Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged program

Rss Feed Group items tagged

D'coda Dcoda

Iran - Regime's nuclear ambitions have no place for people's problems [26Jul11] - 0 views

shared by D'coda Dcoda on 26 Jul 11 - No Cached
  • the nuclear program became the main subject of the first European tourney of Foreign Minister Ali Akber Salehi.
  • As part of the tourney, Salehi visited the capital of Slovenia Ljubljana and also Vienna, where he talked to his Austrian counterpart Michael Spindelegger and general director of the International Atomic Energy Agency Yukiya Amano. At the press conference in Ljubljana and Vienna, the head of the Iranian delegation made it clear that Iran is committed to the Nuclear Weapon Nonproliferation Treaty but will never yield its legal rights for implementation of the peaceful nuclear program
  • It is not a secret that most economic problems and deprivations of the population of the country are caused by sanctions against our state over the development of nuclear industry. The paradox is that we have already got used to the sanctions, which had been place against us for already 21 years.
  • ...8 more annotations...
  • Though the nuclear program in our country started in 1967, when the United State handed the nuclear reactor of 5 MW capacity to Shah Muhammad Reza Pehlevi, in 1979, the clericals who came to power rejected to implement the program of nuclear plant construction. In the first years after war not only foreign but also a great many of specialists participating in the nuclear program left the country. In a few years, when the situation in the country slightly stabilized, the powers decided to restart implementation of the nuclear program.
  • A scientific research center with the research reactor on heavy water was created under China’s support in Isfahan, and production of uranium ore continued. All the same, the powers were negotiating the technologies of uranium enrichment and production of heavy water with the companies from Switzerland and Germany. Iranian physicists visited  the National Institute of Nuclear Physics and High Energy Physics in Amsterdam, nuclear Petten center in Netherlands. However, in 2002 the United States included our country into the so-called evil axe and on the basis of footage from the space, they declared that religious fanatics are working secretly on creation of nuclear weapon. For many years the United States have been seeking international isolation of our country under pretense of inadmissibility of creating a nuclear bomb by this country
  • Our religious leader Ayatollah Hamenei said that creation of the nuclear bomb is illegal and goes contrary to Islam.
  • Undoubtedly, nuclear program is a two-edged sword. First, we are an independent state and no one has the right to dictate their provisions to us. The country’s powers have repeatedly stated that the nuclear program is implemented under international standards and control. Additionally, our neighbors Kuwait, Bahrain, Arab Emirates have already stated the intention to build nuclear stations and develop nuclear industry. But the world community is not concerned with it. This means that the ‘concern’ over Iranian nuclear programs is politically motivated. How long will we have to prove that we pursue only peaceful aims?
  • why do we need this nuclear program? Why do we need those high costs, if 70% of population is starving? There are no economic preconditions for development of the nuclear program. Our country has 10% of world’s proven oil reserves and is second for its natural gas resources.
  • The energy complex of the country fully meets the internal needs, for example, Iran is 20th in the world for its power generation. So why do we need the nuclear energy sector? It is much more important in the countries that have no sufficient natural energy sources. Additionally, nuclear energy remains the subject of fierce debates. Opponents and supporters of nuclear energy give different assessment to its security, reliability and economic effectiveness. The threat is connected with problems of waste utilization, car crashes that are causes of environmental disasters.
  • It seems that the maniacal wish to develop nuclear program by all means  is caused by the excessive ambitions of the regime, which decided to demonstrate its independence and determination by all means. Getting involved in the ambitions race with its main rival-United States, the Iranian authorities do not understand that the nuclear program has already turned into a speculation that is used by each of the parties for their own interests.
  • no one cares that this mad race has no place for the problems of people,  suffering from international sanctions against the country. Though, we are used to it since in 32 years the regime recalled the people only when there appeared the direct threat of overthrow.
D'coda Dcoda

Senate Appropriators on Nuclear Energy [16Sep11] - 0 views

shared by D'coda Dcoda on 09 Oct 11 - No Cached
  • The Senate Energy and Water Development Appropriations Subcommittee included extensive language in their FY 2012 committee report about nuclear energy.  They wrote of being “extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020,” called for the development of “consolidated regional storage facilities,” and mandated research on dry cask storage, advanced fuel cycle options, and disposal in geological media.  The appropriators provided no funding for the Next Generation Nuclear Plant program or Light Water Reactor Small Modular Reactor Licensing Technical Support.  In a separate section, they direct the Nuclear Regulatory Commission to contract with the National Academy of Sciences for a study on the lessons learned from the Fukushima nuclear disaster, and discuss beyond design-basis events and mitigating impacts of earthquakes. Language from the committee report 112-75 follows, with page number references to the pdf version of this document.
  • Nuclear Energy The FY 2011 appropriation was $732.1 million The FY 2012 administration request was $754.0 million The FY 2012 House-passed bill provides $733.6 million, an increase of $1.5 million or 0.2 percent from the current budget. The Senate Appropriations Committee bill provides $583.8 million, a decline of $148.3 million or 20.3 percent.
  • “The Committee has provided more than $500,000,000 in prior years toward the Next Generation Nuclear Plant [NGNP] program.  Although the program has experienced some successes, particularly in the advanced research and development of TRISO [tristructural-isotropic] fuel, the Committee is frustrated with the lack of progress and failure to resolve the upfront cost-share issue to allocate the risk between industry and the Federal Government. Although the Committee has provided sufficient time for these issues to be resolved, the program has stalled. Recognizing funding constraints, the Committee cannot support continuing the program in its current form. The Committee provides no funding to continue the existing NGNP program, but rather allows the Department to continue high-value, priority research and development activities for high-temperature reactors, in cooperation with industry, that were included in the NGNP program.”
  • ...9 more annotations...
  • “While the Nuclear Regulatory Commission has found that spent nuclear fuel can be stored safely for at least 60 years in wet or dry cask storage beyond the licensed life of the reactor, the Committee has significant questions on this matter and is extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020. The Committee approved funding in prior years for the Blue Ribbon Commission on America’s Nuclear Future [BRC], which was charged with examining our Nation’s policies for managing the back end of the nuclear fuel cycle and recommending a new plan. The BRC issued a draft report in July 2011 with recommendations, which is expected to be finalized in January 2012. The Committee directs prior existing funding, contingent on the renewal of its charter, to the BRC to develop a comprehensive revision to Federal statutes based on its recommendations, to submit to Congress for its consideration.
  • “The Committee directs the Department to develop and prepare to implement a strategy for the management of spent nuclear fuel and other nuclear waste within 3 months of publication of the final report of the Blue Ribbon Commission on America’s Nuclear Future.  The strategy shall reduce long-term Federal liability associated with the Department’s failure to pick up spent fuel from commercial nuclear reactors, and it should propose to store waste in a safe and responsible manner. The Committee notes that a sound Federal strategy will likely require one or more consolidated storage facilities with adequate capacity to be sited, licensed, and constructed in multiple regions, independent of the schedule for opening a repository. The Committee directs that the Department’s strategy include a plan to develop consolidated regional storage facilities in cooperation with host communities, as necessary, and propose any amendments to Federal statute necessary to implement the strategy.
  • “Although successfully disposing of spent nuclear fuel permanently is a long-term effort and will require statutory changes, the Committee supports taking near- and mid-term steps that can begin without new legislation and which provide value regardless of the ultimate policy the United States adopts. The Committee therefore includes funding for several of these steps in the Nuclear Energy Research and Development account, including the assessment of dry casks to establish a scientific basis for licensing; continued work on advanced fuel cycle options; research to assess disposal in different geological media; and the development of enhanced fuels and materials that are more resistant to damage in reactors or spent fuel pools.
  • (Page 80) “The events at the Fukushima-Daiichi facilities in Japan have resulted in a reexamination of our Nation’s policies regarding the safety of commercial reactors and the storage of spent nuclear fuel.  These efforts have been supported by appropriations in this bill, and the Committee provides funding for continuation and expansion of these activities.
  • The report also contains extensive language regarding Nuclear Energy Research and Development: “Use of Prior Existing Balances. - If the Secretary renews the charter of the Blue Ribbon Commission, the Department is directed to use $2,500,000 of prior existing balances appropriated to the Office of Civilian Radioactive Waste Management to develop a comprehensive revision to Federal statutes based on its recommendations.  The recommendation should be provided to Congress not later than March 30, 2012 for consideration.
  • “Nuclear Energy Enabling Technologies. - The Committee recommends $68,880,000 for Nuclear Energy Enabling Technologies, including $24,300,000 for the Energy Innovation Hub for Modeling and Simulation, $14,580,000 for the National Science User Facility at Idaho National Laboratory, and $30,000,000 for Crosscutting research.  The Committee does not recommend any funding for Transformative research. The Committee recommends that the Department focus the Energy Innovation Hub on the aspects of its mission that improve nuclear powerplant safety.
  • Light Water Reactor Small Modular Reactor Licensing Technical Support. - The Committee provides no funding for Light Water Reactor Small Modular Reactor Licensing Technical Support. “Reactor Concepts Research, Development, and Demonstration. - The Committee provides $31,870,000 for Reactor Concepts Research, Development and Demonstration. Of this funding, $21,870,000 is for Advanced Reactor Concepts activities. The Committee does not include funding for the Next Generation Nuclear Plant Demonstration project. The Department may, within available funding, continue high-value, priority research and development activities for high-temperature reactor concepts, in cooperation with industry, that were conducted as part of the NGNP program.  The remaining funds, $10,000,000, are for research and development of the current fleet of operating reactors to determine how long they can safely operate.
  • “Fuel Cycle Research and Development. - The Committee recommends $187,917,000 for Fuel Cycle Research and Development.  Within available funds, the Committee provides $10,000,000 for the Department to expand the existing modeling and simulation capabilities at the national laboratories to assess issues related to the aging and safety of storing spent nuclear fuel in fuel pools and dry storage casks. The Committee includes $60,000,000 for Used Nuclear Fuel Disposition, and directs the Department to focus research and development activities on the following priorities: $10,000,000 for development and licensing of standardized transportation, aging, and disposition canisters and casks; $3,000,000 for development of models for potential partnerships to manage spent nuclear fuel and high level waste; and $7,000,000 for characterization of potential geologic repository media.
  • “The Committee provides funding for evaluation of standardized transportation, aging and disposition cask and canister design, cost, and safety characteristics, in order to enable the Department to determine those that should be used if the Federal Government begins transporting fuel from reactor sites, as it is legally obligated to do, and consolidating fuel. The Committee notes that the Blue Ribbon Commission on America’s Nuclear Future has, in its draft report, recommended the creation of consolidated interim storage facilities, for which the Federal Government will need casks and canisters to transport and store spent fuel.
  •  
    too long to highlight all of it so see the rest on the site
D'coda Dcoda

DOE on Nuclear Waste Site Failed Safety Culture [19Jul11] - 0 views

  • DEPARTMENT OF ENERGY DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety Culture at the Waste Treatment and Immobilization Plant AGENCY: Department of Energy. ACTION: Notice.
  • SUMMARY: On June 09, 2011, the Defense Nuclear Facilities Safety Board affirmed their Recommendation 2011-1, concerning Safety Culture at the Waste Treatment and Immobilization Plant, to the Department of Energy. In accordance with section 315(b) of the Atomic Energy Act of 1954, as amended, 42 U.S.C. 2286d(b), The following represents the Secretary of Energy's response to the recommendation.
  • As the Board notes in the introduction to this Recommendation, DOE committed itself to establishing and maintaining a strong nuclear safety culture almost 20 years ago through Secretary of Energy Notice SEN-35-91, Nuclear Safety Policy. This commitment was reiterated and confirmed in February 2011, in DOE Policy 420.1, Department of Energy Nuclear Safety Policy. We agree with the Board's position that establishment of a strict safety culture must be a fundamental principle throughout the DOE complex, and we are in unqualified agreement with the Board that the WTP mission is essential to protect the health and safety of the public, our workers, and the environment from radioactive wastes in aging storage tanks at Hanford.
  • ...17 more annotations...
  • DOE views nuclear safety and assuring a robust safety culture as essential to the success of the Waste Treatment and Immobilization Plant (WTP) and all of our projects across the DOE complex.
  • Even while some initiatives are already underway, we recognize the need to continue improving nuclear safety at WTP and across the complex. To that end, DOE has developed a comprehensive action plan to address the Board's specific recommendations to strengthen the safety culture at WTP. Initial steps are discussed below:
  • Even though the Department cannot accept the allegations without the opportunity to evaluate the Board's full investigative record, in the spirit of continual improvement DOE accepts the Board's recommendations to assert federal control to direct, track, and validate corrective actions to strengthen the safety culture at WTP; conduct an extent of condition review to assess safety culture issues beyond the WTP project; and support the ongoing Department of Labor (DOL) review of Dr. Tamosaitis' case.
  • In October 2010, HSS completed its investigation, which included interviews with more than 250 employees. While HSS found that the fundamentals of a robust safety culture were present at WTP, the report identified the need for improvement in key areas, including, among others: more clearly defining federal roles and responsibilities; identifying mechanisms to strengthen trust among the workforce and better communicate information to employees; and putting in place processes to ensure nuclear safety programs remain robust and effective during project changes.
  • The corrective actions that address the recommendations from the HSS report will be fully implemented by September 30, 2011. HSS will then conduct a follow-on visit to assure that these steps were executed effectively across the project, as well as to perform additional analysis to determine if cost and schedule pressures are challenging the implementation of a robust nuclear safety culture.
  • DOE and Bechtel National, Incorporated (BNI)--the prime contractor on the WTP project--have been engaged in a variety of initiatives to strengthen the nuclear safety culture at WTP for over a year. Steps that have already occurred include completing a revision to the WTP Project Execution Plan, currently under review, to more clearly delineate federal roles and organizational responsibilities at WTP and the Office of River Protection (ORP), and conducting a number of employee forums to ensure that employees clearly understand the changes in those roles and responsibilities.
  • Also in response to the HSS recommendations, BNI commissioned a confidential survey of more than 300 WTP employees to assess if a Nuclear Safety Quality Culture (NSQC) gap existed at the site and to identify additional areas for improvement. As a result, the contractor assigned a retired Navy Admiral and former nuclear utility executive experienced in application of Institute of Nuclear Power Operations (INPO) methods as the Manager of NSQC Implementation for the project. To date, approximately 1,600 people at the site, including all senior managers, have received training focused on making the workforce comfortable with raising issues and systematically moving issues through to resolution. In addition, over the last 13 months, BNI has conducted three all-hands meetings with DOE project team participation to emphasize the importance of a robust nuclear safety culture.
  • Over the past year, the Department has undertaken a broad range of steps to assure a strong and questioning safety culture at WTP and sites across the DOE complex. We will only be successful if we remain committed to continuous improvement and teamwork. DOE takes all safety concerns--whether from our employees, our contractors, the Board, or third-parties--very seriously. This input is an integral part of the Department's efforts to constantly strengthen nuclear safety at our facilities.
  • The Deputy Secretary and I will continue to be personally engaged in asserting federal control to ensure the specific corrective actions to strengthen safety culture within the WTP project in both contractor and federal workforces--consistent with DOE Policy 420.1--are tracked and validated. Federal control within the WTP project has been and will continue to be asserted and regularly reinforced through our direct involvement.
  • This will include a series of ``town-hall'' style meetings hosted by senior DOE officials to highlight for workers the importance of maintaining a strong nuclear safety culture at each of our sites and to solicit their input. These forums across the DOE complex will also help improve the direct communication of safety issues between senior managers and employees. To address the concern regarding extent of condition, HSS will independently review the safety culture across the entire complex. This review will provide insights into the health of safety culture within Headquarters organizations, different program offices, and different field sites.
  • In addition, DOE and BNI are arranging Safety Conscious Work Environment (SCWE) training for BNI and ORP managers and supervisors with a firm that conducts SCWE training for the Institute of Nuclear Power Operations Senior Nuclear Plant Manager's course. We will also be joining with BNI to sponsor an independent, executive-level
  • assessment of the project's nuclear safety culture by a group of nuclear industry subject matter experts, who have experience in INPO evaluations and/or Nuclear Regulatory Commission (NRC) inspections. At both a site and corporate level, we are also taking steps to enhance reporting mechanisms for safety-related concerns. At the Hanford site, we have combined the Employee Concerns Programs for ORP and the Richland Operations Office to leverage existing resources to both strengthen this important program and increase its visibility at the site.
  • Within EM Headquarters, we have established ombudsmen to act as advocates for employees and their concerns.
  • We have made it easier for employees to use a variety of avenues to raise concerns, including: the line management for each project, site employee concerns programs, union representatives, EM's Office of Safety and Security Programs, HSS, and DOE's Chief of Nuclear Safety. Each office now offers employees access to both a hotline number and general email inbox, so that workers will have the opportunity to ask questions or voice concerns either directly or anonymously.
  • We will also require that both EM Headquarters and field sites assess nuclear safety culture and the implementation of a safety conscious work environment in their annual submittals for Integrated Safety Management System (ISMS) declarations. The specific criteria will build on the existing requirements for the ISMS declarations and will be expanded to include safety culture principles not only from DOE, but also from INPO and NRC.
  • DOE does not agree with all of the findings included in the Board's report. Specifically, the conclusions drawn by the Board about the overall quality of the safety culture at WTP differ significantly from the HSS findings and are not consistent with the safety culture data and field performance experience at WTP. We are concerned that your letter includes the October 2010 HSS review in the list of ``other examples of a failed safety culture.''
  • The Department disagrees with this categorization and believes the HSS report provided an accurate representation of the nuclear safety culture-- and existing gaps--at the WTP.
D'coda Dcoda

CPS must die [24Oct07} - 0 views

  • Collectively, Texas eats more energy than any other state, according to the U.S. Department of Energy. We’re fifth in the country when it comes to our per-capita energy intake — about 532 million British Thermal Units per year. A British Thermal Unit, or Btu, is like a little “bite” of energy. Imagine a wooden match burning and you’ve got a Btu on a stick. Of course, the consumption is with reason. Texas, home to a quarter of the U.S. domestic oil reserves, is also bulging with the second-highest population and a serious petrochemical industry. In recent years, we managed to turn ourselves into the country’s top producer of wind energy. Despite all the chest-thumping that goes on in these parts about those West Texas wind farms (hoist that foam finger!), we are still among the worst in how we use that energy. Though not technically “Southern,” Texans guzzle energy like true rednecks. Each of our homes use, on average, about 14,400 kilowatt hours per year, according to the U.S. Energy Information Administration. It doesn’t all have to do with the A/C, either. Arizonans, generally agreed to be sharing the heat, typically use about 12,000 kWh a year; New Mexicans cruise in at an annual 7,200 kWh. Don’t even get me started on California’s mere 6,000 kWh/year figure.
  • Let’s break down that kilowatt-hour thing. A watt is the energy of one candle burning down. (You didn’t put those matches away, did you?) A kilowatt is a thousand burnin’ candles. And a kilowatt hour? I think you can take it from there. We’re wide about the middle in Bexar, too. The average CPS customer used 1,538 kilowatt hours this June when the state average was 1,149 kWh, according to ERCOT. Compare that with Austin residents’ 1,175 kWh and San Marcos residents’ 1,130 kWh, and you start to see something is wrong. So, we’re wasteful. So what? For one, we can’t afford to be. Maybe back when James Dean was lusting under a fountain of crude we had if not reason, an excuse. But in the 1990s Texas became a net importer of energy for the first time. It’s become a habit, putting us behind the curve when it comes to preparing for that tightening energy crush. We all know what happens when growing demand meets an increasingly scarce resource … costs go up. As the pressure drop hits San Anto, there are exactly two ways forward. One is to build another massively expensive power plant. The other is to transform the whole frickin’ city into a de-facto power plant, where energy is used as efficiently as possible and blackouts simply don’t occur.
  • Consider, South Texas Project Plants 1&2, which send us almost 40 percent of our power, were supposed to cost $974 million. The final cost on that pair ended up at $5.5 billion. If the planned STP expansion follows the same inflationary trajectory, the price tag would wind up over $30 billion. Applications for the Matagorda County plants were first filed with the Atomic Energy Commission in 1974. Building began two years later. However, in 1983 there was still no plant, and Austin, a minority partner in the project, sued Houston Power & Lighting for mismanagement in an attempt to get out of the deal. (Though they tried to sell their share several years ago, the city of Austin remains a 16-percent partner, though they have chosen not to commit to current expansion plans).
  • ...17 more annotations...
  • CPS didn’t just pull nukes out of a hat when it went looking for energy options. CEO Milton Lee may be intellectually lazy, but he’s not stupid. Seeking to fulfill the cheap power mandate in San Antonio and beyond (CPS territory covers 1,566 square miles, reaching past Bexar County into Atascosa, Bandera, Comal, Guadalupe, Kendall, Medina, and Wilson counties), staff laid natural gas, coal, renewables and conservation, and nuclear side-by-side and proclaimed nukes triumphant. Coal is cheap upfront, but it’s helplessly foul; natural gas, approaching the price of whiskey, is out; and green solutions just aren’t ready, we’re told. The 42-member Nuclear Expansion Analysis Team, or NEAT, proclaimed “nuclear is the lowest overall risk considering possible costs and risks associated with it as compared to the alternatives.” Hear those crickets chirping?
  • NEAT members would hold more than a half-dozen closed-door meetings before the San Antonio City Council got a private briefing in September. When the CPS board assembled October 1 to vote the NRG partnership up or down, CPS executives had already joined the application pending with the U.S. Nuclear Regulatory Commission. A Supplemental Participation Agreement allowed NRG to move quickly in hopes of cashing in on federal incentives while giving San Antonio time to gather its thoughts. That proved not too difficult. Staff spoke of “overwhelming support” from the Citizen’s Advisory Board and easy relations with City staff. “So far, we haven’t seen any fatal flaws in our analysis,” said Mike Kotera, executive vice president of energy development for CPS. With boardmember and Mayor Phil Hardberger still in China inspecting things presumably Chinese, the vote was reset for October 29.
  • No one at the meeting asked about cost, though the board did request a month-by-month analysis of the fiasco that has been the South Texas Project 1&2 to be delivered at Monday’s meeting. When asked privately about cost, several CPS officers said they did not know what the plants would run, and the figure — if it were known — would not be public since it is the subject of contract negotiations. “We don’t know yet,” said Bob McCullough, director of CPS’s corporate communications. “We are not making the commitment to build the plant. We’re not sure at this point we really understand what it’s going to cost.” The $206 million outlay the board will consider on Monday is not to build the pair of 1,300-megawatt, Westinghouse Advanced Boiling Water Reactors. It is also not a contract to purchase power, McCullough said. It is merely to hold a place in line for that power.
  • It’s likely that we would come on a recurring basis back to the board to keep them apprised of where we are and also the decision of whether or not we think it makes sense for us to go forward,” said Larry Blaylock, director of CPS’s Nuclear Oversight & Development. So, at what point will the total cost of the new plants become transparent to taxpayers? CPS doesn’t have that answer. “At this point, it looks like in order to meet our load growth, nuclear looks like our lowest-risk choice and we think it’s worth spending some money to make sure we hold that place in line,” said Mark Werner, director of Energy Market Operations.
  • Another $10 million request for “other new nuclear project opportunities” will also come to the board Monday. That request summons to mind a March meeting between CPS officials and Exelon Energy reps, followed by a Spurs playoff game. Chicago-based Exelon, currently being sued in Illinois for allegedly releasing millions of gallons of radioactive wastewater beneath an Illinois plant, has its own nuclear ambitions for Texas. South Texas Project The White House champions nuclear, and strong tax breaks and subsidies await those early applicants. Whether CPS qualifies for those millions remains to be seen. We can only hope.
  • CPS has opted for the Super Honkin’ Utility model. Not only that — quivering on the brink of what could be a substantial efficiency program, CPS took a leap into our unflattering past when it announced it hopes to double our nuclear “portfolio” by building two new nuke plants in Matagorda County. The utility joined New Jersey-based NRG Energy in a permit application that could fracture an almost 30-year moratorium on nuclear power plant creation in the U.S.
  • After Unit 1 came online in 1988, it had to be shut down after water-pump shaft seared off in May, showering debris “all over the place,” according to Nucleonics Week. The next month two breakers failed during a test of backup power, leading to an explosion that sheared off a steam-generator pump and shot the shaft into the station yard. After the second unit went online the next year, there were a series of fires and failures leading to a half-million-dollar federal fine in 1993 against Houston Power. Then the plant went offline for 14 months. Not the glorious launch the partnership had hoped for. Today, CPS officials still do not know how much STP has cost the city, though they insist overall it has been a boon worth billions. “It’s not a cut-and-dried analysis. We’re doing what we can to try to put that in terms that someone could share and that’s a chore,” said spokesman McCollough. CPS has appealed numerous Open Records requests by the Current to the state Attorney General. The utility argues that despite being owned by the City they are not required to reveal, for instance, how much it may cost to build a plant or even how much pollution a plant generates, since the electricity market is a competitive field.
  • How do we usher in this new utopia of decentralized power? First, we have to kill CPS and bury it — or the model it is run on, anyway. What we resurrect in its place must have sustainability as its cornerstone, meaning that the efficiency standards the City and the utility have been reaching for must be rapidly eclipsed. Not only are new plants not the solution, they actively misdirect needed dollars away from the answer. Whether we commit $500 million to build a new-fangled “clean-coal” power plant or choose to feed multiple billions into a nuclear quagmire, we’re eliminating the most plausible option we have: rapid decentralization.
  • A 2003 study at the Massachusetts Institute of Technology estimates the cost of nuclear power to exceed that of both coal and natural gas. A U.S. Energy Information Administration report last year found that will still be the case when and if new plants come online in the next decade. If ratepayers don’t pay going in with nuclear, they can bet on paying on the way out, when virtually the entire power plant must be disposed of as costly radioactive waste. The federal government’s inability to develop a repository for the tens of thousands of tons of nuclear waste means reactors across the country are storing spent fuel in onsite holding ponds. It is unclear if the waste’s lethality and tens of thousands of years of radioactivity were factored into NEAT’s glowing analysis.
  • The federal dump choice, Nevada’s Yucca Mountain, is expected to cost taxpayers more than $60 billion. If it opens, Yucca will be full by the time STP 3&4 are finished, requiring another federal dump and another trainload of greenbacks. Just the cost of Yucca’s fence would set you back. Add the price of replacing a chain-link fence around, let’s say, a 100-acre waste site. Now figure you’re gonna do that every 50 years for 10,000 years or more. Security guards cost extra. That is not to say that the city should skip back to the coal mine. Thankfully, we don’t need nukes or coal, according to the American Council for an Energy-Efficient Economy, a D.C.-based non-profit that champions energy efficiency. A collection of reports released this year argue that a combination of ramped-up efficiency programs, construction of numerous “combined heat and power” facilities, and installation of on-site renewable energy resources would allow the state to avoid building new power plants. Texas could save $73 billion in electric generation costs by spending $50 billion between now and 2023 on such programs, according to the research group. The group also claims the efficiency revolution would even be good for the economy, creating 38,300 jobs. If ACEEE is even mostly right, plans to start siphoning millions into a nuclear reservoir look none too inspired.
  • To jump tracks will take a major conversion experience inside CPS and City Hall, a turning from the traditional model of towering plants, reels of transmission line, and jillions of dependent consumers. CPS must “decentralize” itself, as cities as close as Austin and as far away as Seattle are doing. It’s not only economically responsible and environmentally sound, but it is the best way to protect our communities entering what is sure to be a harrowing century. Greening CPS CPS is grudgingly going greener. In 2004, a team of consultants, including Wisconsin-based KEMA Inc., hired to review CPS operations pegged the utility as a “a company in transition.” Executives interviewed didn’t understand efficiency as a business model. Even some managers tapped to implement conservation programs said such programs were about “appearing” concerned, according to KEMA’s findings.
  • While the review exposed some philosophical shortcomings, it also revealed for the first time how efficiency could transform San Antonio. It was technically possible, for instance, for CPS to cut electricity demand by 1,935 megawatts in 10 years through efficiency alone. While that would be accompanied with significant economic strain, a less-stressful scenario could still cut 1,220 megawatts in that period — eliminating 36 percent of 2014’s projected energy use. CPS’s current plans call for investing $96 million to achieve a 225-megawatt reduction by 2016. The utility plans to spend more than four times that much by 2012 upgrading pollution controls at the coal-fired J.T. Deely power plant.
  • In hopes of avoiding the construction of Spruce 2 (now being built, a marvel of cleanliness, we are assured), Citizen Oversight Committee members asked KEMA if it were possible to eliminate 500 megawatts from future demand through energy efficiency alone. KEMA reported back that, yes, indeed it was possible, but would represent an “extreme” operation and may have “unintended consequences.” Such an effort would require $620 million and include covering 90 percent of the cost of efficiency products for customers. But an interesting thing happens under such a model — the savings don’t end in 2012. They stretch on into the future. The 504 megawatts that never had to be generated in 2012 end up saving 62 new megawatts of generation in 2013 and another 53 megawatts in 2014. With a few tweaks on the efficiency model, not only can we avoid new plants, but a metaphorical flip of the switch can turn the entire city into one great big decentralized power generator.
  • Even without good financial data, the Citizen’s Advisory Board has gone along with the plan for expansion. The board would be “pennywise and pound foolish” not to, since the city is already tied to STP 1&2, said at-large member Jeannie O’Sullivan. “Yes, in the past the board of CPS had been a little bit not as for taking on a [greater] percentage of nuclear power. I don’t know what their reasons were, I think probably they didn’t have a dialogue with a lot of different people,” O’Sullivan said.
  • For this, having a City-owned utility offers an amazing opportunity and gives us the flexibility to make most of the needed changes without state or federal backing. “Really, when you start looking, there is a lot more you can do at the local level,” said Neil Elliott of the ACEEE, “because you control building codes. You control zoning. You can control siting. You can make stuff happen at the local level that the state really doesn’t have that much control of.” One of the most empowering options for homeowners is homemade energy provided by a technology like solar. While CPS has expanded into the solar incentives field this year, making it only the second utility in the state to offer rebates on solar water heaters and rooftop panels, the incentives for those programs are limited. Likewise, the $400,000 CPS is investing at the Pearl Brewery in a joint solar “project” is nice as a white tiger at a truck stop, but what is truly needed is to heavily subsidize solar across the city to help kickstart a viable solar industry in the state. The tools of energy generation, as well as the efficient use of that energy, must be spread among the home and business owners.
  • Joel Serface, with bulb-polished pate and heavy gaze, refers to himself as a “product of the oil shock” who first discovered renewables at Texas Tech’s summer “geek camp.” The possibilities stayed with him through his days as a venture capitalist in Silicon Valley and eventually led him to Austin to head the nation’s first clean-energy incubation center. Serface made his pitch at a recent Solar San Antonio breakfast by contrasting Texas with those sun-worshipping Californians. Energy prices, he says, are “going up. They’re not going down again.” That fact makes alternative energies like solar, just starting to crack the 10-cent-per-killowatt barrier, financially viable. “The question we have to solve as an economy is, ‘Do we want to be a leader in that, or do we want to allow other countries [to outpace us] and buy this back from them?’” he asked.
  • To remain an energy leader, Texas must rapidly exploit solar. Already, we are fourth down the list when it comes not only to solar generation, but also patents issued and federal research awards. Not surprisingly, California is kicking silicon dust in our face.
D'coda Dcoda

CDC Radiation and Worker Health Meet [22Jun11] - 0 views

  • Place: Audio Conference Call via FTS Conferencing. The USA toll- free, dial-in number is 1-866-659-0537 and the pass code is 9933701. Status: Open to the public, but without a public comment period. Background: The Advisory Board was established under the Energy Employees Occupational Illness Compensation Program Act of 2000 to advise the President on a variety of policy and technical functions required to implement and effectively manage the new compensation program. Key functions of the Advisory Board include providing advice on the development of probability of causation guidelines, which have been promulgated by the Department of Health and Human Services (HHS) as a final rule; advice on methods of dose reconstruction, which have also been promulgated by HHS as a final rule; advice on the scientific validity and quality of dose estimation and reconstruction efforts being performed for purposes of the compensation program; and advice on petitions to add classes of workers to the Special Exposure Cohort (SEC).
  • In December 2000, the President delegated responsibility for funding, staffing, and operating the Advisory Board to HHS, which subsequently delegated this authority to the CDC. NIOSH implements this responsibility for CDC. The charter was issued on August 3, 2001, renewed at appropriate intervals, most recently, August 3, 2009, and will expire on August 3, 2011. Purpose: This Advisory Board is charged with a) Providing advice to the Secretary, HHS, on the development of guidelines under Executive Order 13179; b) providing advice to the Secretary, HHS, on the scientific validity and quality of dose reconstruction efforts performed for this program; and c) upon request by the Secretary, HHS, advising the Secretary on whether there is a class of employees at any Department of Energy facility who were exposed to radiation but for whom it is not feasible to estimate their radiation dose, and on whether there is reasonable likelihood that such radiation doses may have endangered the health of members of this class.
  • Matters To Be Discussed: The agenda for the conference call includes: HHS Notice of Proposed Rulemaking to Amending 42 CFR Part 81 (to add Chronic Lymphocytic Leukemia as a ``radiogenic cancer'' for the determination of probability of causation under Subpart B of EEOICPA); NIOSH SEC Petition Evaluation for Ames Laboratory (Ames, Iowa) and General Electric Company (Evendale, Ohio); NIOSH 10-mkYear Review of Its Division of Compensation Analysis and Support (DCAS) Program; Subcommittee and Work Group Updates; DCAS SEC Petition Evaluations Update for the August 2011 Advisory Board Meeting; and Board Correspondence.
D'coda Dcoda

Proof Of Fukushima Weapons Program Rests On A Pile Of Manure[09Sep11] - 0 views

  • Soon after Japan's triple disaster, I suggested that an official cover-up of a nuclear-weapons program hidden inside the Fukushima No.1 plant was delaying the effort to contain the reactor meltdowns. Soon after the tsunami struck, the Tokyo Electric Power Company reported that only three reactors had been generating electricity on the afternoon of March 11.. (According to the initial report, these were the older GE-built reactors 1,2 and 6.). Yet overheating at five of the plant's six reactors indicated that two additional reactors had also been operating (the newer and more advanced Nos. 3 and 4, built by Toshiba and Hitachi). The only plausible purpose of such unscheduled operation is uranium enrichment toward the production of nuclear warhead
  • On my subsequent sojourns in Japan, other suspicious activities also pointed to a high-level cover-up, including systematic undercounts of radiation levels, inexplicable damage to thousands of imported dosimeters, armed anti-terrorism police aboard trains and inside the dead zone, the jamming of international phone calls, homing devices installed in the GPS of rented cars, and warning visits to contacts by government agents discouraging cooperation with independent investigations. These aggressive infringements on civil liberties cannot be shrugged off as an overreaction to a civil disaster but must have been invoked on grounds of national security.
  • One telltale sign of high-level interference was the refusal by science equipment manufacturers to sell isotope chromatography devices to non-governmental customers, even to organizations ready to pay $170,000 in cash for a single unit. These sensitive instruments can detect the presence of specific isotopes, for example cesium-137 and strontium-90. Whether uranium was being enriched at Fukushima could be determined by the ratio of isotopes from enriched weapons-grade fissile material versus residues from less concentrated fuel rods.
  • ...14 more annotations...
  • Now six months after the disaster, the smoking gun has finally surfaced, not on a Japanese paddy field but inside a pile of steer manure from a pasture near Sacramento, California
  • The sample of cattle dung and underlying soil was sent to the nuclear engineering lab of the University of California, Berkeley, which reported on September 6:
  • We tested a topsoil sample and a dried manure sample from the Sacramento area. The manure was produced by a cow long before Fukushima and left outside to dry; it was rained on back in March and April. Both samples showed detectable levels of Cs-134 and Cs-137, with the manure showing higher levels than the soil probably because of its different chemical properties and/or lower density. One interesting feature of t the Sacramento and Sonoma soil samples is that the ratio of Cesium-137 to Cesium-134 is very large - approximately 17.6 and 5.5, respectively. All of our other soil samples until now had shown ratios of between 1 and 2. We know from our air and rainwater measurements that material from Fukushima has a cesium ratio in the range of approximately 1.0 to 1.5, meaning that there is extra Cs-137 in these two soil samples. The best explanation is that in addition to Fukushima fallout, we have also detected atmospheric nuclear weapons testing fallout in these soils. Weapons fallout contains only Cs-137 (no Cs-134) and is known to be present in older soils ..Both of these samples come from older soils, while our samples until this point had come from newer soils.
  • The last atmospheric nuclear blast at the Nevada Test Site occurred in 1962, whereas the manure was presumably dropped less than 49 years ago. Over the past year, the approximate life-span of a cow patty, the rain that fell on the plain came not from a former province of Spain. Within that short time-frame, the only possible origin of radioactive fallout was Fukushima.To think otherwise would be lame.
  • Sun-dried manure is more absorbent than the rocky ground of Northern California, which explains the higher level in Sacramento dung than in the Sonoma soil. As a rule of thumb, the accuracy of radiation readings tends to improve with higher concentration of the test material.The manure acted like a sponge for the collection of radioactive rainfall. Its ratio of Cs-137 (resulting from enriched uranium) to Cs-134 (from a civilian fuel rod) is more than 17-to-1. Larger by 1,700 percent, this figure indicates fission of large amounts of weapons-grade material at Fukushima.
  • The recent higher readings were probably based on either late releases from a fire-destroyed extraction facility or the venting of reactor No.3, a Toshiba-designed unit that used plutonium and uranium mixed oxide or MOX fuel. Unannounced nighttime airborne releases in early May caused radiation burns in many people, as happened to my forearms. Those plumes then drifted toward North America.
  • Enrichment of uranium for nuclear warheads is prohibited under constitutional law in Japan and by terms of the Non-Proliferation Treaty. Since no suspects have been charged by prosecutors, this cannot be a plot by a few individuals but stands as the crime of a national entity.
  • Yellow-Cake Factory 608   Fukushima Province has a history of involvement in atomic weapons development, according to a New York Times article by Martin Fackler titled "Fukushima's Long Link to a Dark Nuclear Past" (Sept. 6). Following the lead of Japanese news reports, the correspondent visited the town of Ishikawa, less than an hour's drive south of the Fukushima No.1 nuclear plant. There he interviewed Kiwamu Ariga who as a student during the war was forced to mine uranium ore from a local foothill to supply the military-run Factory 608, which refined the ore into yellow-cake.
  • Several research groups worked on building a super-weapon for militarist Japan. The Naval Technology Research Institute was best-positioned due to its secret cooperation with the German Navy. Submarine U-234 was captured in the Atlantic after Germany's surrender with a cargo of uranium along with two dead passengers - Japanese military officers .Soon after departing Norway, U-864 was bombed and sunk, carrying a load of two tons of processed uranium..
  • In the article for the Atlanta Constitution, dated, Oct. 2, 1946, David Snell reported that the Japanese military had successfully tested a nuclear weapon off Konan on Aug. 12, 1945. There are detractors who dispute the account by a decommissioned Japanese intelligence officer to the American journalist, stationed in occupied Korea with the 24th Criminal Investigation Detachment of the U.S. Army. A cursory check on his background shows Snell to have been a credible reporter for Life magazine, who also contributed to the Smithsonian and The New Yorker magazines. A new book is being written by American and Russian co-authors on the Soviet shoot-down of the Hog Wild, a B-29 that flew over Konan island soon after the war's end..
  • Due to its endemic paranoia about all things nuclear, the U.S. government had a strong interest in suppressing the story of Japan's atomic bomb program during the war, just as Washington now maintains the tightest secrecy over the actual situation at Fukushima.
  • The emerging picture shows that nuclear-weapons development, initiated in 1954 by Prime Minister Nobusuke Kishi and supervised by Yasuhiro Nakasone, was centered inside civilian nuclear plants, since the Self-Defense Forces were bound by strict Constitutional rules against war-making and the Defense Agency is practically under the direct supervision of the U.S. Joint Chiefs of Staff. Funding came from the near-limitless budget of the Tokyo Electric Power Company (TEPCO), which today claims financial insolvency without explanation of how its vast cash holdings disappeared. A clandestine nuclear program must be expensive, since it would include the cost of buying the silence of parliament, the bureaucracy and foreign dignitaries.
  • Following the March 11 disaster, TEPCO sent a team of 250 emergency personnel into the plant, yet only 50 men were assigned to cooling the reactors. The other 200 personnel stayed out of sight, possibly to dismantle an underground plutonium-extraction facility. No foreign nuclear engineers or Japanese journalists were ever permitted entry into the reactor structures.   Radiation leakage from Fukushima No.1 prevented local police from rescuing hundreds of tsunami survivors in South Soma, many of whom consequently went unaided and died of wounds or exposure. Tens of thousands of farmers have lost their ancestral lands, while much of Japan's agriculture and natural areas are contaminated for several generations and possibly longer, for the remaining duration of the human species wherever uranium and plutonium particles have seeped into the aquifers.
  • TEPCO executives, state bureaucrats and physicists in charge of the secret nuclear program are evading justice in contempt of the Constitution. As in World War II, the Japanese conservatives in their maniacal campaign to eliminate their imagined enemies succeeded only in perpetrating crimes against humanity and annihilating their own nation. If history does repeat itself, Tokyo once again needs a tribunal to send another generation of Class-A criminals to the gallows.
  •  
    By Yoichi ShimatsuFormer editor of The Japan Times Weekly
D'coda Dcoda

The Nuclear Reactors That Power Knowledge Not Light Bulbs [09Nov11] - 0 views

  • In addition to regulating commercial nuclear power reactors that generate 20 percent of the nation’s electricity, the NRC also regulates much smaller reactors used for research, training and development. These “research and test reactors,” often called RTRs or non-power reactors, contribute to almost every field of science including physics, chemistry, biology, medicine, geology, archeology, and environmental sciences. Most are located at universities or colleges. (The NRC does not regulate research reactors run by the Department of Energy.) The most common use for these small reactors is for experiments. One widely used type of experiment is neutron scattering. Radiation from the reactor is directed at the material to be studied. The manner in which the radiation interacts and bounces off, or scatters, from the material provides information on structure and properties. Neutron scattering is an important tool in experiments dealing with superconductors, polymers, metals, and proteins.
  • Neutron radiography is another experimental technique. It is similar to medical or dental X-rays. These experiments are used to determine structural integrity and provide quality control for aerospace, automotive and medical components. NRC experts inspect each RTR periodically to ensure they are being operated according to the agency’s safety and security requirements, and the facility’s own license conditions. The NRC uses a graded approach in its inspection program so there are less frequent and detailed inspections at facilities that pose a lower risk.
  • There are two types of inspection programs for operating research and test reactors: • For reactors licensed to operate at power levels of 2 megawatts or greater, the inspection program is completed annually. • For reactors licensed to operate at power levels below 2 megawatts, the inspection program is completed every two years.
D'coda Dcoda

Uranium diet: US nuclear power industry could face fuel shortage [25Sep13] - 0 views

  •  
    Russia has been supplying US nuclear power plants with fuel for a dumping price since 1995. But with the HEU-LEU agreement coming to an end, America's nuclear power generation industry is likely to face a sharp fuel price surge and shortage. The HEU-LEU agreement (Megatons to Megawatts Program) signed in 1993 supposed downblending of 500 tons of Soviet-made military grade highly enriched uranium (HEU) (equivalent to 20,000 nuclear warheads) into low-enriched uranium (LEU) to produce fuel for American nuclear power plants out of it. The program supplied up to 40 percent of nuclear fuel for America's 104 nuclear reactors (America's 65 nuclear power plants generate over 19 percent of electric power in the country)
D'coda Dcoda

Economic Aspects of Nuclear Fuel Reprocessing [12Jul05] - 0 views

  • On Tuesday, July 12, the Energy Subcommittee of the House Committee on Science will hold a hearing to examine whether it would be economical for the U.S. to reprocess spent nuclear fuel and what the potential cost implications are for the nuclear power industry and for the Federal Government. This hearing is a follow-up to the June 16 Energy Subcommittee hearing that examined the status of reprocessing technologies and the impact reprocessing would have on energy efficiency, nuclear waste management, and the potential for proliferation of weapons-grade nuclear materials.
  • Dr. Richard K. Lester is the Director of the Industrial Performance Center and a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. He co-authored a 2003 study entitled The Future of Nuclear Power. Dr. Donald W. Jones is Vice President of Marketing and Senior Economist at RCF Economic and Financial Consulting, Inc. in Chicago, Illinois. He co-directed a 2004 study entitled The Economic Future of Nuclear Power. Dr. Steve Fetter is the Dean of the School of Public Policy at the University of Maryland. He co-authored a 2005 paper entitled The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Mr. Marvin Fertel is the Senior Vice President and Chief Nuclear Officer at the Nuclear Energy Institute.
  • 3. Overarching Questions  Under what conditions would reprocessing be economically competitive, compared to both nuclear power that does not include fuel reprocessing, and other sources of electric power? What major assumptions underlie these analyses?  What government subsidies might be necessary to introduce a more advanced nuclear fuel cycle (that includes reprocessing, recycling, and transmutation—''burning'' the most radioactive waste products in an advanced reactor) in the U.S.?
  • ...13 more annotations...
  • 4. Brief Overview of Nuclear Fuel Reprocessing (from June 16 hearing charter)  Nuclear reactors generate about 20 percent of the electricity used in the U.S. No new nuclear plants have been ordered in the U.S. since 1973, but there is renewed interest in nuclear energy both because it could reduce U.S. dependence on foreign oil and because it produces no greenhouse gas emissions.  One of the barriers to increased use of nuclear energy is concern about nuclear waste. Every nuclear power reactor produces approximately 20 tons of highly radioactive nuclear waste every year. Today, that waste is stored on-site at the nuclear reactors in water-filled cooling pools or, at some sites, after sufficient cooling, in dry casks above ground. About 50,000 metric tons of commercial spent fuel is being stored at 73 sites in 33 states. A recent report issued by the National Academy of Sciences concluded that this stored waste could be vulnerable to terrorist attacks.
  • Under the current plan for long-term disposal of nuclear waste, the waste from around the country would be moved to a permanent repository at Yucca Mountain in Nevada, which is now scheduled to open around 2012. The Yucca Mountain facility continues to be a subject of controversy. But even if it opened and functioned as planned, it would have only enough space to store the nuclear waste the U.S. is expected to generate by about 2010.  Consequently, there is growing interest in finding ways to reduce the quantity of nuclear waste. A number of other nations, most notably France and Japan, ''reprocess'' their nuclear waste. Reprocessing involves separating out the various components of nuclear waste so that a portion of the waste can be recycled and used again as nuclear fuel (instead of disposing of all of it). In addition to reducing the quantity of high-level nuclear waste, reprocessing makes it possible to use nuclear fuel more efficiently. With reprocessing, the same amount of nuclear fuel can generate more electricity because some components of it can be used as fuel more than once.
  • The greatest drawback of reprocessing is that current reprocessing technologies produce weapons-grade plutonium (which is one of the components of the spent fuel). Any activity that increases the availability of plutonium increases the risk of nuclear weapons proliferation.  Because of proliferation concerns, the U.S. decided in the 1970s not to engage in reprocessing. (The policy decision was reversed the following decade, but the U.S. still did not move toward reprocessing.) But the Department of Energy (DOE) has continued to fund research and development (R&D) on nuclear reprocessing technologies, including new technologies that their proponents claim would reduce the risk of proliferation from reprocessing.
  • The report accompanying H.R. 2419, the Energy and Water Development Appropriations Act for Fiscal Year 2006, which the House passed in May, directed DOE to focus research in its Advanced Fuel Cycle Initiative program on improving nuclear reprocessing technologies. The report went on to state, ''The Department shall accelerate this research in order to make a specific technology recommendation, not later than the end of fiscal year 2007, to the President and Congress on a particular reprocessing technology that should be implemented in the United States. In addition, the Department shall prepare an integrated spent fuel recycling plan for implementation beginning in fiscal year 2007, including recommendation of an advanced reprocessing technology and a competitive process to select one or more sites to develop integrated spent fuel recycling facilities.''
  • During floor debate on H.R. 2419, the House defeated an amendment that would have cut funding for research on reprocessing. In arguing for the amendment, its sponsor, Mr. Markey, explicitly raised the risks of weapons proliferation. Specifically, the amendment would have cut funding for reprocessing activities and interim storage programs by $15.5 million and shifted the funds to energy efficiency activities, effectively repudiating the report language. The amendment was defeated by a vote of 110–312.
  • But nuclear reprocessing remains controversial, even within the scientific community. In May 2005, the American Physical Society (APS) Panel on Public Affairs, issued a report, Nuclear Power and Proliferation Resistance: Securing Benefits, Limiting Risk. APS, which is the leading organization of the Nation's physicists, is on record as strongly supporting nuclear power. But the APS report takes the opposite tack of the Appropriations report, stating, ''There is no urgent need for the U.S. to initiate reprocessing or to develop additional national repositories. DOE programs should be aligned accordingly: shift the Advanced Fuel Cycle Initiative R&D away from an objective of laying the basis for a near-term reprocessing decision; increase support for proliferation-resistance R&D and technical support for institutional measures for the entire fuel cycle.''  Technological as well as policy questions remain regarding reprocessing. It is not clear whether the new reprocessing technologies that DOE is funding will be developed sufficiently by 2007 to allow the U.S. to select a technology to pursue. There is also debate about the extent to which new technologies can truly reduce the risks of proliferation.
  •  It is also unclear how selecting a reprocessing technology might relate to other pending technology decisions regarding nuclear energy. For example, the U.S. is in the midst of developing new designs for nuclear reactors under DOE's Generation IV program. Some of the potential new reactors would produce types of nuclear waste that could not be reprocessed using some of the technologies now being developed with DOE funding.
  • 5. Brief Overview of Economics of Reprocessing
  • The economics of reprocessing are hard to predict with any certainty because there are few examples around the world on which economists might base a generalized model.  Some of the major factors influencing the economic competitiveness of reprocessing are: the availability and cost of uranium, costs associated with interim storage and long-term disposal in a geologic repository, reprocessing plant construction and operating costs, and costs associated with transmutation, the process by which certain parts of the spent fuel are actively reduced in toxicity to address long-term waste management.
  • Costs associated with reducing greenhouse gas emissions from fossil fuel-powered plants could help make nuclear power, including reprocessing, economically competitive with other sources of electricity in a free market.
  •  It is not clear who would pay for reprocessing in the U.S.
  • Three recent studies have examined the economics of nuclear power. In a study completed at the Massachusetts Institute of Technology in 2003, The Future of Nuclear Power, an interdisciplinary panel, including Professor Richard Lester, looked at all aspects of nuclear power from waste management to economics to public perception. In a study requested by the Department of Energy and conducted at the University of Chicago in 2004, The Economic Future of Nuclear Power, economist Dr. Donald Jones and his colleague compared costs of future nuclear power to other sources, and briefly looked at the incremental costs of an advanced fuel cycle. In a 2003 study conducted by a panel including Matthew Bunn (a witness at the June 16 hearing) and Professor Steve Fetter, The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel, the authors took a detailed look at the costs associated with an advanced fuel cycle. All three studies seem more or less to agree on cost estimates: the incremental cost of nuclear electricity to the consumer, with reprocessing, could be modest—on the order of 1–2 mills/kWh (0.1–0.2 cents per kilowatt-hour); on the other hand, this increase represents an approximate doubling (at least) of the costs attributable to spent fuel management, compared to the current fuel cycle (no reprocessing). Where they strongly disagree is on how large an impact this incremental cost will have on the competitiveness of nuclear power. The University of Chicago authors conclude that the cost of reprocessing is negligible in the big picture, where capital costs of new plants dominate all economic analyses. The other two studies take a more skeptical view—because new nuclear power would already be facing tough competition in the current market, any additional cost would further hinder the nuclear power industry, or become an unacceptable and unnecessary financial burden on the government.
  • 6. Background
  •  
    Report from the Subcommitte on Energy, Committee on Science for House of Representatives. Didn't highlight the entire article, see site for the rest.
D'coda Dcoda

Voluntary departure program: A safe haven or a free vacation? Fukushima [29Mar11] - 0 views

  • U.S. family members who left Japan under the military’s “voluntary departure” program stand to pocket a considerable amount of money, depending on whether they flew home to stay with family in North Dakota or chose to lie on the beaches of Waikiki.Some 7,000 family members from five U.S. military bases have departed mainland Japan so far amid fears of radiation leaking from the Fukushima Dai-ichi nuclear power plant, left crippled by the March 11 earthquake and subsequent tsunami.
  • But the departures are generating a measure of controversy, with some military community members blasting their neighbors for taking “paid vacations.” Others defend the decision, saying fears of a nuclear crisis, repeated earthquake aftershocks and concerns for their children’s safety made heading back to the United States the only real option.
  • Each family member who leaves Japan under the voluntary departure program is entitled to lodging, meals, a daily stipend for incidentals and a $25 daily family travel allowance.The amount they’re allowed to spend depends on the location the family picked as its so-called “safe haven,” and whether family members are staying with relatives or in a hotel. Children 12 or older are eligible for 100 percent of the local per diem rate, while children under 12 are eligible for 50 percent.
  • ...1 more annotation...
  • In a low-cost area, such as Grand Forks, N.D., a military family of three — mom, a teen and a child under 12 — would receive a maximum of $9,795 for the first month. That same family, however, would receive as much as $21,975 for the first month if they picked Honolulu, with its much higher cost of living, as the place they wanted to stay until they were authorized to return to Japan
D'coda Dcoda

Atomic workers ridiculed in training manual [28Sep11] - 0 views

  • Advocates for atomic workers sickened by on-the-job radiation exposure at places like the Miamisburg Mound Plant say they’re outraged by a training manual for a federal compensation program that refers to a hypothetical claimant as “Freddy Krueger,” the name of a horror movie character whose face was badly burned.The undated Labor Department manual, used in training people who screen applicants for possible compensation and medical benefits, also refers to the pathologist in a hypothetical dead worker’s case as the fictitious serial killer Dr. Hannibal Lecter.
  • The Energy Employees Occupational Illness Compensation Program, administered by the Labor Department, provides medical benefits and compensation for sick atomic workers, if it is shown their illnesses were caused by occupational exposures. Workers suffering from cancers and some other illnesses known to be caused by radiation exposures can receive lump-sum payments, as can certain survivors.For decades, the Energy Department claimed that none of its workers was sickened by radioactive exposures. Since the program was established in 2001, it has paid $7.4 billion in compensation and doctor bills for more than 86,000 claimants.Jerison obtained the manual in a Freedom of Information Act request to Labor and found it riddled with pop-culture references.
  • The manual’s jocular attitude toward workers who have suffered from cancers and other serious illnesses is “indicative of the disrespect that’s shown to claimants” by Labor Department officials, said worker advocate Deb Jerison of Yellow Springs, who heads a nonprofit that helps sick atomic workers and their survivors obtain federal benefits. Some of the workers have died from their illnesses.Labor officials did not return repeated phone calls seeking comment.
  • ...1 more annotation...
  • “None of the (hypothetical) claims examiners had names like this. It was like ‘Jane Doe.’ Bland names, which is appropriate (for the tone of a training manual),” said Jerison, whose father, Mound physicist James Goode, died in 1960 at age 36. After a six-year process, Jerison helped her mother win survivor benefits, but her mother died in 2008 before the money arrived.In a letter to Labor officials, chemist David Manuta of Waverly, a member of the Alliance of Nuclear Worker Advocacy Groups, called the humor “examples of (a) history of disrespect” for applicants.Manuta also criticized the “shameful comments” in May of program Director Rachel Leiton, who, according to a meeting transcript, told an advisory board that sick workers couldn’t be trusted to tell the truth in affidavits about their work history at atomic plants. Many cases involve decades-ago employment for which records are hard to find.
D'coda Dcoda

It's 2050: Do you know where your nuclear waste is? [09Sep11] - 1 views

  • Though nuclear power produces electricity with little in the way of carbon dioxide emissions, it, like other energy sources, is not without its own set of waste products. And in the case of nuclear power, most of these wastes are radioactive.1 Some very low level nuclear wastes can be stored and then disposed of in landfill-type settings. Other nuclear waste must remain sequestered for a few hundred years in specially engineered subsurface facilities; this is the case with low level waste, which is composed of low concentrations of long-lived radionuclides and higher concentrations of short-lived ones. Intermediate and high-level waste both require disposal hundreds of meters under the Earth’s surface, where they must remain out of harm’s way for thousands to hundreds of thousands of years (IAEA, 2009). Intermediate level wastes are not heat-emitting, but contain high concentrations of long-lived radionuclides. High-level wastes, including spent nuclear fuel and wastes from the reprocessing of spent fuel, are both heat-emitting and highly radioactive.
  • When it comes to the severity of an accident at a nuclear facility, there may be little difference between those that occur at the front end of the nuclear power production and those at the back end: An accident involving spent nuclear fuel can pose a threat as disastrous as that posed by reactor core meltdowns. In particular, if spent fuel pools are damaged or are not actively cooled, a major crisis could be in sight, especially if the pools are packed with recently discharged spent fuel.
  • Elements of success
  • ...17 more annotations...
  • All countries with well-established nuclear programs have found themselves requiring spent fuel storage in addition to spent fuel pools at reactors. Some, like the US, use dry storage designs, such as individual casks or storage vaults that are located at reactor sites; other countries, Germany for one, use away-from-reactor facilities. Sweden has a large underground pool located at a centralized facility, CLAB, to which different reactors send their spent fuel a year after discharge, so spent fuel does not build up at reactor sites. Dry storage tends to be cheaper and can be more secure than wet storage because active circulation of water is not required. At the same time, because dry storage uses passive air cooling, not the active cooling that is available in a pool to keep the fuel cool, these systems can only accept spent fuel a number of years after discharge.6
  • the most difficult part of the back end of the fuel cycle is siting the required facilities, especially those associated with spent fuel management and disposal. Siting is not solely a technical problem—it is as much a political and societal issue. And to be successful, it is important to get the technical and the societal and political aspects right.
  • France has had more success after failing in its first siting attempt in 1990, when a granite site that had been selected drew large protests and the government opted to rethink its approach to nuclear waste disposal entirely. In 2006, the government announced that it needed a geologic repository for high-level waste, identified at least one suitable area, and passed laws requiring a license application to be submitted by 2015 and the site to begin receiving high-level waste by 2025.
  • Canada recently rethought the siting process for nuclear waste disposal and began a consensus-based participatory process. The Canadian Nuclear Waste Management Organization was established in 2002, after previous attempts to site a repository failed. The siting process began with three years’ worth of conversations with the public on the best method to manage spent fuel. The organization is now beginning to solicit volunteer communities to consider a repository, though much of the process remains to be decided, including the amount and type of compensation given to the participating communities.
  • The United States had been working toward developing a high-level waste repository at Yucca Mountain, Nevada; this fell through in 2010, when the Obama administration decided to reverse this decision, citing political “stalemate” and lack of public consensus about the site. Instead, the Obama administration instituted the Blue Ribbon Commission on America’s Nuclear Future to rethink the management of the back end of the nuclear fuel cycle.8 The US can flaunt one success, though. The Waste Isolation Pilot Project (WIPP), located near Carlsbad in southern New Mexico, is actually the only operating deep geologic repository for intermediate level nuclear waste, receiving waste since 1998. In the case of WIPP, it only accepts transuranic wastes from the nuclear weapons complex. The site is regulated solely by the Environmental Protection Agency, and the state of New Mexico has partial oversight of WIPP through its permitting authority established by the Resource Conservation and Recovery Act. The city of Carlsbad is supportive of the site and it appears to be tolerated by the rest of the state.9
  • After weathering the Fukushima accident, and given the current constraints on carbon dioxide emissions and potential for growth of nuclear power, redefinition of a successful nuclear power program is now required: It is no longer simply the safe production of electricity but also the safe, secure, and sustainable lifecycle of nuclear power, from the mining of uranium ores to the disposal of spent nuclear fuel. If this cannot be achieved and is not thought out from the beginning, then the public in many countries will reject nuclear as an energy choice.
  • Certain elements—including an institution to site, manage, and operate waste facilities—need to be in place to have a successful waste management program. In some countries, this agency is entirely a government entity, such as the Korea Radioactive Waste Management Organization. In other countries, the agency is a corporation established by the nuclear industry, such as SKB in Sweden or Posiva Oy in Finland. Another option would be a public– private agency, such as Spain’s National Company for Radioactive Waste or Switzerland’s National Cooperative for the Disposal of Radioactive Waste.
  • France, Canada, and Germany also have experienced a number of iterations of repository siting, some with more success than others. In the 1970s, Germany selected the Gorleben site for its repository; however, in the late 1990s, with the election of a Red–Green coalition government (the Greens had long opposed Gorleben), a rethinking of repository siting was decreed, and the government established the AkEnd group to re-evaluate the siting process. Their report outlined a detailed siting process starting from scratch, but to date too much political disagreement exists to proceed further.
  • the siting process must be established. This should include decisions on whether to allow a community to veto a site and how long that veto remains operational; the number of sites to be examined in depth prior to site selection and the number of sites that might be required; technical criteria to begin selecting potential sites; non-technical considerations, such as proximity to water resources, population centers, environmentally protected areas, and access to public transportation; the form and amount of compensation to be offered; how the public is invited to participate in the site selection process; and how government at the federal level will be involved.
  • The above are all considerations in the siting process, but the larger process—how to begin to select sites, whether to seek only volunteers, and so on—must also be determined ahead of time. A short list of technical criteria must be integrated into a process that establishes public consent to go forward, followed by many detailed studies of the site—first on the surface, then at depth. There are distinct advantages to characterizing more than one site in detail, as both Sweden and Finland have done. Multiple sites allow the “best” one to be selected, increasing public approval and comfort with the process.
  • he site needs to be evaluated against a set of standards established by a government agency in the country. This agency typically is the environmental agency or the nuclear regulatory agency. The type of standards will constrain the method by which a site will be evaluated with regard to its future performance. A number of countries use a combination of methods to evaluate their sites, some acknowledging that the ability to predict processes and events that will occur in a repository decrease rapidly with each year far into the future, so that beyond a few thousand years, little can be said with any accuracy. These countries use what is termed a “safety case,” which includes multiple lines of evidence to assure safe repository performance into the future.
  • Moving forward
  • Funding is one of the most central needs for such an institution to carry out research and development programs; the money would cover siting costs, including compensation packages and resources for local communities to conduct their own analyses of spent fuel and waste transportation, storage, repository construction, operations, security and safeguards, and future liabilities. Funds can be collected in a number of ways, such as putting a levy on electricity charges (as is done in the US) or charging based on the activity or volume of waste (Hearsey et al., 1999). Funds must also be managed—either by a waste management organization or another industry or government agency—in a way that ensures steady and ready access to funds over time. This continued reliable access is necessary for planning into the future for repository operations.
  • Notes
  • Nuclear wastes are classified in various ways, depending on the country or organization doing the classification. The International Atomic Energy Agency (IAEA) notes six general categories of waste produced by civil nuclear power reactors: exempt waste, very short-lived waste, and very low level waste can be stored and then disposed of in landfill-type settings; low level waste, intermediate level waste, and high-level waste require more complex facilities for disposal.
  • Sweden is currently the country closest to realizing a final solution for spent fuel, after having submitted a license application for construction of a geologic repository in March 2011. It plans to open a high-level waste repository sometime after 2025, as do Finland and France.
  • Some countries, such as Sweden, Finland, Canada, and, until recently, the US, plan to dispose of their spent fuel directly in a geologic repository. A few others, such as France, Japan, Russia, and the UK have an interim step. They reprocess their spent fuel, extract the small amount of plutonium produced during irradiation, and use it in new mixed oxide (MOX) fuel. Then they plan to dispose of the high-level wastes from reprocessing in a repository.
Dan R.D.

Iran Officially Opens First Nuclear Plant - ABC News [12Sep11] - 0 views

shared by Dan R.D. on 12 Sep 11 - No Cached
  • Iran celebrated the official opening of the nation's first nuclear power plant today, a worrisome milestone for Western critics of the Iranian nuclear program.
  • Iranian state news said. The plant has been under construction by a Russian company for nearly two decades.
  • Today State Department spokesperson Victoria Nuland said the official opening of the Bushehr plant was still "troubling" since Iran is now the only country in the world with an operating nuclear reactor that has not ratified the international Convention on Nuclear Safety.
  • ...3 more annotations...
  • The head of the International Energy Agency, Yukiya Amano, said at the start of a five-day U.N. meeting today that the organization is "increasingly concerned" about Iran's nuclear program and that Iran was still not providing the agency "necessary cooperation" with its nuclear program.
  • Most recently, Iranian officials accused the U.S. and its allies of conspiring to damage its nuclear activities when the Stuxnet computer worm was found on the computers of several employees at the Bushehr nuclear plant last summer.
  • Although the U.S. never accepted -- or denied -- responsibility for the virus, a January 2010 cable released by WikiLeaks earlier this year revealed that the U.S. was at that time considering advice by a German thinktank that "covert sabotage" would be the most effective way to disable Iran's nuclear program.
D'coda Dcoda

The Pro-Nuclear Community goes Grassroots [12Oct11] - 0 views

  • In recent weeks I have been excited to witness several genuine grassroots efforts in support of nuclear energy emerging on the scene. Several have already been covered on this forum, like the Rally for Vermont Yankee and the Webinar collaboration by the Nuclear Regulatory Commission and the American Nuclear Society. Both of these efforts proved to be very successful in bringing together nuclear supporters and gaining attention from the mainstream media.
  • I’d like to share some information about another opportunity to actively show your support for nuclear. The White House recently launched a petition program called “We the People.” Here is the description of how it works: This tool provides you with a new way to petition the Obama administration to take action on a range of important issues facing our country. If a petition gets enough support, White House staff will review it, ensure it’s sent to the appropriate policy experts, and issue an official response. One of the first and most popular petitions on the website is a call to end subsidies and loan guarantees for nuclear energy by 2013. As I write this, it is only about a thousand signatures away from reaching the White House. In response to this petition, Ray Wallman, a young nuclear supporter and filmmaker, wrote a counter petition called “Educate the Public Regarding Nuclear Power.” It needs 4,500 more signatures before October 23 in order to get a formal response, and reads as follows:
  • Due to the manufactured controversy that is the nuclear reactor meltdown in Fukushima, Japan, perpetuated by a scientifically illiterate news media, the public is unnecessarily hostile to nuclear power as an energy source. To date nobody has died from the accident and Fukushima, and nuclear power has the lowest per Terra-watt hour death toll of any energy source known to man: http://nextbigfuture.com/2011/03/deaths-per-twh-by-energy-source.html The Obama administration should take better strides to educate the public regarding this important energy source.
  • ...7 more annotations...
  • In addition to the petition for education, Gary Kahanak, of Arkansas Home Energy Consultants, released another one in support of restarting the Integral Fast Reactor program. This petition was inspired by an open letter to the White House with the same goal, written by Steve Kirsch, of the Science Council for Global Initiatives. The petition states:
  • Without delay, the U.S. should build a commercial-scale demonstration reactor and adjacent recycling center. General Electric’s PRISM reactor, developed by a consortium of major American companies in partnership with the Argonne National Laboratory, is ready to build now. It is designed to consume existing nuclear waste as fuel, be passively safe and proliferation-resistant. It can provide clean, emissions-free power to counter climate change, and will create jobs as we manufacture and export a superior technology. Abundant homegrown nuclear power will also enhance our nation’s energy security. Our country dedicated some of its finest scientific and engineering talent to this program, with spectacular success. Let’s finish the job we started. It will benefit our nation, and the world.
  • The release of these petitions was just in time to beat an increased threshold for minimum signatures, from 5,000 to 25,000. That means that if half of ANS members take the time to sign these petitions, we will get a formal response from the White House about their plans for increasing public education on nuclear energy, and moving forward with an important Generation IV technology.
  • There has been some debate among my colleagues about the value of this approach. Some were concerned about the specific language or content of the petitions, while others did not feel comfortable signing something in support of a particular reactor that is not their preferred technology. Others have voiced that even if we get 5,000 signatures, the White House response will not have any impact on policy. While I understand and respect those points, I want to share why I decided to sign both petitions and to write about them here.
  • Those of us in the nuclear communications community ask ourselves constantly, “How do we inspire people to get involved and speak out in support of nuclear?” I see these petitions as a sign of success on the part of the nuclear community—we are reaching out and inspiring action from the ground up. Nuclear supporters who are not directly employed by the industry created both of these petitions. In my mind, that is a really wonderful thing. Members of the public are taking independent action to support the technology they believe in.
  • This brings me to my second reason for supporting these petitions: They represent a genuine change in approach for supporting nuclear energy. Throughout the history of commercial nuclear power generation, most of the decisions and support have come directly from government and corporate entities. This has resulted in a great deal of public mistrust and even distain for nuclear technologies. A grassroots approach may not translate directly into research dollars or policy change, but it has to the potential to win hearts and minds, which is also extremely important.
  • And finally, there is power in symbolic action
D'coda Dcoda

Opinion: Small modular nuclear reactors should power U.S. energy strategy [16Oct11] - 0 views

  • Sen. Dianne Feinstein (D-Calif.) was on her high horse, and the California Democrat wasn’t going to pass up an opportunity to disparage nuclear power. As head of a Senate panel that controls spending on energy technology, Sen. Feinstein zeroed in on a new program that would design small modular reactors over the next five years, striking it from the Department of Energy (DOE) budget for the coming fiscal year. Yet it happens to be precisely the sort of “Made in America” program with great commercial potential that President Obama called for in his jobs speech.
  • Feinstein prefers renewable energy sources, favoring government financial support for solar energy. Never mind that Solyndra Inc., a California-based maker of solar panels that received a $535 million U.S. loan guarantee, recently went bankrupt, along with two other solar firms. By contrast, small modular reactors are affordable and practical. They could be built in U.S. factories for a fraction of the cost of a large nuclear plant and exported for use in generating electricity around the world. In fact, small reactors have been used successfully for more than a half-century to power the U.S. Navy’s nuclear submarines. And the U.S. Army used small reactors during the 1950s and 1960s to provide electricity at remote military installations in Wyoming, Alaska, Greenland, Antarctica and other locations.
  • Several other countries with nuclear programs see great commercial potential in modular reactors; France, China, Japan and Korea are developing simplified, cheaper designs for a global market. “Our choice is clear: Develop these technologies today or import them tomorrow,” Energy Secretary Steven Chu said recently.
  • ...5 more annotations...
  • To jump-start construction of modular reactors, the administration proposed a cost-sharing program of $500 million over five years to help two companies develop designs and obtain Nuclear Regulatory Commission licenses. The DOE funds would be equally matched with industry money. There are those who maintain the government should not be involved in energy development, and that it should be left to the marketplace to determine which technologies emerge in America’s energy future. That’s an understandable sentiment, given the Solyndra scandal. But nuclear power, which has enabled the nation to meet its energy needs for more than a half-century without polluting the air or depending on the whims of foreign rulers, got its start with government financial backing. The first nuclear plants were built with government funds.
  • Like conventional nuclear plants, small modular reactors could produce electricity around the clock, day in and day out, without being subject to weather conditions. But what’s especially appealing about small reactors is their affordability. Instead of having to pay the capital cost of a new nuclear plant, which can run $8 billion or more, a utility would have the option of ordering small modular reactors for construction in a series, as funds become available and the need for electricity arises. The Tennessee Valley Authority recently signed a letter of intent to buy six small modular reactors using conventional light–water reactor technology, each with the capacity to produce 125 megawatts of electricity, from Babcock & Wilcox, a Virginia-based nuclear manufacturer. A small reactor is expected to take three years to build instead of five years or more for a conventional 1,200-megawatt nuclear plant. Experts say that a prototype reactor would cost about $500 million.
  • Small modular reactors — known as SMRs — would be shipped from a factory by rail or truck to a nuclear site and situated side-by-side. They would be hooked to the same electric-power grid but operate independently of one another. One module could be taken off line for refueling and maintenance while the others produce electricity. At some locations, modular reactors could be situated beneath the ground for security. What’s more, SMRs are air-cooled. They don’t have to be located on the oceanfront or near lakes and rivers, an important feature in large parts of the world where water resources are scarce.
  • The question is whether, in the face of opposition from Sen. Feinstein and some other members, Congress will make funds available for developing SMRs. At least 10 U.S. nuclear companies have done preliminary design work. They include such well-known names as Westinghouse, General Electric, General Atomics and Babcock & Wilcox. And a number of start-up companies are part of the competition. “SMRs could change the game and restore U.S. leadership in nuclear power,” said Vic Reis, a senior adviser in the Department of Energy’s Office of Science. “Nuclear power is essential to the administration’s commitment to clean energy.”
  • But if our reactor designs are going to be competitive in the global marketplace, it is essential that American companies be able to compete on a level playing field. Foreign reactor manufacturers have the backing of their governments in the form of subsidies and grants. Our companies, on the other hand, are cut off from government support. Congress can and must make this a turnaround decade in building a more affordable modular reactor for electricity generation. A factory-built small reactor should be the cornerstone of our government’s energy strategy.
Dan R.D.

Energy CEOs Urge Court To End Nuclear Waste Fee [25Oct11] - 0 views

  • A Department of Energy fee that costs nuclear power utilities some $750 million a year should be suspended because a nuclear-waste program the fee is designed to pay for does not exist, opponents said in a new court filing.
  • The National Association of Regulatory Utility Commissioners and the Nuclear Energy Institute, a policy organization for the industry, urged a Washington DC appeals court to order the DOE to stop collecting the fee for the federally mandated Nuclear Waste Fund which grows by about $1 billion a year and is expected to total $28.3 billion by the end of fiscal 2012.
  • The fund was intended to pay for the development and maintenance of a planned repository for nuclear waste at Yucca Mountain in Nevada, a long-delayed program that was effectively killed when the Obama administration cut off funding and support for it.
  • ...4 more annotations...
  • In the latest filing, NARUC and NEI accuse the DOE of ignoring the size of the fund, the costs of the program it is intended to pay for, and the revenues already collected to pay those costs.
  • The White House initiative prompted NARUC and NEI to sue in March this year, arguing that the fee, which has been in effect since 1983, should be suspended because there was no justification for it.
  • In their latest legal brief, filed on Oct. 20, and released by NARUC on Monday, the petitioners substantiate their claims that the DOE's determination in December 2010 to leave the fee unchanged is not in compliance with the 1982 Nuclear Waste Policy Act, which requires the department to regularly assess whether the fees are too high, too low, or necessary at all.
  • "Rather than complying with the NWPA requirement to annually evaluate the costs of the nuclear waste disposal program and determine whether the fees that have been and are being collected from ratepayers and utilities offset those costs, DOE has concluded that it must continue collecting the same fee it has been collecting since 1983 because it cannot determine that too much or too little revenue is being collected," the brief said.
D'coda Dcoda

Swedish focus on earthquake protection [04Nov11] - 0 views

  • Swedish nuclear power plant operators will incorporate improvements highlighted by stress tests with a pre-existing program to standardise safety in earthquake scenarios. 
  • Some 34 countries are participating in a project led by the European Commission to put nuclear power plants through paper-based analyses where they are subjected to extreme circumstances and events such as natural disasters. The aim is to find the ultimate resilience of procedures and safety engineering and identify any 'cliff-edge' effects where the loss of a certain system may make a serious accident unavoidable.   On a common schedule, many of the countries have in recent days confirmed that their nuclear power plants are properly sited, designed and managed. However, a statement from the Swedish Radiation Safety Authority (SSM) frankly pointed out that: "What we can already see is that some plants do not fully meet requirements in the case of earthquakes. Here we will need to take action."   Jan Hanberg, SSM's head of radiation protection who led the stress test program, explained to World Nuclear News that there were no specific earthquake requirements in the early days of the Swedish nuclear program. The country relied on the intrinsic strength of each design in scenarios of strong earthquakes, which are highly unlikely due to Sweden's geology. Of the country's ten reactors, only Oskarshamn 3 and Forsmark 3 were licensed to specific earthquake resistance standards.
  • This potential gap in safety was addressed during 2005 by new earthquake-specific regulation imposed in a way that gave operators until 2013 to ensure their existing plants met requirements. Stress tests, however, had to be conducted based on the plant status as of 1 July this year. Hanberg told WNN that nuclear plant operators will continue to work towards the 2013 deadline, but may introduce additional safety measures in light of what has been learned through the stress tests. That may require a revision of the 2013 deadline, he said, depending on the programs of work agreed by SSM and the operators over the next month.   Some work will also be needed to ensure safety in scenarios involving a site with multiple reactors challenged simultaneously. SSM wants to be certain there will be sufficient command, control and fire-fighting capability.   Separately, SSM noted that Swedish nuclear power plants have excellent protection against radioactive release during accident scenarios. As part of learning from the 1979 accident at Three Mile Island in the USA all Swedish nuclear power plants were required to have filters to reduce the amount of radioactive material that would be released in an accident.  
D'coda Dcoda

(Video) What Happened to Chernobyl Children 7 Years after the Accident (from a Japanese... - 0 views

  • When it was someone else's problem (Chernobyl), Japan was telling the truth about the effect of radiation, particularly on children.Tokyo Brown Tabby's translation and captioning of a TV program from 1993:
  • Ironically, the female newscaster has morphed into one of the strongest proponents (even today) of nuclear power generation. The journalist on the right has remained a journalist; he was seen investigating and reporting from the high-radiation areas in Fukushima, right after Reactor 1 blew up at Fukushima I Nuclear Power Plant.Tabby's description of the Youtube video:This video is from a Japanese evening news program broadcasted on Nihon TV, seven years after the Chernobyl accident (around 1993).I hope the families in Fukushima who still hesitate to voluntarily evacuate their children will watch this and change their minds.The original video is at: http://youtu.be/tWWICnIQE9k
D'coda Dcoda

YALE/TULANE ESF-8 PLANNING AND RESPONSE PROGRAM SPECIAL REPORT [19Nov11] - 0 views

  •  
    Will need to visit site to see report, it covers the history of events at Fukushima
D'coda Dcoda

Would-be builders build resources - 0 views

  • GE and Hitachi nuclear alliance companies are taking steps to strengthen their positions in emerging nuclear energy countries, with Hitachi-GE inaugurating a human resource training program for Southeast Asia and GE-Hitachi expanding its supplier network in Poland.   Japan-based Hitachi-GE has announced the establishment of a course at the Electric Power University (EPU) in Vietnam under a joint human resource training program with the Tokyo Institute of Technology (Titech).
  • A lack of human resources trained in nuclear power, energy and the environment, including within the academic sector, is a pressing issue for southeast Asian countries planning to introduce nuclear power. Indeed, when Japan was identified as the preferred partner for the construction of Vietnam's second nuclear power plant in 2010, a primary condition was cooperation in nuclear energy human resources development.
  • Against this backdrop, Hitachi-GE launched a joint international training program with Titech. As well as initiatives within Titech's Department of Nuclear Engineering (DNE), Hitachi-GE and Titech's efforts to promote human resource activities in Vietnam and other southeast Asian countries include establishing courses at local universities, Hitachi-GE scholarships for southeast Asian students at Titech's DNE, and offering student internships at the International Atomic Energy Agency (IAEA). The course at EPU will be taught by Hitachi-GE engineers and Titech professors, and will be attended by around 40 EPU undergraduates. Hitachi-GE and Titech plan to implement similar initiatives in cooperation with other Southeast Asian universities.
  • ...1 more annotation...
  • Vietnamese power development plans recently approved by prime minister Nguyen Tan Dung envisage nuclear power providing 2.1% of the nation's energy by 2020. Russia's AtomStroyExport is due to begin work on Vietnam's first nuclear power plant in Nin Thuan province in 2014 under an agreement signed in October 2010. At around the same time, the Vietnamese government selected Japan as the preferred partner to build its second nuclear power station, also in Nin Thuan province
  •  
    about training more nuke workers
1 - 20 of 129 Next › Last »
Showing 20 items per page