Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged sources

Rss Feed Group items tagged

D'coda Dcoda

The Dispatch Queue - An Alternative Means of Accounting for External Costs? [28Sep11] - 0 views

  • Without much going on recently that hasn’t been covered by other blog posts, I’d like to explore a topic not specifically tied to nuclear power or to activities currently going on in Washington, D.C. It involves an idea I have about a possible alternative means of having the electricity market account for the public health and environmental costs of various energy sources, and encouraging the development and use of cleaner sources (including nuclear) without requiring legislation. Given the failure of Congress to take action on global warming, as well as environmental issues in general, non-legislative approaches to accomplishing environmental goals may be necessary. The Problem
  • One may say that the best response would be to significantly tighten pollution regulations, perhaps to the point where no sources have significant external costs. There are problems with this approach, however, above and beyond the fact that the energy industry has (and will?) successfully blocked the legislation that would be required. Significant tightening of regulations raises issues such as how expensive compliance will be, and whether or not viable alternative (cleaner) sources would be available. The beauty of simply placing a cost (or tax) on pollution that reflects its costs to public health and the environment is that those issues need not be addressed. The market just decides between sources based on the true, overall cost of each, resulting in the minimum overall (economic + environmental) cost-generation portfolio
  • The above reasoning is what led to policies like cap-and-trade or a CO2 emissions tax being proposed as a solution for the global warming problem. This has not flown politically, however. Policies that attempt to have external costs included in the market cost of energy have been labeled a “tax increase.” This is particularly true given that the associated pollution taxes (or emissions credit costs) would have largely gone to the government.
  • ...15 more annotations...
  • One final idea, which does not involve money going to or from government, is simply requiring that cleaner sources provide a certain fraction of our overall power generation. The many state Renewable Portfolio Standards (that do not include nuclear) and the Clean Energy Standard being considered by Congress and the Obama administration (which does include nuclear) are examples of this policy. While better than nothing, such policies are not ideal in that they are crude, and don’t involve a quantitative incentive based on real external costs. An energy source is either defined as “clean,” or it is not. Note that the definition of “clean” would be decided politically, as opposed to objectively based on tangible external costs determined by scientific studies (nuclear’s exclusion from state Renewable Portfolio Standards policies being one outrageous example). Finally, there is the fact that any such policy would require legislation.
  • Well, if we can’t tax pollution, how about encouraging the use of clean sources by giving them subsidies? This has proved to be more popular so far, but this idea has also recently run into trouble, given the current situation with the budget deficit and national debt. Events like the Solyndra bankruptcy have put government clean energy subsidies even more on the defensive. Thus, it seems that neither policies involving money flowing to the government nor policies involving money flowing from the government are politically viable at this point.
  • All of the above begs the question whether there is a policy available that will encourage the use of cleaner energy sources that is revenue-neutral (i.e., does not involve money flowing to or from the government), does not involve the outright (political) selection of certain energy sources over others, and does not require legislation. Enter the Dispatch Queue
  • There must be enough power plants in a given region to meet the maximum load (or demand) expected to occur. In fact, total generation capacity must exceed maximum demand by a specified “reserve margin,” to address the possibility of a plant going offline, or other possible considerations. Due to the fact that demand varies significantly with time, a significant fraction of the generation capacity remains offline, some or most of the time. The dispatch queue is a means by which utilities, or independent regional grid operators, decide which power plants will operate in order to meet demand at any given instant. A good discussion of dispatch queues and how they operate can be found in this Department of Energy report.
  • The general goal of the methodology used to set the dispatch queue order is to minimize overall generation cost, while staying in compliance with all federal or state laws (environmental rules, etc.). This is done by placing the power plants with the lowest “variable” cost first in the queue. Plants with the highest “variable” cost are placed last. The “variable” cost of a plant represents how much more it costs to operate the plant than it costs to leave it idle (i.e., it includes the fuel cost and maintenance costs that arise from operation, but does not include the plant capital cost, personnel costs, or any fixed maintenance costs). Thus, one starts with the least expensive plants, and moves up (in cost) until generation meets demand. The remaining, more expensive plants are not fired up. This ensures that the lowest-operating-cost set of plants is used to meet demand at any given time
  • As far as who makes the decisions is concerned, in many cases the local utility itself runs the dispatch for its own service territory. In most of the United States, however, there is a large regional grid (covering several utilities) that is operated by an Independent System Operator (ISO) or Regional Transmission Organization (RTO), and those organizations, which are independent of the utilities, set the dispatch queue for the region. The Idea
  • As discussed above, a plant’s place in the dispatch queue is based upon variable cost, with the lowest variable cost plants being first in the queue. As discussed in the DOE report, all the dispatch queues in the country base the dispatch order almost entirely on variable cost, with the only possible exceptions being issues related to maximizing grid reliability. What if the plant dispatch methodology were revised so that environmental costs were also considered? Ideally, the public health and environmental costs would be objectively and scientifically determined and cast in terms of an equivalent economic cost (as has been done in many scientific studies such as the ExternE study referenced earlier). The calculated external cost would be added to a plant’s variable cost, and its place in the dispatch queue would be adjusted accordingly. The net effect would be that dirtier plants would be run much less often, resulting in greatly reduced pollution.
  • This could have a huge impact in the United States, especially at the current time. Currently, natural gas prices are so low that the variable costs of combine-cycle natural gas plants are not much higher than those of coal plants, even without considering environmental impacts. Also, there is a large amount of natural gas generation capacity sitting idle.
  • More specifically, if dispatch queue ordering methods were revised to even place a small (economic) weight on environmental costs, there would be a large switch from coal to gas generation, with coal plants (especially the older, dirtier ones) moving to the back of the dispatch queue, and only running very rarely (at times of very high demand). The specific idea of putting gas plants ahead of coal plants in the dispatch queue is being discussed by others.
  • The beauty of this idea is that it does not involve any type of tax or government subsidy. It is revenue neutral. Also, depending on the specifics of how it’s implemented, it can be quantitative in nature, with environmental costs of various power plants being objectively weighed, as opposed certain sources simply being chosen, by government/political fiat, over others. It also may not require legislation (see below). Finally, dispatch queues and their policies and methods are a rather arcane subject and are generally below the political radar (many folks haven’t even heard of them). Thus, this approach may allow the nation’s environmental goals to be (quietly) met without causing a political uproar. It could allow policy makers to do the right thing without paying too high of a political cost.
  • Questions/Issues The DOE report does mention some examples of dispatch queue methods factoring in issues other than just the variable cost. It is fairly common for issues of grid reliability to be considered. Also, compliance with federal or state environmental requirements can have some impacts. Examples of such laws include limits on the hours of operation for certain polluting facilities, or state requirements that a “renewable” facility generate a certain amount of power over the year. The report also discusses the possibility of favoring more fuel efficient gas plants over less efficient ones in the queue, even if using the less efficient plants at that moment would have cost less, in order to save natural gas. Thus, the report does discuss deviations from the pure cost model, to consider things like environmental impact and resource conservation.
  • I could not ascertain from the DOE report, however, what legal authorities govern the entities that make the plant dispatch decisions (i.e., the ISOs and RTOs), and what types of action would be required in order to change the dispatch methodology (e.g., whether legislation would be required). The DOE report was a study that was called for by the Energy Policy Act of 2005, which implies that its conclusions would be considered in future congressional legislation. I could not tell from reading the report if the lowest cost (only) method of dispatch is actually enshrined somewhere in state or federal law. If so, the changes I’m proposing would require legislation, of course.
  • The DOE report states that in some regions the local utility runs the dispatch queue itself. In the case of the larger grids run by the ISOs and RTOs (which cover most of the country), the report implies that those entities are heavily influenced, if not governed, by the Federal Energy Regulatory Commission (FERC), which is part of the executive branch of the federal government. In the case of utility-run dispatch queues, it seems that nothing short of new regulations (on pollution limits, or direct guidance on dispatch queue ordering) would result in a change in dispatch policy. Whereas reducing cost and maximizing grid reliability would be directly in the utility’s interest, favoring cleaner generation sources in the queue would not, unless it is driven by regulations. Thus, in this case, legislation would probably be necessary, although it’s conceivable that the EPA could act (like it’s about to on CO2).
  • In the case of the large grids run by ISOs and RTOs, it’s possible that such a change in dispatch methodology could be made by the federal executive branch, if indeed the FERC has the power to mandate such a change
  • Effect on Nuclear With respect to the impacts of including environmental costs in plant dispatch order determination, I’ve mainly discussed the effects on gas vs. coal. Indeed, a switch from coal to gas would be the main impact of such a policy change. As for nuclear, as well as renewables, the direct/immediate impact would be minimal. That is because both nuclear and renewable sources have high capital costs but very low variable costs. They also have very low environmental impacts; much lower than those of coal or gas. Thus, they will remain at the front of the dispatch queue, ahead of both coal and gas.
D'coda Dcoda

Impacts of the Fukushima Nuclear Power Plants on Marine Radioactivity - Environmental S... - 0 views

  • The impacts on the ocean of releases of radionuclides from the Fukushima Dai-ichi nuclear power plants remain unclear. However, information has been made public regarding the concentrations of radioactive isotopes of iodine and cesium in ocean water near the discharge point. These data allow us to draw some basic conclusions about the relative levels of radionuclides released which can be compared to prior ocean studies and be used to address dose consequences as discussed by Garnier-Laplace et al. in this journal.(1) The data show peak ocean discharges in early April, one month after the earthquake and a factor of 1000 decrease in the month following. Interestingly, the concentrations through the end of July remain higher than expected implying continued releases from the reactors or other contaminated sources, such as groundwater or coastal sediments. By July, levels of 137Cs are still more than 10 000 times higher than levels measured in 2010 in the coastal waters off Japan. Although some radionuclides are significantly elevated, dose calculations suggest minimal impact on marine biota or humans due to direct exposure in surrounding ocean waters, though considerations for biological uptake and consumption of seafood are discussed and further study is warranted.
  • there was no large explosive release of core reactor material, so most of the isotopes reported to have spread thus far via atmospheric fallout are primarily the radioactive gases plus fission products such as cesium, which are volatilized at the high temperatures in the reactor core, or during explosions and fires. However, some nonvolatile activation products and fuel rod materials may have been released when the corrosive brines and acidic waters used to cool the reactors interacted with the ruptured fuel rods, carrying radioactive materials into the ground and ocean. The full magnitude of the release has not been well documented, nor is there data on many of the possible isotopes released, but we do have significant information on the concentration of several isotopes of Cs and I in the ocean near the release point which have been publically available since shortly after the accident started.
  • We present a comparison of selected data made publicly available from a Japanese company and agencies and compare these to prior published radionuclide concentrations in the oceans. The primary sources included TEPCO (Tokyo Electric Power Company), which reported data in regular press releases(3) and are compiled here (Supporting Information Table S1). These TEPCO data were obtained by initially sampling 500 mL surface ocean water from shore and direct counting on high-purity germanium gamma detectors for 15 min at laboratories at the Fukushima Dai-ni NPPs. They reported initially results for 131I (t1/2 = 8.02 days), 134Cs (t1/2 = 2.065 years) and 137Cs (t1/2 = 30.07 years). Data from MEXT (Ministry of Education, Culture, Sports, Science and Technology—Japan) were also released on a public Web site(4) and are based on similar direct counting methods. In general MEXT data were obtained by sampling 2000 mL seawater and direct counting on high-purity germanium gamma detectors for 1 h in a 2 L Marinelli beaker at laboratories in the Japan Atomic Energy Agency. The detection limit of 137Cs measurements are about 20 000 Bq m–3 for TEPCO data and 10 000 Bq m–3 for MEXT data, respectively. These measurements were conducted based on a guideline described by MEXT.(5) Both sources are considered reliable given the common activity ratios and prior studies and expertise evident by several Japanese groups involved in making these measurements. The purpose of these early monitoring activities was out of concern for immediate health effects, and thus were often reported relative to statutory limits adopted by Japanese authorities, and thus not in concentration units (reported as scaling factors above “normal”). Here we convert values from both sources to radionuclide activity units common to prior ocean studies of fallout in the ocean (Bq m–3) for ease of comparison to previously published data.
  • ...5 more annotations...
  • We focus on the most complete time-series records from the north and south discharge channels at the Dai-ichi NPPs, and two sites to the south that were not considered sources, namely the north Discharge channels at the Dai-ni NPPs about 10 km to the south and Iwasawa beach which is 16 km south of the Dai-ichi NPPs (Figure 1). The levels at the discharge point are exceedingly high, with a peak 137Cs 68 million Bq m–3 on April 6 (Figure 2). What are significant are not just the elevated concentrations, but the timing of peak release approximately one month after to the earthquake. This delayed release is presumably due to the complicated pattern of discharge of seawater and fresh water used to cool the reactors and spent fuel rods, interactions with groundwater, and intentional and unintentional releases of mixed radioactive material from the reactor facility.
  • the concentrations of Cs in sediments and biota near the NPPs may be quite large, and will continue to remain so for at least 30–100 years due to the longer half-life of 137Cs which is still detected in marine and lake sediments from 1960s fallout sources.
  • If the source at Fukushima had stopped abruptly and ocean mixing processes continued at the same rates, one would have expected that the 137Cs activities would have decreased an additional factor of 1000 from May to June but that was not observed. The break in slope in early May implies that a steady, albeit lower, source of 137Cs continues to discharge to the oceans at least through the end of July at this site. With reports of highly contaminated cooling waters at the NPPs and complete melt through of at least one of the reactors, this is not surprising. As we have no reason to expect a change in mixing rates of the ocean which would also impact this dilution rate, this change in slope of 137Cs in early May is clear evidence that the Dai-ichi NPPs remain a significant source of contamination to the coastal waters off Japan. There is currently no data that allow us to distinguish between several possible sources of continued releases, but these most likely include some combination of direct releases from the reactors or storage tanks, or indirect releases from groundwater beneath the reactors or coastal sediments, both of which are likely contaminated from the period of maximum releases
  • It is prudent to point out though what is meant by “significant” to both ocean waters and marine biota. With respect to prior concentrations in the waters off Japan, all of these values are elevated many orders of magnitude. 137Cs has been tracked quite extensively off Japan since the peak weapons testing fallout years in the early 1960s.(13) Levels in the region east of Japan have decreased from a few 10s of Bq m–3 in 1960 to 1.5 Bq m–3 on average in 2010 (Figure 2; second x-axis). The decrease in 137Cs over this 50 year record reflects both radioactive decay of 137Cs with a 30 year half-life and continued mixing in the global ocean of 137Cs to depth. These data are characteristic of other global water masses.(14) Typical ocean surface 137Cs activities range from <1 Bq m–3 in surface waters in the Southern Hemisphere, which are lower due to lower weapons testing inputs south of the equator, to >10–100 Bq m–3 in the Irish Sea, North Sea, Black Sea, and Baltic Seas, which are elevated due to local sources from the intentional discharges at the nuclear fuel reprocessing facilities at Sellafield in the UK and Cape de la Hague in France, as well as residual 137Cs from Chernobyl in the Baltic and Black Seas. Clearly then on this scale of significance, levels of 137Cs 30 km off Japan were some 3–4 orders of magnitude higher than existed prior to the NPP accidents at Fukushima.
  • Finally though, while the Dai-ichi NPP releases must be considered “significant” relative to prior sources off Japan, we should not assume that dose effects on humans or marine biota are necessarily harmful or even will be measurable. Garnier-Laplace et al.(1) report a dose reconstruction signal for the most impacted areas to wildlife on land and in the ocean. Like this study, they are relying on reported activities to calculate forest biota concentrations,
  •  
    From Wood's Hole, note that calculations are based on reports from TEPCO & other Japanese agencies. Quite a bit more to read on the site.
Dan R.D.

Power Generation from Renewables Surpasses Nuclear [08Jul11] - 0 views

shared by Dan R.D. on 10 Jul 11 - No Cached
  • The latest issue of the Monthly Energy Review published by the US Energy Information Administration, electric power generation from renewable sources has surpassed production from nuclear sources, and is now "closing in on oil," says Ken Bossong Executive Director of the Sun Day Campaign.
  • In the first quarter of 2011 renewable energy sources accounted for 11.73 percent of US domestic energy production. Renewable sources include solar, wind, geothermal, hydro, biomass/biofuel. As of the first quarter of 2011, energy production from these sources was 5.65 percent more than production from nuclear.
  • As Bossing further explains from the report, renewable sources are closing the gap with generation from oil-fired sources, with renewable source equal to 77.15 percent of total oil based generation.
  • ...2 more annotations...
  • For all sectors, including transportation, thermal, and electrical generation, renewable energy production grew just over 15 percent in the first quarter of 2011 compared to the first quarter of 2010, and fully 25 percent over first quarter 2009. In a break-down of renewable sources, biomass/biofuel accounted for a bit more than 48 percent, hydro for 35.41 percent, wind for nearly 13 percent, geothermal 2.45 percent, and solar at 1.16 percent.
  • Looking at just the electrical generation sector, renewable sources, including hydro, accounted for nearly 13 percent of net US electrical generation in the first quarter of 2011, up from 10.31 percent for the same quarter last year. Non-hydro renewable sources accounted for 4.74 percent of net US production.
D'coda Dcoda

How to Source Radioactive Material-Free Food in Japan: Food Co-Op [08Sep11] - 0 views

  • Not all co-ops (grocery stores operated as cooperatives) are equal, but some are decidedly more customer-friendly (as opposed to producer-friendly) and take care in sourcing the food that are not contaminated with radioactive materials AND disclosing the detailed information of their testing.
  • One of the readers of this blog, William Marcus, has sent me his observations on sourcing the safe food in Japan. William currently lives in Osaka with his family with the toddler son. He says co-ops in Japan are not centralized (which I didn't know), and that more east and north you go co-ops tend not to disclose the details of the testing they do (if they do the testing) on the foodstuff they sell.
  • The particular COOP that he recommends is "Shizenha" co-op headquartered in Kobe, Hyogo Prefecture and has operations in Tokushima Prefecture in Shikoku region. The co-op, he says, has just started to accept membership from Kanto and Tohoku regions.
  • ...10 more annotations...
  • I live in Osaka and sourcing clean food for our toddler son has become the biggest concern of ours, after monitoring the fallout plumes and contamination in our vicinity (which thankfully, seems to be quite limited compared to California, my home state). We have always been interested in buying healthy food and have belonged to COOP for many years.
  • COOP is not centralized -- there is no national standard for COOPs; they are regionally managed, but their membership can be quite spread out; so we recently joined a COOP (Shizenha; based in Shikoku/West Japan) that is quite more transparent in testing and showing the results of these radiation tests. Our original COOP ("S-COOP") is also doing more testing and has invested another 5 million yen in more testing equipment and outsourcing their testing to a subcontractor as well, but they won't disclose the results of the testing -- only if it is above or below the current (inflated), permitted government safety limit. Shizenha has a different 'feel' to it, and discloses the results of their testing weekly both on their website and in the order forms that we receive weekly.
  • Basically, the story is this: the further north and east you go, the less likely the COOPs are to disclose testing results as this might well embarrass their long-standing farming/food sources, while to the south and west, this is less likely to happen as their food sources are generally less suspect.
  • the reports of contaminated food are then commented on by the readers as proof that sourcing food is dangerous and tricky, when actually, if one knows the resources, it is not the case. COOP generally charges 10-20% more than your typical retail supermarkets, but the more radical of the COOPs (like Shizenha) go further by indicating exactly who is tested and what is found. If those who are really concerned about finding safe food for their families are aware of this, they can also benefit from membership to the more transparent COOPs (others probably do exist which I'm not aware of). As of this week, Shizenha will allow shipping to the northern parts of Japan (for a bigger, refundable membership deposit of 20,000 yen vs. the regular 10,000), in an effort to obviously shame the other COOPs who are more hesitant to state reality as it really is, into being more forthcoming with the testing results.
  • There is a war on food truth that is building steam, and it is in the south and west of Japan that is pushing the envelop on that front, or so it seems to us here in Kansai, at least.
  • I was in Kyushu for a week last week, visiting in-laws and it was noted by my Japanese partner and in-laws how many people are migrating permanently from Tohoku and Kanto regions -- the cars were obvious and multiple: middle-class and upper-class vans and sedans; the well-heeled are evacuating -- lucky them. . . sad for those not able to do the same, which speaks to the class-based availability of safety recourse in Japan these days (and COOP membership to a degree also represents this with its mark-up).
  • The other notable thing in Kyushu was how prominently nearly all restaurants advertised their local sourcing of ingredients. This doesn't happen at all in Osaka/Kyoto, which is owing to a few different explanations: not to offend, not to heighten fear, or because the ingredients are suspect, etc.
  • Likely we will also gravitate to Kyushu in the coming year, as at present only COOP is able to provide assurances with our food concerns, whereas in Kyushu, that is much, much less of a concern, and the food is cheaper. . .Thanks again for your fantastic blog -- it is unique and serving an invaluable service in this incredible nightmare that is ongoing. I hope this sheds some light on the food safety countermeasures that n.p.o.'s are enacting to guarantee the food supply.
  • Also, it is evident in Osaka that food origin is getting harder to ascertain in the regular retail supermarkets,
  • While "Shizenha" co-op is not party to the Fukushima Prefecture's PR effort to push Fukushima produce, other co-ops are eagerly selling. One of my Japanese blog readers says her co-op in Kansai has been pushing Fukushima produce (vegetables and fruits) ever since this spring by holding special campaign events at the store. But as William says, each co-op is different, and it is worthwhile to investigate. It is also good to know that people in Kanto and Tohoku may now be able to purchase from a Kansai-based co-op.There is also a grassroots campaign to establish volunteer radiation measuring stations throughout Japan, modeled after the one in Fukushima City (Citizen's Radioactivity Measuring Station), where anyone can bring in a food item and have it tested.
D'coda Dcoda

TEPCO never pushed electrical safety plan at nuke plant [23Oct11] - 0 views

  • A plan to connect six reactors at the crippled Fukushima No. 1 nuclear power plant, which could have reduced the damage from the Great East Japan Earthquake and tsunami, never left the drawing board, according to sources. Tokyo Electric Power Co. sources said while consideration had been given in 2006 to connecting all sources of electricity at all six reactors, no decision was made because of technical problems. However, nuclear engineering experts said the work could have been implemented and added that overconfidence about the low possibility of all reactors losing all their electrical sources was likely behind the failure to proceed with the reconstruction work.
  • "TEPCO officials likely concluded that there was no need to spend time and money because of an overconfidence that a loss of electricity sources would never occur," said Tadahiro Katsuta, associate professor of nuclear engineering at Meiji University. "If the work had been carried out, there was the possibility that damage could have been reduced." After the March 11 tsunami hit the Fukushima No. 1 plant, the No. 1 to No. 4 reactors lost their electrical sources. The inability to properly cool the reactors led to a core meltdown and hydrogen explosions that severely damaged the reactors and spewed large amounts of radioactive materials into the atmosphere. The No. 5 and No. 6 reactors were connected in terms of electricity sources and the emergency diesel generator at the No. 6 reactor, which was the only one that continued to work, enabled cooling to continue at those two reactors.
  • As an emergency measure, TEPCO officials laid electrical cables between all six reactors by April 25. Because TEPCO proceeded with such work after the quake and tsunami, experts said if reconstruction work had been conducted in 2006, there was the possibility that a major accident could have even been prevented. According to former TEPCO executives, a plan was considered in 2006 to strengthen the electricity facilities at the Fukushima No. 1 plant to avoid a critical accident that might occur should all electrical sources be lost due to a natural disaster. The No. 1 to No. 4 reactors on the south side of the plant were connected by electrical cables and those four reactors could share electricity if the need arose.
  • ...2 more annotations...
  • The No. 5 and No. 6 reactors on the north side of the plant also shared electrical sources with each other, but those two reactors were not connected to the four to the south. The plan for reconstruction work considered installing steel towers to link the electrical cables or digging tunnels through which cable could connect all six reactors. The former TEPCO executive said, "An estimate of the construction needed for the reconstruction work, including related civil engineering work, totaled several billions of yen and there was a plan to go ahead with the work." However, according to an explanation by other TEPCO officials, there were many structures and buried objects that would have been a hindrance to laying cables in the plant and there were also concerns that if the electrical cables became too long a drop in voltage might have occurred. Those reasons led TEPCO officials to abandon any further consideration for more specific plans.
  • Katsuta, the Meiji University nuclear engineering professor, said the buried objects could have been moved and any voltage drop could have been overcome by using transformers. Shiori Ishino, a professor emeritus of nuclear engineering at the University of Tokyo, added, "Since they hurriedly implemented measures after the accident, why could they not have done similar work beforehand? A serious analysis of what was involved in the decision should be made." In response, a TEPCO spokesperson said while it is true that consideration was given for the reconstruction work at one time, there are no documents showing that a decision was ever made on it. "Connecting cables between the six reactors after the accident was nothing more than an immediate measure taken during an emergency," the spokesperson said.
D'coda Dcoda

Sun and wind as alternative to nuclear energy : Voice of Russia [04Jul11] - 0 views

  • Scared by the nuclear disaster at the Japanese Fukushima-1 Nuclear power plant, Germany, Italy and Switzerland have decided to abandon nuclear energy towards alternative sources of energy. How safe are these alternatives?  Today ecologists and scientists are trying to answer this question.Nature protection activists call alternative sources of energy “green” sources. However after a more detailed study these sources can hardly be regarded as “environmentally friendly”. Silicon solar arrays Europeans want to see on the roofs of their houses turn to be unsafe right at the stage of their production. The production of one ton of photo elements leads to the emission up to 4 tons of silicon tetrachloride, a highly toxic substance, which combinations may cause different diseases. Besides poisonous gallium, lead and arsenic the photo elements also contain cadmium. If cadmium enters a human body it can cause tumors and affect the nervous system.
  • As for wind turbines, their noise is dangerous for health and it is impossible to recycle the worn blades. Though green energy sources are not completely safe it is the question of choosing the lesser of two evils, Igor Shkradyuk, the coordinator of the program on the greening of industrial activities at the Center of Wild Life Protection, says."Absolutely environmentally clean energy does not exist.  All its types have stronger of weaker impact on the environment. A solar battery requires a huge amount of unhealthy silicon. Engineers hope that silicon-free materials for solar batteries will be produced in 10-20 years. The solar battery, if you don’t break it, of course, poses no danger. As for wind turbines, the first one was put into operation in mid 1970-s in Germany. But the residents complained about its strong vibration and noise and a local court ruled to stop it. Since then many things have changed and modern powerful wind turbines are unheard already at a distance of 200 meters. But they are the main source of danger for migrating birds which are almost asleep as they fly to their wintering grounds and back."
  • Vladimir Chuprov, the head of the energy department of Russia’s Greenpeace agrees that all sources of energy cause environmental damage.  But the alternative sources have advantages anyway, he says."Of course, we are negative towards any pollution and here the problem of choice comes up. For example, silicon production requires chlorine which is hazardous. But now the gradual transition to chorine-free methods of silicon production has already begun.  Besides that we see the gradual transition to thin-film photoconverters in particular arsenic based converters. And after all, nobody says that solar batteries will be thrown to a dump site. It is necessary to ensure their proper utilization." 
  • ...1 more annotation...
  • The nuclear energy industry also faces serious upgrading. Russia has the project of constructing a nuclear power plant certified by the EU. This project takes into account all the tragic lessons of Fukushima. In particular such a plant will be capable to withstand the crash of an aircraft.Another problem of choice is the price. The energy from solar batteries and wind turbines is 2-5 times more expensive than that from nuclear energy. And while Germany is rejecting the use nuclear energy, France is proposing it to export its electricity produced by the French nuclear plants and China is ready to employ German experts in nuclear energy.  
D'coda Dcoda

The Death of Nuclear Power: The Five Global Energy Moves to Make Now [07Jun11] - 0 views

  • out
  • Nuclear power was gaining a lot of momentum prior to the terrible disaster at Japan's Fukushima powerplant in March.
  • But since then, atomic energy has come under increased scrutiny and once again drawn the ire of environmentalists who were just warming up to its carbon-free emissions.
  • ...16 more annotations...
  • The German government's decision to close all of its existing nuclear reactors by 2022 shows that this shift in sentiment is gaining traction. And it increases the likelihood that the nuclear-powerplant building boom that had seemed at hand will be set back. Without a doubt, this new reality will lead to global energy shortages and much-higher energy costs.But for us as investors, the real issue is this: Which sectors will step up to alleviate the shortfall resulting from the inevitable disappearance of nuclear power?
  • As the recent development in Germany so clearly illustrates, one key difficulty about major energy decisions is that far too many are political in nature.
  • Too often, rational scientific analysis and cost-benefit analyses are ignored as hard-line environmentalists push their own agendas. Many of the environmentalists' objections are valid - at least as far as they go. But more and more, those objections seem to include every source of energy that actually works.
  • Windmills are objectionable because they look ugly and kill birds. Geothermal energy is objectionable because it causes earthquakes. Even solar energy is objectionable because of the vast acreages of land required to house the solar panels
  • Replacing Nuclear Power Figuring out which energy sources will offset the decline in nuclear power output requires three calculations:
  • First, a calculation of the cost of an energy source - as it now exists - in its economically most practicable uses. However, much as we may like solar power, we are not about to get solar-powered automobiles; likewise, oil-fueled power stations are inefficient on many grounds.
  • Second, a calculation that demonstrates whether the cost of that energy source is likely to increase or decline. With oil and hydro-electric power, for instance, the cost is likely to increase: The richest oil wells have been tapped and the best rivers have been dammed. With solar, on the other hand, the cost could decline, given how quickly the technology is advancing.
  • And third, an estimate that includes our best guess as to whether hard-line environmentalists will win or lose in their attempt to prevent its use.
  • On nuclear energy, the environmentalists appear to have won - at least for the time being. Their victory probably extends to fusion power, if that ever becomes economical. Conversely, their battles against wind and solar power are futile, as there are no scary disaster scenarios involved.
  • I regard the German decision to abandon nuclear power as foolish, and it should make us very cautious when investing in large-scale German manufacturers, which may be made uncompetitive by excessive power costs. But as an investor, I think it opens up a number of profit opportunities.
  • Actions To Take: Environmental concerns have chased investment away from nuclear energy - at least for the time being. For that reason the nuclear build-out that was just starting to gain momentum now is likely to stumble. As investors, we must look for energy sources that will most likely replace lost nuclear power output. They include:
  • Shale Gas: Potential damage to the environment caused by "fracking," which is the process by which shale gas is extracted, has not impeded this industry's growth. Natural gas has grown increasingly popular, as it is relatively cheap and clean, and readily abundant in the United States. A recent study by the Massachusetts Institute of Technology (MIT) suggests that natural gas will provide 40% of U.S. energy needs in the future, up from 20% today. You might look at Chesapeake Energy Corp. (NYSE:CHK), the largest leaseholder in Pennsylvania's Marcellus Shale, which is trading at a reasonable 9.5 times projected 2012 earnings.
  • Shale gas. Tar sands. And solar energy. Let's look at each of the three - and identify the best ways to play them
  • Tar Sands: The Athabasca tar sands in Canada contain more oil than the Middle East. And at an oil price of $100 per barrel, it is highly profitable to extract. Of course, extraction makes a huge mess of the local environment, but environmentalists seem to have lost that battle - reasonably enough, in view of the "energy security" implications of dependence on the Middle East. A play I like here is Cenovus Energy Inc. (NYSE: CVE). It's a purer Athabasca play than Suncor Energy Inc. (NYSE: SU), but it's currently pricey at 16.5 times projected 2012 earnings. Suncor's cheaper at only 11 times projected 2012 earnings - so take your pick
  • Solar Energy: Of the many new energy sources that have received so much taxpayer money in the last five years, solar is the one with real potential. Unlike with wind farms, where there is almost no opportunity for massive technological improvement or cost reduction, there is great potential upside with solar power: The technology and economics of solar panels and their manufacture is improving steadily. Indeed, solar power seems likely to be competitive as a source of electricity without subsidy sometime around 2016-2020, if energy prices stay high.
  • There are a number of ways to play this. You can select a solar-panel manufacturer like the Chinese JA Solar Holdings Co. Ltd. (Nasdaq ADR: JASO), or a rectifier producer like Power-One Inc. (Nasdaq: PWER). JA Solar is trading at a startling forward Price/Earnings (P/E) ratio of less than 5.0, mostly likely because of the Chinese accounting scandals, whereas Power-One is also cheap at less than seven times forward earnings and is U.S.-domiciled. Again, take your pick, depending on which risks you are comfortable with.
D'coda Dcoda

[MAXIMUM ALERT] Neptunium 239 Potentially Detected In Saint Louis 9/14/11 Radioactive R... - 0 views

  • [MAXIMUM ALERT] Neptunium 239 Potentially Detected In Saint Louis 9/14/11 Radioactive Rainfall.  Updates and video will follow shortly. The source has a calculated average 2.4 day half life. The half life matches Neptunium 239. Np239 decays into Plutonium 239. The source would probably be Americium 243 created in the MOX fuel reactor at Fukushima Unit 3
  • Updated to add: IF WE ARE LUCKY, the source will not be Americium 243 but rather Uranium 239 (in Fukushima); given the 2.4 day half life of Np 239, it is possible that source came directly across the jet-stream as Np-239. The result would be higher levels of Np-239 and Plutonium 239 the further west one went from Saint Louis. 
  • UPDATE 9/17/11: The video below records raw data being taken from the 1.33 mR/hr radioactive rainfall which fell in Saint Louis, Mo on 9/14/11. This data was taken after shorter half life contamination had mostly burned off. The data shown is from one hour total count readings taken of the radioactive source, and local background. The raw data from the later part of the video has yet to be fully analyzed.
D'coda Dcoda

The Pro-Nuclear Community goes Grassroots [12Oct11] - 0 views

  • In recent weeks I have been excited to witness several genuine grassroots efforts in support of nuclear energy emerging on the scene. Several have already been covered on this forum, like the Rally for Vermont Yankee and the Webinar collaboration by the Nuclear Regulatory Commission and the American Nuclear Society. Both of these efforts proved to be very successful in bringing together nuclear supporters and gaining attention from the mainstream media.
  • I’d like to share some information about another opportunity to actively show your support for nuclear. The White House recently launched a petition program called “We the People.” Here is the description of how it works: This tool provides you with a new way to petition the Obama administration to take action on a range of important issues facing our country. If a petition gets enough support, White House staff will review it, ensure it’s sent to the appropriate policy experts, and issue an official response. One of the first and most popular petitions on the website is a call to end subsidies and loan guarantees for nuclear energy by 2013. As I write this, it is only about a thousand signatures away from reaching the White House. In response to this petition, Ray Wallman, a young nuclear supporter and filmmaker, wrote a counter petition called “Educate the Public Regarding Nuclear Power.” It needs 4,500 more signatures before October 23 in order to get a formal response, and reads as follows:
  • Due to the manufactured controversy that is the nuclear reactor meltdown in Fukushima, Japan, perpetuated by a scientifically illiterate news media, the public is unnecessarily hostile to nuclear power as an energy source. To date nobody has died from the accident and Fukushima, and nuclear power has the lowest per Terra-watt hour death toll of any energy source known to man: http://nextbigfuture.com/2011/03/deaths-per-twh-by-energy-source.html The Obama administration should take better strides to educate the public regarding this important energy source.
  • ...7 more annotations...
  • In addition to the petition for education, Gary Kahanak, of Arkansas Home Energy Consultants, released another one in support of restarting the Integral Fast Reactor program. This petition was inspired by an open letter to the White House with the same goal, written by Steve Kirsch, of the Science Council for Global Initiatives. The petition states:
  • Without delay, the U.S. should build a commercial-scale demonstration reactor and adjacent recycling center. General Electric’s PRISM reactor, developed by a consortium of major American companies in partnership with the Argonne National Laboratory, is ready to build now. It is designed to consume existing nuclear waste as fuel, be passively safe and proliferation-resistant. It can provide clean, emissions-free power to counter climate change, and will create jobs as we manufacture and export a superior technology. Abundant homegrown nuclear power will also enhance our nation’s energy security. Our country dedicated some of its finest scientific and engineering talent to this program, with spectacular success. Let’s finish the job we started. It will benefit our nation, and the world.
  • This brings me to my second reason for supporting these petitions: They represent a genuine change in approach for supporting nuclear energy. Throughout the history of commercial nuclear power generation, most of the decisions and support have come directly from government and corporate entities. This has resulted in a great deal of public mistrust and even distain for nuclear technologies. A grassroots approach may not translate directly into research dollars or policy change, but it has to the potential to win hearts and minds, which is also extremely important.
  • There has been some debate among my colleagues about the value of this approach. Some were concerned about the specific language or content of the petitions, while others did not feel comfortable signing something in support of a particular reactor that is not their preferred technology. Others have voiced that even if we get 5,000 signatures, the White House response will not have any impact on policy. While I understand and respect those points, I want to share why I decided to sign both petitions and to write about them here.
  • Those of us in the nuclear communications community ask ourselves constantly, “How do we inspire people to get involved and speak out in support of nuclear?” I see these petitions as a sign of success on the part of the nuclear community—we are reaching out and inspiring action from the ground up. Nuclear supporters who are not directly employed by the industry created both of these petitions. In my mind, that is a really wonderful thing. Members of the public are taking independent action to support the technology they believe in.
  • The release of these petitions was just in time to beat an increased threshold for minimum signatures, from 5,000 to 25,000. That means that if half of ANS members take the time to sign these petitions, we will get a formal response from the White House about their plans for increasing public education on nuclear energy, and moving forward with an important Generation IV technology.
  • And finally, there is power in symbolic action
D'coda Dcoda

South Korea's 15 Year Power Demand Forecast Includes More Nuclear Power Plants [08Dec10] - 0 views

  • South Korea, which currently has 20 operational nuclear reactors, will build 14 new facilities to make atomic power the biggest source of energy by 2024, said Ministry of Knowledge Economy in a statement Tuesday. As a result, nuclear energy will provide 48.5% of the nation's energy consumption by the target year from the current 32%, the Ministry of Knowledge Economy said in a long-term national energy development plan
  • Coal is currently the biggest source of energy in South Korea that meets 42% of the nation's energy needs
  • Renewable energy sources like solar and wind power will also provide 8.9% of the nation's energy needs by 2024 compared with the current 1.3%, it said.
  • ...2 more annotations...
  • Asia's fourth-largest economy imports 97% of its energy needs from overseas and has moved to cut dependence on fossil fuels and to diversify energy sources.
  • In October Seoul unveiled a five-year plan to spend 36 billion dollars developing renewable energy as its next economic growth engine, with a goal to become one of the world's five top players in the sector.
D'coda Dcoda

Renewable Energy Consumption Tops Nuclear for First Time [16Aug11] - 0 views

  • According to a new report from the U.S. Energy Information Administration (EIA), the consumption of energy from renewable sources recently topped both the current and the historical consumption levels for nuclear energy. The shift was immediately caused by nuclear outages that coincided with the high-water season for hydropower generation. But there’s a long-term upward trend in renewables which can be seen here, too, thanks to the increased consumption of biofuels and wind capacity additions.
  • In the short-term, the switch from nuclear to renewables was influenced by U.S. weather trends. The Western U.S. saw record-breaking snowfall this year, which led to hydroelectric plants running at maximum capacity and for longer than usual. This occurred while many nuclear facilities were shut down for regular maintenance and refueling, as is typical for this time of year. (Nuclear plants shut down twice per year, once in the spring, once in the winter).
  • However, the charts provided by the EIA show a long-term shift towards renewables is underway as well, indicating that this was not a fluke occurrence caused by coincidental timing of weather and plant shutdowns. To compare the various sources, the energy consumed is measured in BTUs (British thermal units). In January, renewable energy consumption was at 724 trillion BTUs, while nuclear consumption was at 761 trillion BTUs. By March, renewables had reached 795 trillion BTUs compared with 687 trillion BTUs for nuclear. And by April, it was 798 trillion BTUs for renewables vs. 571 trillion BTUs for nuclear.
  • ...1 more annotation...
  • Renewable energy doesn’t just mean sun, wind, water and geothermal sources, the EIA reminds us. It also includes biofuels, like ethanol and biodisel, and biomass, like wood and wood wastes. This shift in energy consumption doesn’t mean that renewables are now our main source of electricity, however. Outside of electricity generation, the generated energy is also used for transportation, heating and industrial steam production. Below, you can see that renewable energy is still slightly below that of nuclear for now. But assuming these trends continue, renewables should pass nuclear here, too, sometime in the next few years.
D'coda Dcoda

Is nuclear energy different than other energy sources? [08Sep11] - 0 views

  • Nuclear power proponents claim: It has low carbon emissions. It is the peaceful face of the atom and proliferation problems are manageable. It is compact -- so little uranium, so much energy. Unlike solar and wind, it is 24/7 electricity. It reduces dependence on oil. Let's examine each argument.
  • 1. Climate. Nuclear energy has low carbon emissions. But the United States doesn't lack low-carbon energy sources: The potential of wind energy alone is about nine times total US electricity generation. Solar energy is even more plentiful. Time and money to address climate change are in short supply, not low carbon dioxide sources. Instead of the two large reactors the United States would require every three months to significantly reduce carbon dioxide emissions, all the breathless pronouncements from nuclear advocates are only yielding two reactors every five years -- if that. Even federal loan guarantees have not given this renaissance momentum. Wall Street won't fund them. (Can nuclear power even be called a commercial technology if it can't raise money on Wall Street?) Today, wind energy is far cheaper and faster than nuclear. Simply put: Nuclear fares poorly on two crucial criteria -- time and money.
  • 2. Proliferation. President Eisenhower spoke of "Atoms for Peace" at the United Nations in 1953; he thought it would be too depressing only to mention the horrors of thermonuclear weapons. It was just a fig leaf to mask the bomb: Much of the interest in nuclear power is mainly a cover for acquiring bomb-making know-how. To make a real dent in carbon dioxide emissions, about 3,000 large reactors would have to be built worldwide in the next 40 years -- creating enough plutonium annually to create 90,000 bombs, if separated. Two or three commercial uranium enrichment plants would also be needed yearly -- and it has only taken one, Iran's, to give the world a nuclear security headache.
  • ...3 more annotations...
  • 4. Consistency. Solar and wind power are intermittent. But the wind often blows when the sun doesn't shine. Existing hydropower and natural gas plants can fill in the gaps. Denmark manages intermittency by relying on Norwegian hydropower and has 20 percent wind energy. Today, compressed-air energy storage is economical, and sodium sulfur batteries are perhaps a few years from being commercial. Smart grids and appliances can communicate to alleviate intermittency. For instance, the defrost cycle in one's freezer could, for the most part, be automatically deferred to wind or solar energy surplus periods. Likewise, icemakers could store coldness to provide air-conditioning during peak hot days. The United States is running on an insecure, vulnerable, 100-year-old model for the grid -- the equivalent of a punch-card-mainframe computer system in the Internet age. It's a complete failure of imagination to say wind and solar intermittency necessitates nuclear power.
  • 3. Production. Nuclear power does produce electricity around the clock -- until it doesn't. For instance, the 2007 earthquake near the seven-reactor Kashiwazaki Kariwa plant in Japan turned 24/7 electricity into a 0/365 shutdown in seconds. The first of those reactors was not restarted for nearly two years. Three remain shut down. Just last month, an earthquake in Virginia shut down the two North Anna reactors. It is unknown when they will reopen. As for land area and the amount of fuel needed, nuclear proponents tend to forget uranium mining and milling. Each ton of nuclear fuel creates seven tons of depleted uranium. The eight total tons of uranium have roughly 800 tons of mill tailings (assuming ore with 1 percent uranium content) and, typically, a similar amount of mine waste. Nuclear power may have a much smaller footprint than coal, but it still has an enormous waste and land footprint once uranium mining and milling are considered.
  • 5. Oil. The United States uses only a tiny amount of oil in the electricity sector. But with electric vehicles, solar- and wind-generated electricity can do more for "energy independence" now than nuclear can, as renewable energy plants can be built quickly. Luckily, this is rapidly becoming a commercial reality. Parked electric vehicles or plug-in hybrids in airports, large businesses, or mall parking lots could help solve intermittency more cheaply and efficiently. Ford is already planning to sell solar panels to go with their new all-electric Ford Focus in 2012. We don't need a costly, cumbersome, water-intensive, plutonium-making, financially risky method to boil water. Germany, Italy, and Switzerland are on their way to non-nuclear, low-carbon futures. Japan is starting down that road. A new official commission in France (yes, France!) will examine nuclear and non-nuclear scenarios. So, where is the Obama administration?
  •  
    From Bulletin of the Atomic Scientists
D'coda Dcoda

Simulation Map of Cesium-137 Deposition Across the Pacific by CEREA Shows Contamination... - 0 views

  • France's CEREA has the simulation map of ground deposition of cesium-137 from the Fukushima I Nuclear Power Plant accident on its "Fukushima" page. It not only shows Japan but also the entire northern Pacific Rim, from Russian Siberia to Alaska to the West Coast of the US to the entire US. According to the map, the US, particularly the West Coast and particularly California, may be more contaminated with radioactive cesium than the western half of Japan or Hokkaido. It looks more contaminated than South Korea or China. Canada doesn't look too well either, particularly along the border with US on the western half.
  • From CEREA's Fukushima page: Atmospheric dispersion of radionuclides from the Fukushima-Daichii nuclear power plant CEREA, joint laboratory École des Ponts ParisTech and EdF R&D Victor Winiarek, Marc Bocquet, Yelva Roustan, Camille Birman, Pierre Tran Map of ground deposition of caesium-137 for the Fukushima-Daichii accident. The simulation was performed with a specific version of the numerical atmospheric chemistry and transport model Polyphemus/Polair3D. The parametrisations used for the transport and physical removal of the radionuclides are described in [1,2,3,4]. The magnitude of the deposition field is uncertain and the simulated values of deposited radionuclides could be significantly different from the actual deposition. In particular, the source term remains uncertain. Therefore, these results should be seen as preliminary and they are likely to be revised as new information become available to better constrain the source term and when radionuclides data can be used to evaluate the model simulation results.
  • The page also has the animated simulation of cesium-137 dispersion from March 11 to April 6, 2011. If the Japanese think they are the only ones who have the radiation and radioactive fallout from the accident, they are very much mistaken, if the simulation is accurate. (Meteorological institutes and bureaus in Austria, Germany, and Norway all had similar simulation maps.) Radioactive materials spewed out of Fukushima I Nuke Plant went up and away on the jet stream, reaching the other side of the Pacific. When the fallout from explosions (March 14, 15) reached the US West Coast, it came with an unusually heavy rainfall in California.
  • ...2 more annotations...
  • CEREA's description of the animation (if the animation doesn't work, or if you want to see the bigger one, go to CEREA's page):
  • Movie of the Fukushima-Daichii activity in the air (caesium-137, ground level)The simulation was performed with a specific version of the numerical atmospheric chemistry and transport model Polyphemus/Polair3D. The parametrisations used for the transport and physical removal of the radionuclides are described in [1,2,3,4]. The magnitude of activity concentration field is uncertain and could be significantly different from the actual one. In particular, the source term remains uncertain. Therefore, these results should be seen as preliminary and they are likely to be revised as new information become available to better constrain the source term and when radionuclides data can be used to evaluate the model simulation results.
D'coda Dcoda

Reactor reaction: 5 countries joining Japan in rethinking nuclear energy [13Jul11] - 0 views

  • (check out this ebook from Foreign Policy on Japan's post-Fukushima future). Anti-nuclear sentiment has grown ever since -- making it a major political issue.
  • There are legitimate questions, nevertheless, about whether Japan could actually shift away from nuclear power. Japan is incredibly dependent on nuclear energy -- the country's 54 nuclear reactors account for 30 percent of its electricity; pre-earthquake estimates noted that the share to grow to 40 percent by 2017 and 50 percent by 2030. The prime minister today offered few details on how he'll transition away from nuclear reliance.   Japan joins a list of nuclear countries that have grown increasingly skittish about the controversial energy source since the disaster in March.
  • The country plans to make up the difference by cutting energy usage by 10 percent, it said, with more energy efficient appliances and buildings and to increase the use of wind energy.
  • ...7 more annotations...
  • Germany announced plans in late May to close all the country's nuclear power plants by 2022 -- making it the largest industrialized nation to do so. Nuclear power supplies 23 percent of its energy grid. Since the Japan disaster it has permanently shuttered eight plants (including the seven oldest in the country). That leaves nine plants to go -- six of which, the government announced, will close up by 2021.
  • Italy Last month, Silvio Berlusconi's plans to return Italy to the nuclear club were dashed by a referendum that found 90 percent of Italians rejected the technology.
  • Switzerland No neutrality here -- the government announced in May it too was taking a side against nuclear technology, in response to Japan's disaster. Nuclear energy accounts for roughly 40 percent of Switzerland's energy supply. Its five nuclear reactors won't fully be phased out, experts estimate, until 2040. The move is popular with the Swiss citizens -- 20,000 of whom demonstrated against the technology before the government's decision
  • As a result the embattled prime minister said, "We shall probably have to say goodbye to nuclear [energy]." He noted that the government will instead shift its energies to developing renewable energy sources. Berlusconi had been trying to reconstitute an industry that was already abandoned once before -- back in 1987. Currently there are no nuclear plants, but the prime minister hoped to get nuclear power to account for a quarter of the country's energy needs and planned to begin building new plants by as early as 2013.
  • Mexico Despite the fact that nuclear energy only accounts for less than 5 percent of the market in Mexico, which has only one plant, a recent worldwide survey found that Mexico was one of the most anti-nuclear countries in the world, with about 80 percent of its population opposing the power source. That doesn't bode well for future nuclear development.
  • Mexico is one of only three Latin American nations that uses nuclear power. And last year the country delayed a decision until at least 2012 on whether to go ahead with plans to build 10 more plants, according to the country's energy minister. President Felipe Calderon has said he'd push to make sure "clean energy" accounts for at least 35 percent of the country's energy needs.
  • France Let's be clear, France is unlikely to ditch nuclear power completely anytime soon. A longtime champion of the technology, it accounts for 75 percent of the country's energy needs. But there are indications political leaders are falling out of love -- ever so slightly -- with the power source. On Friday, July 8 the government launched a study of energy technologies that included one potential scenario of completely doing away with nuclear power by 2040. It's the first time the government has ever even mentioned the possibility. A more likely result of the study will be cutting the nuclear share of the market. Indeed, France has increased its investment in wind energy lately. The government is likely responding to growing public pressure to do away with nuclear energy. A recent BBC survey found 57 percent of French respondents opposed the technology.
D'coda Dcoda

Safecast: Global sensor network collects and shares radiation data via CC0 - Creative C... - 0 views

  • One week after the nuclear disaster at the Fukushima Diachi plant in March, the Safecast project was born to respond to the information needs of Japanese citizens regarding radiation levels in their environment. Safecast, then known as RDTN.org, started a campaign on Kickstarter “to provide an aggregate feed of nuclear radiation data from governmental, non-governmental and citizen-scientist sources.” All radiation data collected via the project would be dedicated to the public domain using CC0, “available to everyone, including scientists and nuclear experts who can provide context for lay people.” Since then, more than 1.25 million data points have been collected and shared; Safecast has been featured on PBS Newshour; and the project aims to expand its scope to mapping the rest of the world.
  • “Safecast supports the idea that more data – freely available data – is better. Our goal is not to single out any individual source of data as untrustworthy, but rather to contribute to the existing measurement data and make it more robust. Multiple sources of data are always better and more accurate when aggregated. While Japan and radiation is the primary focus of the moment, this work has made us aware of a need for more environmental data on a global level and the longterm work that Safecast engages in will address these needs. Safecast is based in the US but is currently focused on outreach efforts in Japan. Our team includes contributors from around the world.”
  • To learn more, visit http://safecast.org.
D'coda Dcoda

Top Gov't Official: Fukushima nuke report was so shocking we decided to treat it as if ... - 0 views

  • Fearful of scaring public, existence of document was denied for months
  • The government buried a worst-case scenario for the Fukushima nuclear crisis that was drafted last March and kept it under wraps until the end of last year, sources in the administration said Saturday. [...] “The content was so shocking that we decided to treat it as if it didn’t exist,” a senior government official said. [...] The document forecast that in a worst-case scenario the plant’s crippled reactors would intermittently release massive quantities of radioactive materials for about a year. The projection was based on a scenario in which a hydrogen explosion would tear through the No. 1 reactor’s containment vessel, forcing all workers at the plant to evacuate because of the ensuing lethal radiation levels. [...]
  • The Cover-up
  • ...1 more annotation...
  • After the document was shown to a small, select group of senior government officials at the prime minister’s office in late March, the administration of then Prime Minister Naoto Kan decided to quietly bury it, the sources said In order to deny its existence, the government treated it as a personal document of Japan Atomic Energy Commission Chairman Shunsuke Kondo, who authored it, until the end of December, the sources said
D'coda Dcoda

Measures radioactive iodine in Barents Region [30Jan12] - 0 views

  • Very low levels of the radioactive isotope iodine-131 in northern part of Norway, Sweden and Finland. Norwegian Radiation authorities is unsure about the source, but says it might come from, or via Russian territory.
  • Norwegian Radiation Protection Authorities (NRPA) says in a short press-note Tuesday evening that the levels they measured pose no health risk. The measurements of radioactive iodine in northern part of the Barents Region were made several days ago, but results of the analyses were first made public Tuesday evening by coordinated press-notes from radiation authorities in Finland, Sweden and Norway. NRPA says that two of the six online measuring stations in Finnmark in the high north of Norway have indicated increased levels of radioactive iodine.
  • Swedish radiation protection authority says in thier brief that very low levels of radioactive iodine-131 are meassured at their station in Kiruna in northern Sweden.
  • ...1 more annotation...
  • Neither Swedish, Finnish nor Norwegian authorities have been  informed about any releases of radioactivity anyplace in northern Europe.  The source is most likely a reactor or a isotope-source at a hospital, according to the press-note from NRPA.
D'coda Dcoda

The myth of renewable energy | Bulletin of the Atomic Scientists - 0 views

  • "Clean." "Green." What do those words mean? When President Obama talks about "clean energy," some people think of "clean coal" and low-carbon nuclear power, while others envision shiny solar panels and wind turbines. And when politicians tout "green jobs," they might just as easily be talking about employment at General Motors as at Greenpeace. "Clean" and "green" are wide open to interpretation and misappropriation; that's why they're so often mentioned in quotation marks. Not so for renewable energy, however.
  • people across the entire enviro-political spectrum seem to have reached a tacit, near-unanimous agreement about what renewable means: It's an energy category that includes solar, wind, water, biomass, and geothermal power.
  • Renewable energy sounds so much more natural and believable than a perpetual-motion machine, but there's one big problem: Unless you're planning to live without electricity and motorized transportation, you need more than just wind, water, sunlight, and plants for energy. You need raw materials, real estate, and other things that will run out one day. You need stuff that has to be mined, drilled, transported, and bulldozed -- not simply harvested or farmed. You need non-renewable resources:
  • ...15 more annotations...
  • Solar power. While sunlight is renewable -- for at least another four billion years -- photovoltaic panels are not. Nor is desert groundwater, used in steam turbines at some solar-thermal installations. Even after being redesigned to use air-cooled condensers that will reduce its water consumption by 90 percent, California's Blythe Solar Power Project, which will be the world's largest when it opens in 2013, will require an estimated 600 acre-feet of groundwater annually for washing mirrors, replenishing feedwater, and cooling auxiliary equipment.
  • Geothermal power. These projects also depend on groundwater -- replenished by rain, yes, but not as quickly as it boils off in turbines. At the world's largest geothermal power plant, the Geysers in California, for example, production peaked in the late 1980s and then the project literally began running out of steam.
  • Wind power. According to the American Wind Energy Association, the 5,700 turbines installed in the United States in 2009 required approximately 36,000 miles of steel rebar and 1.7 million cubic yards of concrete (enough to pave a four-foot-wide, 7,630-mile-long sidewalk). The gearbox of a two-megawatt wind turbine contains about 800 pounds of neodymium and 130 pounds of dysprosium -- rare earth metals that are rare because they're found in scattered deposits, rather than in concentrated ores, and are difficult to extract.
  • Biomass.
  • t expanding energy crops will mean less land for food production, recreation, and wildlife habitat. In many parts of the world where biomass is already used extensively to heat homes and cook meals, this renewable energy is responsible for severe deforestation and air pollution
  • Hydropower.
  • hydroelectric power from dams is a proved technology. It already supplies about 16 percent of the world's electricity, far more than all other renewable sources combined.
  • The amount of concrete and steel in a wind-tower foundation is nothing compared with Grand Coulee or Three Gorges, and dams have an unfortunate habit of hoarding sediment and making fish, well, non-renewable.
  • All of these technologies also require electricity transmission from rural areas to population centers. Wilderness is not renewable once roads and power-line corridors fragment it
  • the life expectancy of a solar panel or wind turbine is actually shorter than that of a conventional power plant.
  • meeting the world's total energy demands in 2030 with renewable energy alone would take an estimated 3.8 million wind turbines (each with twice the capacity of today's largest machines), 720,000 wave devices, 5,350 geothermal plants, 900 hydroelectric plants, 490,000 tidal turbines, 1.7 billion rooftop photovoltaic systems, 40,000 solar photovoltaic plants, and 49,000 concentrated solar power systems. That's a heckuva lot of neodymium.
  • "renewable energy" is a meaningless term with no established standards.
  • None of our current energy technologies are truly renewable, at least not in the way they are currently being deployed. We haven't discovered any form of energy that is completely clean and recyclable, and the notion that such an energy source can ever be found is a mirage.
  • Long did the math for California and discovered that even if the state replaced or retrofitted every building to very high efficiency standards, ran almost all of its cars on electricity, and doubled its electricity-generation capacity while simultaneously replacing it with emissions-free energy sources, California could only reduce emissions by perhaps 60 percent below 1990 levels -- far less than its 80 percent target. Long says reaching that target "will take new technology."
  • it will also take a new honesty about the limitations of technology
1 - 20 of 262 Next › Last »
Showing 20 items per page