrocarbons from the earth’s crust every year and then oxidize that extracted material to form heat, water and CO2 – along with some other nasty side products due to various impurities in the hydrocarbons and atmosphere. The 20 billion tons or so of stable CO2 that we dump into the atmosphere is not disappearing – there are some natural removal processes that were in a rough balance before humans started aggressive dumping, but most of the mass of CO2 that we are pumping into the thin layers of atmosphere that surround the Earth is not being absorbed or used.
  • ...4 more annotations...
  • As Curt Stager and other researchers like him have determined, the material will be suspended in our atmosphere and affecting our climate for at least 100,000 years. Many of the effects are somewhat unpredictable and not terribly beneficial. The duration of the effect gets worse if we continue on our present course and speed. An unaltered dependence on fossil fuels also puts future generations at risk of trying to figure out how to operate an economy WITHOUT access to reliable sources of controlled heat.
  • The twin attributes of supply sustainability and climate change mitigation are nuclear fission power advantages topics that have attracted some high profile converts (Mark Lynas, George Monbiot, James Hansen, Stewart Brand, Gwyneth Cravens, and Patrick Moore, for example) to the cause of pronuclear advocacy. If nuclear energy’s potential as a climate change mitigation strategy is something that attracts former antinuclear protesters and causes them to reevaluate their opposition, that alone makes it something worth emphasizing
  • It was interesting to hear that the primary nuclear technology that Curt mentions as being worth aggressive pursuit is based on thorium, but I am pretty sure that is mainly because thorium evangelists have done a better job of guerilla marketing since 2005 than the people who have been refining uranium-based nuclear reactors for the past 5 decades.
  • As I often to tell my thorium enthused friends – you cannot build or operate a thorium reactor without uranium. I also tell both my buddies who are thorium advocates and my integral fast reactor (IFR) friends that any atomic fission power plants is better than any hydrocarbon based power plant. I hope that someday soon, fission fans will stop engaging in fratricidal attacks on each other, but I guess I have always been a bit of a dreamer
D'coda Dcoda

Scanning the Earth Project - [26Oct11] - 0 views

shared by D'coda Dcoda on 26 Oct 11 - No Cached
  • Scanning the Earth Project (environmental scanning project) is a project to provide environmental information, including the radiation dose. Currently, SafeCast has collected together with data. In this research project, fixed sensors and mobile sensors and sensing in the human living space, build a platform to share sensor data using information technology. In addition, I developed a data visualization techniques and spatial interpolation techniques in order to provide comprehensive information across time and space. Specifically, we are conducting, including fixed-point observation and instrumentation sensors installed radiation dose measurement method using a goal for automobiles and promote the creation of a sustainable platform for radiation information. Sensing information is stored in the server via the Internet, will be open to the public through the Web API. At the same time, the space-time analysis of information technology sensors will be widely available on the portal site with information visualized.
  • This study includes the following research areas such as big. 1. Development of Networked Sensing Devices Network development, such as sensing devices to measure radiation dose and weather information. At the same time defining a data dictionary to collect information for a variety of ground and develop a mechanism for device authentication. We also recommend the standardization of communication protocols used by the device. 2. Development of Sensor Network Development of network technology to collect data measured by the sensor. DTN protocols and collecting data of the type used in sensing movement sensor, developed a protocol for cooperation between the server and advance the standards. 3. Development of spatial analysis There is a limit to the fixed sensors and mobile sensors laying. In order to cover the space, so we developed a technique to interpolate between the measurement point information on the characteristics of each based on the information. Also, consider the API to provide their information widely. 4. The development of visualization techniques
  • In order to take advantage of human-sensing data is essential for meaningful visualization. In addition, the information should not be sensing a zero-dimensional visualization, visualization should not be one-dimensional, not to be visible in two dimensions, not to be visualized in three dimensions The variety of such. In this Purujeku and the visualization techniques we devised according to the characteristics of each space. Contact ste-info_at_sfc.wide.ad.jp
  • ...2 more annotations...
  • About the Scanning the Earth Project Scanning the Project is a Project to Disseminate the Earth Environmental Information, Starting with AIR Radioactive dose rate, in Collaboration with SafeCast . This research project will use a sensor platform of both stationary and mobile sensors to monitor the air around human populations, then share that information via communication technologies. It will also develop data interpolation and visualization techniques to provide comprehensive information over time. Specifically, the project will employ both fixed and bicycle-mounted geiger counters to create a platform for continual radiation measurement. The collected information will be transmitted via the internet to servers and made public via a web API. Finally, the project aims to simultaneously analyze readings and create visualizations of the data to spread information on environmental conditions via a portal site. This project's major research aims are as follows: 1. The development of networked sensing devices These networked devices will monitor radiation and meteorological conditions. We will make provisions for a data repository to gather varied atmospheric information and develop a framework for certifying scanning devices. We will also develop a standardized transmission protocol for these devices. 2. The development of sensor network technology. We will also develop a DTN protocol for gathering information from mobile sensors and a standard coordination protocol for servers.
  • 3. The development of air analysis technology There is a limit to what can be done with stationary and moving sensors. To cover all areas, we will develop methods for interpolating data from existing readings. We intend to develop an API for sharing this information as well. 4. The development of visualization technology In order for people to take advantage of the sensing data, easy-to-understand visualizations of those data are necessary. Some scanning data are best visualized with zero-dimensional displays, some with one-dimensional, some with two-dimensional, and some in three dimensions. This project aims to develop visualization methods for each of these circumstances. Contact: Ste-Info_At_Sfc.wide.ad.jp
  •  
    The University working with Safecast on deploying sensors to track radiation. 
D'coda Dcoda

Fukushima and the Doomsday Clock | Bulletin of the Atomic Scientists [11Aug11] - 0 views

  • When dreadful events occur, reporters, readers, and interested citizens contact the Bulletin of the Atomic Scientists asking whether we will move the minute hand of the Doomsday Clock. The alarming nuclear disaster at the Fukushima Daiichi Power Station on March 11 prompted e-mails and calls to our office seeking the Bulletin's reaction as well as accurate information about what was happening in Japan. The Bulletin responded by devoting its website to daily briefings from experts in Japan and to news from Bulletin writers on what they were hearing about this second-worst disaster in the history of the nuclear power industry. Additionally, the Bulletin will take deeper dives into the lessons and impacts of Fukushima in the September/October issue of its digital journal. Still, the larger question remains: Should we move the hand of the Doomsday Clock? What does the Fukushima event imply for humanity's future on the planet?
  • How do we determine the time? In annual Clock discussions, the Bulletin's Science and Security Board -- the keepers of the Clock -- reviews the trends and current events that reveal how well or how poorly humanity regulates the perilous forces unleashed by our own ingenuity and industry. Moving the minute hand of the Doomsday Clock is a judgment, then, an assessment of the human capacity to control technologies that can lead to irreversible catastrophe -- to the end of civilization. With growing worldwide interest in nuclear energy for economic development, it's important to know how well firms and societies are handling this dangerous technology
  • Questions for a post-Fukushima world. The Bulletin's Board members are following the events at the Fukushima Daiichi nuclear power plant in Japan very closely. Questions about the continuing disaster range from the detailed and technical to the societal and ethical; the answers will have implications for any long-term commitment to nuclear power.
  • ...4 more annotations...
  • On the technical end, it appears that the underlying cause of the three core meltdowns, the hydrogen explosions, and the subsequent release of radioactive material was the loss of coolant to the nuclear cores, which was ultimately due to the loss of electrical power to the reactors. Without power to circulate the water that cooled the fuel rods, nothing could have prevented the core meltdowns. In light of this failure, questions center on reactor design and handling of nuclear fuel. Can reactors be designed without a reliance on electrical power to maintain the proper core temperature? In the event of system failure, are there better alternatives to human intervention? Stronger safety designs have been proposed in the past -- ones that are more straightforward and less Rube Goldberg-like than the complicated systems currently used. Why haven't they been developed? Meanwhile, the handling of nuclear fuel continues to defy logic: Why is spent fuel still stored at power plants -- raising the odds of damage and the subsequent release of radioactive materials in accidents? What exactly are the obstacles to placing spent fuel in long-term storage repositories?
  • A second set of questions focuses on operations, regulation, and public knowledge about nuclear reactors. How can regulatory agencies maintain independence from the nuclear industry and enforce rigorous safety standards? What prevents the industry from being more transparent about operations, especially when leaks and mishaps occur? If existing regulatory arrangements appear inadequate, then could a different structure of economic incentives encourage utilities to make their nuclear power plants safer and more secure? In the United States, for example, current law limits industry liability in the event of an accident. Does the limit on legal liability in the event of an accident reduce firms' incentives not only to develop the safest designs possible but also to ensure the most rigorous oversight of maintenance and operations?
  • More broadly, how can societies and communities meet their energy needs with the least risk and the greatest payoff for economic development? Are there alternatives based on precautionary principles -- first do no harm -- that involve less peril to safety, health, and community than nuclear or fossil-fueled power? Are we locked into the current energy development path? How should we think about the trade-offs between injury and disruption from energy technologies and future injury and disruption from climate change?
  • But have we learned anything? These questions are difficult to answer and the trade-offs nearly impossible to calculate. Even harder, however, will be implementing policy recommendations in a world of vested interests tied to old technologies. Over the past 100 years or so, the world's "energy portfolio" did not diversify very much -- as electric and gas-fueled engines powered industrial development. Renewable energy technologies like wind, solar, and biofuels hold great potential, but require much more rapid development to substitute for fossil fuels and nuclear power in the near term. So it appears now that there are few good choices: Either warm the planet's atmosphere and oceans, with dire consequences for human societies as the climate rapidly changes, or place communities in jeopardy from nuclear plant accidents and releases of deadly radioactive materials. However, in January 2012, when the Bulletin deliberates about moving the hand of the Doomsday Clock, the most important question will be: What have governments, firms, and citizens learned from the Fukushima disaster about managing Earth-altering technologies? And will they act on what they have learned in time to avert future disaster?
D'coda Dcoda

Reactor reaction: 5 countries joining Japan in rethinking nuclear energy [13Jul11] - 0 views

  • (check out this ebook from Foreign Policy on Japan's post-Fukushima future). Anti-nuclear sentiment has grown ever since -- making it a major political issue.
  • There are legitimate questions, nevertheless, about whether Japan could actually shift away from nuclear power. Japan is incredibly dependent on nuclear energy -- the country's 54 nuclear reactors account for 30 percent of its electricity; pre-earthquake estimates noted that the share to grow to 40 percent by 2017 and 50 percent by 2030. The prime minister today offered few details on how he'll transition away from nuclear reliance.   Japan joins a list of nuclear countries that have grown increasingly skittish about the controversial energy source since the disaster in March.
  • The country plans to make up the difference by cutting energy usage by 10 percent, it said, with more energy efficient appliances and buildings and to increase the use of wind energy.
  • ...7 more annotations...
  • Germany announced plans in late May to close all the country's nuclear power plants by 2022 -- making it the largest industrialized nation to do so. Nuclear power supplies 23 percent of its energy grid. Since the Japan disaster it has permanently shuttered eight plants (including the seven oldest in the country). That leaves nine plants to go -- six of which, the government announced, will close up by 2021.
  • Italy Last month, Silvio Berlusconi's plans to return Italy to the nuclear club were dashed by a referendum that found 90 percent of Italians rejected the technology.
  • Switzerland No neutrality here -- the government announced in May it too was taking a side against nuclear technology, in response to Japan's disaster. Nuclear energy accounts for roughly 40 percent of Switzerland's energy supply. Its five nuclear reactors won't fully be phased out, experts estimate, until 2040. The move is popular with the Swiss citizens -- 20,000 of whom demonstrated against the technology before the government's decision
  • As a result the embattled prime minister said, "We shall probably have to say goodbye to nuclear [energy]." He noted that the government will instead shift its energies to developing renewable energy sources. Berlusconi had been trying to reconstitute an industry that was already abandoned once before -- back in 1987. Currently there are no nuclear plants, but the prime minister hoped to get nuclear power to account for a quarter of the country's energy needs and planned to begin building new plants by as early as 2013.
  • Mexico Despite the fact that nuclear energy only accounts for less than 5 percent of the market in Mexico, which has only one plant, a recent worldwide survey found that Mexico was one of the most anti-nuclear countries in the world, with about 80 percent of its population opposing the power source. That doesn't bode well for future nuclear development.
  • Mexico is one of only three Latin American nations that uses nuclear power. And last year the country delayed a decision until at least 2012 on whether to go ahead with plans to build 10 more plants, according to the country's energy minister. President Felipe Calderon has said he'd push to make sure "clean energy" accounts for at least 35 percent of the country's energy needs.
  • France Let's be clear, France is unlikely to ditch nuclear power completely anytime soon. A longtime champion of the technology, it accounts for 75 percent of the country's energy needs. But there are indications political leaders are falling out of love -- ever so slightly -- with the power source. On Friday, July 8 the government launched a study of energy technologies that included one potential scenario of completely doing away with nuclear power by 2040. It's the first time the government has ever even mentioned the possibility. A more likely result of the study will be cutting the nuclear share of the market. Indeed, France has increased its investment in wind energy lately. The government is likely responding to growing public pressure to do away with nuclear energy. A recent BBC survey found 57 percent of French respondents opposed the technology.
D'coda Dcoda

The Pro-Nuclear Community goes Grassroots [12Oct11] - 0 views

  • In recent weeks I have been excited to witness several genuine grassroots efforts in support of nuclear energy emerging on the scene. Several have already been covered on this forum, like the Rally for Vermont Yankee and the Webinar collaboration by the Nuclear Regulatory Commission and the American Nuclear Society. Both of these efforts proved to be very successful in bringing together nuclear supporters and gaining attention from the mainstream media.
  • I’d like to share some information about another opportunity to actively show your support for nuclear. The White House recently launched a petition program called “We the People.” Here is the description of how it works: This tool provides you with a new way to petition the Obama administration to take action on a range of important issues facing our country. If a petition gets enough support, White House staff will review it, ensure it’s sent to the appropriate policy experts, and issue an official response. One of the first and most popular petitions on the website is a call to end subsidies and loan guarantees for nuclear energy by 2013. As I write this, it is only about a thousand signatures away from reaching the White House. In response to this petition, Ray Wallman, a young nuclear supporter and filmmaker, wrote a counter petition called “Educate the Public Regarding Nuclear Power.” It needs 4,500 more signatures before October 23 in order to get a formal response, and reads as follows:
  • Due to the manufactured controversy that is the nuclear reactor meltdown in Fukushima, Japan, perpetuated by a scientifically illiterate news media, the public is unnecessarily hostile to nuclear power as an energy source. To date nobody has died from the accident and Fukushima, and nuclear power has the lowest per Terra-watt hour death toll of any energy source known to man: http://nextbigfuture.com/2011/03/deaths-per-twh-by-energy-source.html The Obama administration should take better strides to educate the public regarding this important energy source.
  • ...7 more annotations...
  • In addition to the petition for education, Gary Kahanak, of Arkansas Home Energy Consultants, released another one in support of restarting the Integral Fast Reactor program. This petition was inspired by an open letter to the White House with the same goal, written by Steve Kirsch, of the Science Council for Global Initiatives. The petition states:
  • Without delay, the U.S. should build a commercial-scale demonstration reactor and adjacent recycling center. General Electric’s PRISM reactor, developed by a consortium of major American companies in partnership with the Argonne National Laboratory, is ready to build now. It is designed to consume existing nuclear waste as fuel, be passively safe and proliferation-resistant. It can provide clean, emissions-free power to counter climate change, and will create jobs as we manufacture and export a superior technology. Abundant homegrown nuclear power will also enhance our nation’s energy security. Our country dedicated some of its finest scientific and engineering talent to this program, with spectacular success. Let’s finish the job we started. It will benefit our nation, and the world.
  • This brings me to my second reason for supporting these petitions: They represent a genuine change in approach for supporting nuclear energy. Throughout the history of commercial nuclear power generation, most of the decisions and support have come directly from government and corporate entities. This has resulted in a great deal of public mistrust and even distain for nuclear technologies. A grassroots approach may not translate directly into research dollars or policy change, but it has to the potential to win hearts and minds, which is also extremely important.
  • There has been some debate among my colleagues about the value of this approach. Some were concerned about the specific language or content of the petitions, while others did not feel comfortable signing something in support of a particular reactor that is not their preferred technology. Others have voiced that even if we get 5,000 signatures, the White House response will not have any impact on policy. While I understand and respect those points, I want to share why I decided to sign both petitions and to write about them here.
  • Those of us in the nuclear communications community ask ourselves constantly, “How do we inspire people to get involved and speak out in support of nuclear?” I see these petitions as a sign of success on the part of the nuclear community—we are reaching out and inspiring action from the ground up. Nuclear supporters who are not directly employed by the industry created both of these petitions. In my mind, that is a really wonderful thing. Members of the public are taking independent action to support the technology they believe in.
  • The release of these petitions was just in time to beat an increased threshold for minimum signatures, from 5,000 to 25,000. That means that if half of ANS members take the time to sign these petitions, we will get a formal response from the White House about their plans for increasing public education on nuclear energy, and moving forward with an important Generation IV technology.
  • And finally, there is power in symbolic action
D'coda Dcoda

The myth of renewable energy | Bulletin of the Atomic Scientists - 0 views

  • "Clean." "Green." What do those words mean? When President Obama talks about "clean energy," some people think of "clean coal" and low-carbon nuclear power, while others envision shiny solar panels and wind turbines. And when politicians tout "green jobs," they might just as easily be talking about employment at General Motors as at Greenpeace. "Clean" and "green" are wide open to interpretation and misappropriation; that's why they're so often mentioned in quotation marks. Not so for renewable energy, however.
  • people across the entire enviro-political spectrum seem to have reached a tacit, near-unanimous agreement about what renewable means: It's an energy category that includes solar, wind, water, biomass, and geothermal power.
  • Renewable energy sounds so much more natural and believable than a perpetual-motion machine, but there's one big problem: Unless you're planning to live without electricity and motorized transportation, you need more than just wind, water, sunlight, and plants for energy. You need raw materials, real estate, and other things that will run out one day. You need stuff that has to be mined, drilled, transported, and bulldozed -- not simply harvested or farmed. You need non-renewable resources:
  • ...15 more annotations...
  • Solar power. While sunlight is renewable -- for at least another four billion years -- photovoltaic panels are not. Nor is desert groundwater, used in steam turbines at some solar-thermal installations. Even after being redesigned to use air-cooled condensers that will reduce its water consumption by 90 percent, California's Blythe Solar Power Project, which will be the world's largest when it opens in 2013, will require an estimated 600 acre-feet of groundwater annually for washing mirrors, replenishing feedwater, and cooling auxiliary equipment.
  • Geothermal power. These projects also depend on groundwater -- replenished by rain, yes, but not as quickly as it boils off in turbines. At the world's largest geothermal power plant, the Geysers in California, for example, production peaked in the late 1980s and then the project literally began running out of steam.
  • Wind power. According to the American Wind Energy Association, the 5,700 turbines installed in the United States in 2009 required approximately 36,000 miles of steel rebar and 1.7 million cubic yards of concrete (enough to pave a four-foot-wide, 7,630-mile-long sidewalk). The gearbox of a two-megawatt wind turbine contains about 800 pounds of neodymium and 130 pounds of dysprosium -- rare earth metals that are rare because they're found in scattered deposits, rather than in concentrated ores, and are difficult to extract.
  • Biomass.
  • t expanding energy crops will mean less land for food production, recreation, and wildlife habitat. In many parts of the world where biomass is already used extensively to heat homes and cook meals, this renewable energy is responsible for severe deforestation and air pollution
  • Hydropower.
  • hydroelectric power from dams is a proved technology. It already supplies about 16 percent of the world's electricity, far more than all other renewable sources combined.
  • The amount of concrete and steel in a wind-tower foundation is nothing compared with Grand Coulee or Three Gorges, and dams have an unfortunate habit of hoarding sediment and making fish, well, non-renewable.
  • All of these technologies also require electricity transmission from rural areas to population centers. Wilderness is not renewable once roads and power-line corridors fragment it
  • the life expectancy of a solar panel or wind turbine is actually shorter than that of a conventional power plant.
  • meeting the world's total energy demands in 2030 with renewable energy alone would take an estimated 3.8 million wind turbines (each with twice the capacity of today's largest machines), 720,000 wave devices, 5,350 geothermal plants, 900 hydroelectric plants, 490,000 tidal turbines, 1.7 billion rooftop photovoltaic systems, 40,000 solar photovoltaic plants, and 49,000 concentrated solar power systems. That's a heckuva lot of neodymium.
  • "renewable energy" is a meaningless term with no established standards.
  • None of our current energy technologies are truly renewable, at least not in the way they are currently being deployed. We haven't discovered any form of energy that is completely clean and recyclable, and the notion that such an energy source can ever be found is a mirage.
  • Long did the math for California and discovered that even if the state replaced or retrofitted every building to very high efficiency standards, ran almost all of its cars on electricity, and doubled its electricity-generation capacity while simultaneously replacing it with emissions-free energy sources, California could only reduce emissions by perhaps 60 percent below 1990 levels -- far less than its 80 percent target. Long says reaching that target "will take new technology."
  • it will also take a new honesty about the limitations of technology
D'coda Dcoda

Senator Lamar Alexander: "Nuclear Power Is the Most Reliable and Useful Source of Green... - 0 views

  • U.S. Senator Lamar Alexander (R-Tenn.), chairman of the Senate Republican Conference, delivered a speech this week at the International V.M. Goldschmidt Conference in Knoxville.  Alexander serves on the Senate Environment and Public Works Committee and is the chairman of the Tennessee Valley Authority Congressional Caucus.  His remarks as prepared follow:
  • When
  • in a speech in Oak Ridge in May of 2009, I called for America to build 100 new nuclear plants during the next twenty years.  Nuclear power produces 70 percent of our pollution-free, carbon-free electricity today.  It is the most useful and reliable source of green electricity today because of its tremendous energy density and the small amount of waste that it produces.  And because we are harnessing the heat and energy of the earth itself through the power of the atom, nuclear power is also natural.
  • ...10 more annotations...
  • Forty years ago, nuclear energy was actually regarded as something of a savior for our environmental dilemmas because it didn’t pollute.  And this was well before we were even thinking about global warming or climate change.  It also didn’t take up a great deal of space.  You didn’t have to drown all of Glen Canyon to produce 1,000 megawatts of electricity.  Four reactors would equal a row of wind turbines, each one three times as tall as Neyland Stadium skyboxes, strung along the entire length of the 2,178-mile Appalachian Trail.   One reactor would produce the same amount of electricity that can be produced by continuously foresting an area one-and-a-half times the size of the Great Smoky Mountains National Park in order to create biomass.  Producing electricity with a relatively small number of new reactors, many at the same sites where reactors are already located, would avoid the need to build thousands and thousands of miles of new transmission lines through scenic areas and suburban backyards. 
  • While nuclear lost its green credentials with environmentalists somewhere along the way, some are re-thinking nuclear energy because of our new environmental paradigm – global climate change.  Nuclear power produces 70 percent of our carbon-free electricity today.  President Obama has endorsed it, proposing an expansion of the loan guarantee program from $18 billion to $54 billion and making the first award to the Vogtle Plant in Georgia.  Nobel Prize-winning Secretary of Energy Steven Chu wrote recently in The Wall Street Journal about developing a generation of mini-reactors that I believe we can use to repower coal boilers, or more locally, to power the Department of Energy’s site over in Oak Ridge.  The president, his secretary of energy, and many environmentalists may be embracing nuclear because of the potential climate change benefits, but they are now also remembering the other positive benefits of nuclear power that made it an environmental savior some 40 years ago
  • The Nature Conservancy took note of nuclear power’s tremendous energy density last August when it put out a paper on “Energy Sprawl.”  The authors compared the amount of space you need to produce energy from different technologies – something no one had ever done before – and what they came up with was remarkable.  Nuclear turns out to be the gold standard.  You can produce a million megawatts of electricity a year from a nuclear reactor sitting on one square mile.  That’s enough electricity to power 90,000 homes.  They even included uranium mining and the 230 square miles surrounding Yucca Mountain in this calculation and it still comes to only one square mile per million megawatt hours
  • Coal-fired electricity needs four square miles, because you have to consider all the land required for mining and extraction.  Solar thermal, where they use the big mirrors to heat a fluid, takes six square miles.  Natural gas takes eight square miles and petroleum takes 18 square miles – once again, including all the land needed for drilling and refining and storing and sending it through pipelines.  Solar photovoltaic cells that turn sunlight directly into electricity take 15 square miles and wind is even more dilute, taking 30 square miles to produce that same amount of electricity.
  • When people say “we want to get our energy from wind,” they tend to think of a nice windmill or two on the horizon, waving gently – maybe I’ll put one in my back yard.   They don’t realize those nice, friendly windmills are now 50 stories high and have blades the length of football fields.  We see awful pictures today of birds killed by the Gulf oil spill.  But one wind farm in California killed 79 golden eagles in one year. The American Bird Conservancy says existing turbines can kill up to 275,000 birds a year.
  • And for all that, each turbine has the capacity to produce about one-and-a-half megawatts.  You need three thousand of these 50-story structures to equal the output of one nuclear reactor
  • , wind power can be counted on to be there 10 to 15 percent of the time when you need it.  TVA can count on nuclear power 91 percent of the time, coal, 60 percent of the time and natural gas about 50 percent of the time.  This is why I believe it is a taxpayer rip-off for wind power to be subsidized per unit of electricity at a rate of 25 times the subsidy for all other forms of electricity combined. 
  • the “problem of nuclear waste” has been overstated because people just don’t understand the scale or the risk.  All the high-level nuclear waste that has ever been produced in this country would fit on a football field to a height of ten feet.  That’s everything.  Compare that to the billion gallons of coal ash that slid out of the coal ash impoundment at the Kingston plant and into the Emory River a year and a half ago, just west of here.  Or try the industrial wastes that would be produced if we try to build thousands of square miles of solar collectors or 50-story windmills.  All technologies produce some kind of waste.  What’s unique about nuclear power is that there’s so little of it.
  • Now this waste is highly radioactive, there’s no doubt about that.  But once again, we have to keep things in perspective.  It’s perfectly acceptable to isolate radioactive waste through storage.  Three feet of water blocks all radiation.  So does a couple of inches of lead and stainless steel or a foot of concrete.  That’s why we use dry cask storage, where you can load five years’ worth of fuel rods into a single container and store them right on site.  The Nuclear Regulatory Commission and Energy Secretary Steven Chu both say we can store spent fuel on site for 60 or 80 years before we have to worry about a permanent repository like Yucca Mountain
  • then there’s reprocessing.  Remember, we’re now the only major nuclear power nation in the world that is not reprocessing its fuel.  While we gave up reprocessing in the 1970s, the French have all their high-level waste from 30 years of producing 80 percent of their electricity stored beneath the floor of one room at their recycling center in La Hague.  That’s right; it all fits into one room.  And we don’t have to copy the French.  Just a few miles away at the Oak Ridge National Laboratory they’re working to develop advanced reprocessing technologies that go well beyond what the French are doing, to produce a waste that’s both smaller in volume and with a shorter radioactive life.  Regardless of what technology we ultimately choose, the amount of material will be astonishingly small.  And it’s because of the amazing density of nuclear technology – something we can’t even approach with any other form of energy
D'coda Dcoda

China Develops New Breakthrough in Nuclear Technology [21Jul11] - 0 views

  • China says it has made a breakthrough in its nuclear technology, testing for the first time an experimental fast neutron reactor. The China Institute of Atomic Energy says it tested the small reactor outside Beijing Thursday, connecting it to the power grid to produce electricity.
  • The test highlights Beijing's determination to be a leading innovator in nuclear power despite a slowdown in approving new plants to allow for safety checks following the nuclear disaster in Japan in March.  Beijing spent a year testing the fast neutron reactor before linking it to the power grid.
  • The new technology raises the uranium energy efficiency of the reactor, allowing less uranium to be used to produce power.  It also means that nuclear waste from older reactors, which are less efficient, can potentially be reused.  Experts say the technology also reduces radioactive waste
  • ...1 more annotation...
  • However, the fast neutron reactors also have potential drawbacks, including a potentially riskier cooling system.
D'coda Dcoda

Rossi's Self Sustaining One Megawatt Reactor [21Jul11] - 0 views

  • Almost everyone in the alternative energy community is aware of Andrea Rossi's cold fusion based E-Cat (Energy Catalyzer) technology. It is a game changer that allows vast amounts of energy to be produced by inducing a nuclear fusion process between small quantities of nickel powder and hydrogen gas. Instead of the reaction taking place in a gigantic multi-billion dollar experimental reactor, it takes place in a device that can fit on a table top. This technology seems to be everything to be hoped for in a revolutionary new source of energy to replace fossil fuels -- safe, cheap, environmentally friendly, and inexhaustible. 
  • It seems that as the launch of the technology approaches, the flow of information is accelerating. The information is coming from Defkalion Green Technologies Incorporated, Andrea Rossi himself, and from other sources. The following is a review of some of the breaking news.
  • A Self Sustaining One Megawatt Reactor
  • ...4 more annotations...
  • Dear Alessandro Casali: This photo [shown in the opening of this PESN story] has been taken during the stress test of a series of E-Cats a couple of weeks ago, together with the Greek Scientist Christos Stremmenos. They are some of the E-Cats that will compound the 1 MW plant. In that phase the E-Cats were working making steam WITHOUT energy input. This is why you see us so focused (me and Stremmenos). The 1 MW plant, probably will work mostly without energy input, I suppose, because we are resolving the safety issues connected. The 4 red spots are pumps, the E-Cat clusters are hidden. The three characters in the photo are Prof. Sergio Focardi, Prof. Christos Stremmenos and me. Warm Regards, A.R.
  • Here is a comment on this topic from Rossi's blog, "The Journal of Nuclear Physics." http://www.journal-of-nuclear-physics.com/?p=501&cpage=2#comment-54414 
  • (I think the reason he uses the word "mostly" in the above post, is that the one megawatt plant will require input power to start. Also, if a reactor core starts to drift lower in output, power will be used for a few minutes to bring it back to a normal operating temperature. For the vast majority of the time, there will be no input power.) The fact that the one megawatt plant will use no input power (the vast majority of the time) is very important. This will be absolute -- beyond any doubt -- proof that the technology works as claimed. Simply put, the pathological skeptics and naysayers will not be able to refute that cold fusion is taking place. 
  • Confirmation the Catalyst and Fuel is Super Cheap
  •  
    There are links here to various articles about this new cold fusion reactor (fits on a table top)
D'coda Dcoda

Nuclear energy ~ Think again [22Oct11] - 0 views

  • It is fashionable among green groups and others who have utopian visions of a low tech post industrial society to say that nuclear energy is finished as a result of the Fukushima crisis. This is dead wrong. Charles D. Ferguson, President of the Federation of American Scientists, has an important essay in Foreign Policy Magazine on the subject. In an article titled, "Think Again: Nuclear Power," he writes that while Japan has "melted down, that doesn't mean the end of the atomic age."His point is that the fashionable approach to the nuclear fuel cycle is sometimes wrong.Also, there is other positive news about nuclear energy. The NRC is making headway with the final design certification of the Westinghouse AP1000. South Africa will try again to get financing and build new nuclear reactors instead of more coal plants.
  • Here's a quick summary of Ferguson's essay.First, Fukushima did not kill the nuclear renaissance. Germany already had a significant anti-nuclear political constituency well before March 11, 2011. Fukushima simply accelerated a process that was already underway. Meanwhile, China, India, and South Korea are moving ahead with their plans to rely on nuclear energy.Second, nuclear energy is not "an accident waiting to happen." The accidents which have happened are mostly the result of issues with organizational culture, and not technology failures.
  • Third, the expense of building nuclear power plants is offset by the low cost of running them. Once you factor in the benefits of stopping carbon emissions and the issue of climate change, nuclear energy looks like a bargain. While nuclear energy has been good for highly industrialized countries, it doesn't have nearly the same potential in the developing world for two reasons – cost and lack of robust electrical grids. Ferguson doesn't address small modular reactors which could find a niche in these markets.Fourth, commercial nuclear development does not necessarily lead to bomb making. Most of the 30 or so countries that use nuclear power have not built their own enrichment plants nor reprocessing centers.
  • ...5 more annotations...
  • Firth, management of radioactive waste and spent fuel are solvable problems. Dry cask storage works and deep geologic repositories are feasible once you get the politics right.Sixth, windmills will not replace reactors nor will solar nor anytime soon. These are intermittent and niche technologies which require massive government subsidies to get their electricity to market. Smart grids will improve the use of these technologies, but claimed improvements in energy storage technologies contain some starry eyed projections.The FAS describes itself as being focused on national and international security issues connected to applied science and technology. 
  • NRC progress with AP1000The Nuclear Regulatory Commission's technical staff has recommended to the full commission that it approve final design certification of the Westinghouse AP1000. According to agency officials, the commission will vote on the matter by the end of the year. Eight new reactors in the southeast have referenced the AP1000 design. Construction of four units is already underway in China.The NRC rejected a petition by anti-nuclear groups to stop all new licensing until safety improvements related to the Fukushima crisis are issued as regulatory requirements. The commission said that the Part 52 licensing process allows for new safety measures to be added to licenses as the commission approves them.
  • The first U.S. utility to break ground for twin AP1000s is Southern at its Vogtle site in Georgia. Southern says it expects a combined construction and operating license sometime in the first months of 2012. At that time it will also ink the final term sheet of its $8.3 billion loan guarantee with the Department of Energy.Other utilities which plan to build twin AP1000s include Scana (2 at V.C. Summer site in South Carolina, Florida Power & Light at Turkey Point and Progress at Levy County. Both sites are in Florida.
  • South Africa new buildThe South African government, which tried to offer a tender for 12 new nuclear reactors in 2008, but failed to arrange the financing for them, is making a second attempt. Energy Minister Dipuo Peters told financial wire services Oct 19 a tender for 9.6 GWe is under review by the government.The reactors would be built over a period of two decades. The bid process could begin as early as winter 2012.
  • The value at $4,000/kw could be in the range of $38 billion for the reactors, but as much as three times that amount in total for turbines, upgrades to the grid, including lines and substations, first fuel loads, and spent fuel management.A critical issue remains which is how the government will finance the new build. The country has suffered through a series of power crisis because in prior years the government failed to raise rates or diverted money from Eskom, the state owned utility, to social welfare purposes. As a result, the country's overall GDP suffered as manufacturing plants and mines had to close periodically or reduce operations due to problems with electricity supply.Since then the government has imposed rate increases, but faces some political opposition because of chronically high unemployment officially measured at 25% of the workforce. New coal plants are being built along with wind and solar plants.An interesting note is that China's Guangdong Nuclear Power Group has indicated interest in providing the financing in return for the right to build and operating the plants. Other bidders include the major developed country vendors.
Dan R.D.

Is nuclear power fair for future generations? Realities of nuclear power production [05... - 0 views

  • ScienceDaily (May 5, 2011) — The recent nuclear accident in Fukushima Daiichi in Japan has brought the nuclear debate to the forefront of controversy. While Japan is trying to avert further disaster, many nations are reconsidering the future of nuclear power in their regions. A study by Behnam Taebi from the Delft University of Technology, published online in the Springer journal Philosophy & Technology, reflects on the various possible nuclear power production methods from an ethical perspective: If we intend to continue with nuclear power production, which technology is most morally desirable?
  • Dr. Taebi said, "Discussions on nuclear power usually end up in a yes/no dichotomy. Meanwhile the production of nuclear power is rapidly growing. Before we can reflect on the desirability of nuclear power, we should first distinguish between its production methods and their divergent ethical issues. We must then clearly state, if we want to continue on the nuclear path, which technology we deem desirable from a moral perspective. Then we can compare nuclear with other energy systems. The state of the art in nuclear technology provides us with many more complicated moral dilemmas than people sometimes think."
D'coda Dcoda

Ministry of Education orders false dosimeters [27Nov11] - 0 views

  • Since 311, Japanese government pretended to check radiation level of various areas in Japan, but because they measure radiation at 14 m or 85 m high from the ground, nobody got to believe the data. They therefore ordered 600 dosimeters from a Geiger counter maker named Alpha Tsushin. Those dosimeters were supposed to be put at schools in Fukushima etc.. However, the Ministry of Education, Culture, Sports, Science and Technology stated they cancelled the contract on 11/18/2011 because “their dosimeter is not accurate and they can’t make 600 of the dosimeters by the deadline.”
  • However, according to the explanation of Alpha Tsushin, it was because the Ministry of Education, Culture, Sports, Science and Technology wanted false dosimeter. The Ministry of Education, Culture, Sports, Science and Technology was afraid to show higher radiation levels than the monitoring posts set on 14 m or 85 m high from the ground, so they ordered Alpha Tsushin to make geiger counters to indicate lower radiation level than actual. Alpha Tsushin uses parts from America, which are manufactured using international standards, but the Ministry of Education, Culture, Sports, Science and Technology tried to force the engineers to use the “Japanese standard”. As a result, Alpha Tsushin was cancelled, luckily for them.
  • The company is planning to have a press conference to tell the truth.
D'coda Dcoda

Lower House committee approves nuke export deals with four nations [04Dec11] - 0 views

  • While the battle goes on to bring the Fukushima No. 1 plant under control, the government moved a step closer Friday to resuming exports of Japan's nuclear technology as a Lower House committee approved ratification of accords with four countries. The Democratic Party of Japan and Liberal Democratic Party both voted in favor of the bilateral agreements with Jordan, Vietnam, South Korea and Russia at the Lower House Foreign Affairs Committee. The full chamber was to vote on the pacts later Friday, but at the request of opposition parties the action was postponed till Tuesday. Despite the delay, the treaties are expected to be approved by the Lower House and will likely clear the Upper House before the current Diet session closes Dec. 9.
  • "I think that above all, it is our duty to share our experience, the lessons, and knowledge of the accident at the Fukushima No. 1 nuclear plant with the world," Noda said. "I think it is meaningful to provide (nuclear technology) with high-level safety while grasping the situation of the other countries." Noda also suggested nuclear plants may be exported to countries other than those four in the future if more seek Japanese technology despite the March 11 accident. "For countries that say they need Japan's technology, we will deal with and decide each case individually," he said.
1 - 20 of 184 Next › Last »
Showing 20 items per page