Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged environment

Rss Feed Group items tagged

D'coda Dcoda

Researching Safer Nuclear Energy [09Aug11] - 0 views

  • On Tuesday, the Energy Department, handing out research grants in all kinds of energy fields that are low in carbon dioxide emissions, is announcing that it will give $39 million to university programs around the country to try to solve various nuclear problems.
  • The money will go to a variety of projects at 31 universities in 20 states. Several focus on nuclear waste.
  • Two researchers at Clemson University, for example, will get $1 million to study the behavior of particles of nuclear waste when buried in clay in metal canisters that have rusted. One open question, according to the researchers, is how a high temperature, which would be generated by the waste itself, affects the interactions. These are important to understanding how the waste would spread over time. The goal is to “reduce uncertainty” about the life expectancy of atomic particles.
  • ...5 more annotations...
  • With the cancellation of the Yucca Mountain nuclear waste repository in Nevada, many nuclear operators are loading older fuel into sealed metal casks filled with inert gas. The Massachusetts Institute of Technology will get a grant to study how such “dry casks” perform in salt environments.
  • “Storage casks will be stored mostly in coastal or lakeside regions where a salt air environment exists,’’ a summary of the grant says. Cracking related to corrosion could occur in 30 years or less, and the Nuclear Regulatory Commission is studying whether the casks can be used for 100 years as some hope.
  • Another important concern in the nuclear power field is the aging of reactors. Researchers at Pennsylvania State University will get $456,000 to plan a system that will use ultrasonic waves to look for cracks and other defects in hot metal parts. The idea is to find “microscale” defects that lead to big cracks.
  • Some of the work is aimed at helping to improve new reactors. For example, a researcher at the University of Houston, with collaborators at two other universities, will study a “base isolation system” that would protect reactors against earthquakes.
  • In an earthquake, the ground moves back and forth at a certain frequency, similar to the way a gong struck by a mallet vibrates at a given frequency. But plants could be built atop materials with “frequency band gaps,” that do not vibrate at the frequency that is characteristic of earthquakes, the Energy Department suggests.
D'coda Dcoda

Quake's jolts were double nuke plant's design - North Anna Plant, USA [08Sep11] - 5 views

shared by D'coda Dcoda on 08 Sep 11 - No Cached
  • The magnitude-5.8 earthquake last month in Virginia caused about twice as much ground shaking as a nearby nuclear power plant was designed to withstand, according to a preliminary federal analysis.
  • Parts of the North Anna Power Station in Mineral, Va., 11 miles from its epicenter, endured jolts equal to 26% of the force of gravity (0.26g) from some of the higher-frequency vibrations unleashed by the quake, said Scott Burnell, spokesman of the Nuclear Regulatory Commission.
  • An NRC document says the reactors' containment structure was built to withstand 12% of the force of gravity (0.12g.) Dominion, the power company that operates the plant, says parts of the plant can handle up to 0.18g.STORY: Quake readiness of nuclear power plants unclear
  • ...4 more annotations...
  • "It's the things inside the buildings that may have been shaken more than the design called for," Burnell said, adding that the buildings themselves appear to have been less affected. He said the analysis is based on a seismograph reading taken about 30 miles away by the U.S. Geological Survey.
  • Whatever the final numbers on shaking or ground motion, the plant withstood the jolts, Burnell said, indicating there's a "great deal" of safety margin."That margin was certainly enough for North Anna this time," he said.
  • "Maybe you shouldn't rely on the margin," said Edwin Lyman at the Union of Concerned Scientists, an organization critical of nuclear energy. "The jury is still out," he said, on whether the plant was adequately designed.The two reactors at the North Anna plant, which began operation in 1978 and 1980, have remained closed since the Aug. 23 quake. They automatically shut down after losing off-site power. Backup diesel generators kept their cores cool until electricity was restored several hours later.
  • Dan Stoddard, Dominion's senior vice president of operations, said Friday that initial readings from the facility's scratch plates and other monitors indicate its shaking during the quake exceeded its design, but he declined to give numbers. Dominion officials plan to brief the NRC today on those findings.
D'coda Dcoda

Leak found at former nuclear plant in Scotland [09Oct11] - 0 views

  • Scotland’s environment secretary has called for a full investigation after a radioactive leak was found at the former Dounreay power station. The leak was discovered during a routine operation of the plant which is destroying the liquid metal used as the coolant in the Dounreay Fast Reactor (DFR). Monitoring systems detected drips of caustic liquor from pipework in a shielded cell. Dounreay Site Restoration Limited (DSRL) said the plant was immediately shut down and the leak isolated and stopped. The Scottish Environment Protection Agency (Sepa) said no material had been released into the environment and that the leak was “minor”. End Extract http://www.fifetoday.co.uk/news/scottish-headlines/leak_found_at_former_nuclear_plant_1_1899667
D'coda Dcoda

Worst Nuclear Disasters - Civilian [15Apr11] - 0 views

  • The top civilian nuclear disasters, ranked by International Nuclear and Radiological Event Scale. Worst Civilian Nuclear Disasters 1. Chernobyl, Soviet Union (now Ukraine) April 26, 1986 INES Rating: 7 (major impact on people and environment)
  • The worst nuclear disaster of all time resulted from a test of the reactor’s systems. A power surge while the safety systems were shut down resulted in the dreaded nuclear meltdown. Fuel elements ruptured and a violent explosion rocked the facility. Fuel rods meted and the graphite covering the reactor burned. Authorities reported that 56 have died as a direct result of the disaster—47 plant workers and nine children who died of thyroid disease. However, given the Soviet Union’s tendency to cover up unfavorable information, that number likely is low.  International Atomic Energy Agency reports estimate that the death toll may ultimately be as high as 4,000. The World Health Organization claims that it’s as high as 9,000. In addition to the deaths, 200,000 people had to be permanently relocated after the disaster. The area remains unsuitable for human habitation. 2. Fukushima, Japan March 11, 2011 INES Rating: 7 (major impact on people and environment) Following a 9.0 magnitude earthquake and tsunami, Japan’s Fukushima nuclear power facility suffered a series of ongoing equipment failures accompanied by the release of nuclear material into the air. The death toll for this currently is at two but is expected to rise and as of April 2011, the crisis still ongoing. A 12 mile evacuation area has been established around the plant.
  • 3. Kyshtym, Soviet Union Sept. 29, 1957 INES Rating: 6 (serious impact on people and environment) Poor construction is blamed for the September 1957 failure of this nuclear plant. Although there was no meltdown or nuclear explosion, a radioactive cloud escaped from the plant and spread for hundreds of miles. Soviet reports say that 10,000 people were evacuated, and 200 deaths were cause by cancer.
  • ...6 more annotations...
  • 4. Winscale Fire, Great Britain Oct. 10, 1957 INES Rating: 5 (accident with wider consequences) The uranium core of Britain’s first nuclear facility had been on fire for two days before maintenance workers noticed the rising temperatures. By that time, a radioactive cloud had already spread across the UK and Europe. Plant operators delayed further efforts in fighting the fire, fearing that pouring water on it would cause an explosion. Instead, they tried cooling fan and carbon dioxide. Finally, they applied water and on Oct. 12, the fire was out. British officials, worried about the political ramifications of this incident, suppressed information. One report, however, says that in the long run, as many as 240 may have died from accident related cancers. 5.
  • Three Mile Island, Pennsylvania, US March 28, 1979 INES Rating: 5 (accident with wider consequences) Failure of a pressure valve resulted in an overheating of the plant’s core and the release of 13 million curies of radioactive gases. A full meltdown was avoided when the plant’s designers and operators were able to stabilize the situation before contaminated water reached the fuel rods. A full investigation by the US Nuclear Regulatory Commission suggests that there were no deaths or injuries resulting from the incident.
  • 6. Golania, Brazil Sept, 1987 INES Rating: 5 (accident with wider consequences) Scavengers at an abandoned radiotherapy institute found a billiard ball sized capsule of radioactive cesium chloride, opened it and then sold it to a junkyard dealer. The deadly material was not identified for more than two year, during which time it had been handled by hundreds, including some who used the glittery blue material for face paint. Of the 130,000 tested, 250 were discovered to be contaminated and 20 required treatment for radiation sickness. Four died, including the two who originally found the capsule, the wife of the junkyard owner and a small girl who used the powder as face paint. 7. Lucens, Switzerland January 1, 1969 INES Rating: 5 (accident with wider consequences) When the coolant on a test reactor facility in a cave in Switzerland failed during startup, the system suffered a partial core meltdown and contaminated the cavern with radioactivity. The facility was sealed and later decontaminated. No known deaths or injuries.
  • 8. Chalk River, Canada INES Rating: 5 (accident with wider consequences) May 24, 1958 Inadequate cooling lead to a fuel rod fire, contaminating the plant and surrounding labs. 9. Tokaimura,Japan Sept. 30, 1999 INES Rating: 4 (accident with local consequences) The nuclear plant near Tokai had not been used for three years when a group of unqualified workers attempted to put more highly enriched uranium in a precipitation tank than was permitted. A critical reaction occurred and two of the workers eventually died of radiation exposure. Fifty six plant workers and 21 others also received high doses of radiation. Residents within a thousand feet of the plant were evacuated.
  • 10. National Reactor Testing Station, Idaho Falls, Idaho January 3, 1961 INES Rating: 4 (accident with local consequences) Improper withdrawal of a control rod led to a steam explosion and partial meltdown at this Army facility. Three operators were killed in what is the only known US nuclear facility accident with casualties. In addition to these, there have been a number of deadly medical radiotherapy accidents, many of which killed more people than the more commonly feared nuclear plant accidents: 17 fatalities – Instituto Oncologico Nacional of Panama, August 2000 -March 2001. patients receiving treatment for prostate cancer and cancer of the cervix receive lethal doses of radiation.[7][8] 13 fatalities – Radiotherapy accident in Costa Rica, 1996. 114 patients received an overdose of radiation from a Cobalt-60 source that was being used for radiotherapy.[9]
  • 11 fatalities – Radiotherapy accident in Zaragoza, Spain, December 1990. Cancer patients receiving radiotherapy; 27 patients were injured.[10] 10 fatalities – Columbus radiotherapy accident, 1974–1976, 88 injuries from Cobalt-60 source. 7 fatalities – Houston radiotherapy accident, 1980.Alamos National Laboratory.[18] 1 fatality – Malfunction INES level 4 at RA2 in Buenos Aires, Argentina, operator Osvaldo Rogulich dies days later.
D'coda Dcoda

BP gets Gulf oil drilling permit amid 28,000 unmonitored abandoned wells [25Oct11] - 0 views

  • Since BP’s catastrophic Macondo Blowout in the Gulf of Mexico last year, the Obama Administration has granted nearly 300 new drilling permits [1] and shirked plans to plug 3,600 of more than 28,000 abandoned wells, which pose significant threats to the severely damaged sea. Among those granted new permits for drilling in the Gulf, on Friday Obama granted BP permission to explore for oil in the Gulf, allowing it to bid on new leases that will be sold at auction in December. Reports Dow Jones: “The upcoming lease sale, scheduled for Dec. 14 in New Orleans, involves leases in the western Gulf of Mexico. The leases cover about 21 million acres, in water depths of up to 11,000 feet. It will be the first lease auction since the Deepwater Horizon spill.” [2]
  • Massachusetts Rep. Ed Markey objected to BP’s participation in the upcoming lease sale, pointing out that: “Comprehensive safety legislation hasn’t passed Congress, and BP hasn’t paid the fines they owe for their spill, yet BP is being given back the keys to drill in the Gulf.” Environmental watchdog, Oceana, added its objection to the new permits, saying that none of the new rules implemented since April 2010 would have prevented the BP disaster. “Our analysis shows that while the new rules may increase safety to some degree, they likely would not have prevented the last major oil spill, and similarly do not adequately protect against future ones.” [3]
  • Detailing the failure of the Dept. of Interior’s safety management systems, Oceana summarizes: Regulation exemptions (“departures”) are often granted, including one that arguably led to the BP blowout; Economic incentives make violating rules lucrative because penalties are ridiculously small; Blowout preventers continue to have critical deficiencies; and Oversight and inspection levels are paltry relative to the scale of drilling operation. Nor have any drilling permits been denied [4] since the BP catastrophe on April 20, 2010, which still spews oil today [5].
  • ...10 more annotations...
  • 28,079 Abandoned Wells in Gulf of Mexico In an explosive report at Sky Truth, John Amos reveals from government data that “there are currently 24,486 known permanently abandoned wells in the Gulf of Mexico, and 3,593 ‘temporarily’ abandoned wells, as of October 2011.” [6] TA wells are those temporarily sealed so that future drilling can be re-started. Both TA wells and “permanently abandoned” (PA) wells endure no inspections.
  • Not only cement, but seals, valves and gaskets can deteriorate over time. A 2000 report by C-FER Technologies to the Dept. of Interior identified several  different points where well leaks can occur, as this image (p. 26) reveals.  To date, no regulations prescribe a maximum time wells may remain inactive before being permanently abandoned. [13] “The most common failure mechanisms (corrosion, deterioration, and malfunction) cause mainly small leaks [up to 49 barrels, or 2,058 gallons]. Corrosion is historically known to cause 85% to 90% of small leaks.” Depending on various factors, C-FER concludes that “Shut-In” wells reach an environmental risk threshhold in six months, TA wells in about 10-12 years, and PA wells in 25 years.  Some of these abandoned wells are 63 years old.
  • Leaking abandoned wells pose a significant environmental and economic threat. A three-month EcoHearth investigation revealed that a minimum of 2.5 million abandoned wells in the US and 20-30 million worldwide receive no follow up inspections to ensure they are not leaking. Worse: “There is no known technology for securely sealing these tens of millions of abandoned wells. Many—likely hundreds of thousands—are already hemorrhaging oil, brine and greenhouse gases into the environment. Habitats are being fundamentally altered. Aquifers are being destroyed. Some of these abandoned wells are explosive, capable of building-leveling, toxin-spreading detonations. And thanks to primitive capping technologies, virtually all are leaking now—or will be.” [11] Sealed with cement, adds EcoHearth, “Each abandoned well is an environmental disaster waiting to happen. The triggers include accidents, earthquakes, natural erosion, re-pressurization (either spontaneous or precipitated by fracking) and, simply, time.”
  • Over a year ago, the Dept. of Interior promised to plug the “temporarily abandoned” (TA) wells, and dismantle another 650 production platforms no longer in use. [7] At an estimated decommissioning cost of $1-3 billion [8], none of this work has been started, though Feds have approved 912 permanent abandonment plans and 214 temporary abandonment plans submitted since its September 2010 rule. [9] Over 600 of those abandoned wells belong to BP, reported the Associated Press last year, adding that some of the permanently abandoned wells date back to the 1940s [10].  Amos advises that some of the “temporarily abandoned” wells date back to the 1950s. “Experts say abandoned wells can repressurize, much like a dormant volcano can awaken. And years of exposure to sea water and underground pressure can cause cementing and piping to corrode and weaken,” reports AP.
  • As far back as 1994, the Government Accountability Office warned that there was no effective strategy in place to inspect abandoned wells, nor were bonds sufficient to cover the cost of abandonment. Lease abandonment costs estimated at “$4.4 billion in current dollars … were covered by only $68 million in bonds.” [12] The GAO concluded that “leaks can occur… causing serious damage to the environment and marine life,” adding that “MMS has not encouraged the development of nonexplosive structure removal technologies that would eliminate or minimize environmental damage.”
  • The AP noted that none of the 1994 GAO recommendations have been implemented. Abandoned wells remain uninspected and pose a threat which the government continues to ignore. Agency Reorganization The Minerals Management Service (MMS) was renamed the Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) last May after MMS drew heavy fire for malfeasance, including allowing exemptions to safety rules it granted to BP. An Office of Inspector General investigation revealed that MMS employees accepted gifts from the oil and gas industry, including sex, drugs and trips, and falsified inspection reports. [14] Not only was nothing was done with the 1994 GAO recommendations to protect the environment from abandoned wells, its 2003 reorganization recommendations [15] were likewise ignored.  In a June 2011 report on agency reorganization in the aftermath of the Gulf oil spill, the GAO reports that “as of December 2010,” the DOI “had not implemented many recommendations we made to address numerous weaknesses and challenges.” [16] Reorganization proceeded.  Effective October 1, 2011, the Dept. of the Interior split BOEMRE into three new federal agencies: the Office of Natural Resources Revenue to collect mineral leasing fees, the Bureau of Safety and Environmental Enforcement (BSEE) and the Bureau of Ocean Energy Management (BOEM) “to carry out the offshore energy management and safety and environmental oversight missions.” The DOI admits:
  • “The Deepwater Horizon blowout and resulting oil spill shed light on weaknesses in the federal offshore energy regulatory system, including the overly broad mandate and inherently conflicted missions of MMS which was charged with resource management, safety and environmental protection, and revenue collection.” [17] BOEM essentially manages the development of offshore drilling, while BSEE oversees environmental protection, with some eco-protection overlap between the two agencies. [18] Early this month, BSEE Director Michael R. Bromwich spoke at the Global Offshore Safety Summit Conference in Stavanger, Norway, sponsored by the International Regulators Forum. He announced a new position, Chief Environmental Officer of the BOEM:
  • This person will be empowered, at the national level, to make decisions and final recommendations when leasing and environmental program heads cannot reach agreement. This individual will also be a major participant in setting the scientific agenda for the United States’ oceans.” [19] Bromwich failed to mention anything about the abandoned wells under his purview. Out of sight, out of mind. Cost of the Macondo Blowout
  • On Monday, the GAO published its final report of a three-part series on the Gulf oil disaster. [20]  Focused on federal financial exposure to oil spill claims, the accountants nevertheless point out that, as of May 2011, BP paid $700 million toward those spill claims out of its $20 billion Trust established to cover that deadly accident. BP and Oxford Economics estimate the total cost for eco-cleanup and compensatory economic damages will run to the “tens of billions of dollars.” [21] On the taxpayer side, the GAO estimates the federal government’s costs will exceed the billion dollar incident cap set by the Oil Pollution Act of 1990 (as amended). As of May 2011, agency costs reached past $626 million. The Oil Spill Liability Trust Fund’s income is generated from an oil barrel tax that is set to expire in 2017, notes GAO.
  • With Monday’s District Court decision in Louisiana, BP also faces punitive damages on “thousands of thousands of thousands of claims.” U.S. District Judge Carl Barbier denied BP’s appeal that might have killed several hundred thousand claims, among them that clean up workers have still not been fully paid by BP. [22] Meanwhile, destroying the planet for profit continues unabated. It’s time to Occupy the Gulf of Mexico: No more oil drilling in our food source.
Jan Wyllie

Sea uranium extraction 'close to economic reality' - Environment - The Independent - 0 views

  • Extracting uranium from seawater is closer to becoming an economic reality which could guarantee the future of nuclear power, scientists said today.
  • Improvements to the extraction technology have almost halved production costs from around 560 dollars (£355) per pound of uranium to 300 dollars (£190).
  • "This uncertainty around whether there's enough terrestrial uranium is impacting the decision-making in the industry, because it's hard to make long-term research and development or deployment decisions in the face of big uncertainties about the resource," said Dr Schneider. "So if we can tap into uranium from seawater, we can remove that uncertainty."
D'coda Dcoda

Japan Nuclear Expert: Melted fuel may have gone through cement floor and into ground un... - 0 views

  • Atomic Age Symposium II: Fukushima, May 5, 2012 – Session III Roundtable Published: August 22, 2012 Published by: University of Chicago
  • Hiroaki Koide, nuclear reactor specialist and Assistant Professor at Kyoto University’s Nuclear Research Institute: The problem right now is not figuring out what the cause of the explosion [at Unit 3] is, but where in the world is the melted nuclear material that is in the plant right now? Unfortunately we have no way of figuring this out… We can’t go in and look… there’s nothing we can do at this point… Like I said we have no idea where the melted nuclear core is at this point… 100 tons [was in reactor]…
  • Fell through steel reactor… So where did the melted material go from there? It fell into the containment vessel and what is that made of? Also steel. But what Tepco has been telling us is that underneath that steel is a floor of cement and that cement hasn’t melted yet. But it’s not as if Tepco has gone there and seen if this is the case or anything like that. It’s based on calculations that they claimed to have worked out that way. But I don’t believe it for one second.
  • ...1 more annotation...
  • There’s at least a possibility that it’s gone through all of it and leaked into the ground… If something like that happens, there’s a strong possibility that it leaks into the environment and the ocean is right there. I’ve been advocating since last May that a wall be built underground… That’s really all I know at this point. I really hope something is done so the material doesn’t spread to the greater environment and I’m going to do all I can do to prevent that from happening.
D'coda Dcoda

State of Cold Shutdown: Hosono Says "No One Knows Where the Fuel Is, But I'm Confident ... - 0 views

  • In a typical display of utter disregard for the general public, the Noda administration announced last night that there would be no more joint press conference where reporters could meet with TEPCO people and the government officials from the Cabinet Office and other relevant ministries and agencies, receive updates and ask questions.The last night's joint press conference is to be the last one, now that Fukushima I Nuclear Power Plant is officially in a "state of a cold shutdown" and the accident has been decreed by the government to be "over".Here's what Minister in charge of the accident and Minister of the Environment Goshi Hosono had to say last night in the last joint press conference, as reported by Nifty News (12/16/2011):
  • Minister of the Environment Hosono expressed some concern that "No one knows where the fuel is until we open the reactors", but he reaffirmed the cold shutdown, following the lead of his prime minister. He said, "No matter where the fuel is, it is being cooled".
D'coda Dcoda

Fukushima investigation reveals failings [27Dec11] - 0 views

  • Japanese government delayed giving information to the public, according to interim report into the disaster
  • Japan's response to the nuclear crisis that followed the tsunami in March was confused and riddled with problems , a report has revealed.The disturbing picture of harried workers and government officials scrambling to respond to the problems at the Fukushima Daiichi nuclear power plant was depicted in the report, detailing a government investigation.The 507-page interim report, compiled by interviewing more than 400 people, including utility workers and government officials, found that authorities had grossly underestimated tsunami risks, assuming the highest wave would be six metres (20ft). The tsunami hit at more than double that level.The report criticised the use of the term soteigai, meaning unforeseeable, which it said implied authorities were shirking responsibility for what had happened. It said by labelling the events as beyond what could have been expected, officials had invited public distrust.
D'coda Dcoda

#Fukushima I Nuke Plant: Full of Untrained, Migrant Workers, TEPCO Says Subcontractors ... - 0 views

  • Tokyo Shinbun is a regional newspaper covering Kanto region of Japan. It has been reporting on the Fukushima accident and resultant radiation contamination in a more honest and comprehensive manner than any national newspaper. (Their only shortcoming is that their links don't seem to last for more than a week.)Their best coverage on the subject, though, is not available digitally but only in the printed version of the newspaper. But no worry, as there is always someone who transcribes the article and post it on the net for anyone to see.
  • In the 2nd half of the January 27 article, Tokyo Shinbun details what kind of workers are currently working at Fukushima I Nuclear Power Plant: migrant workers young (in their 20's) and not so young (in their 60's), untrained, $100 a day. Some of them cannot even read and write.
  • Right now, 70% of workers at the plant are migrant contract workers from all over Japan. Most of them have never worked at nuke plants before. The pay is 8000 yen to 13,000 yen [US$104 to $170] per day. Most of them are either in their 20s who are finding it difficult to land on any job, or in their 60s who have "graduated" from the previous jobs."
  • ...17 more annotations...
  • Low wages
  • The relationship between the cause of Mr. Osumi's death and radiation exposure is unknown. However, it is still the radiation exposure that is most worrisome for the workers who work at Fukushima I Nuke Plant to wind down the accident. The radiation exposure limit was lowered back to the normal "maximum 50 millisieverts per year" and "100 millisieverts in 5 years" on December 16 last year. It was done on the declaration of "the end of the accident" by Prime Minister Noda that day.
  • The radiation exposure limit was raised to 250 millisieverts per year right after the accident, as a special measure. The Ministry of Health and Labor argued that the number was based on the international standard for a severe accident which was 500 millisieverts. But the real purpose was to increase the number of hours that can be put in by the workers and to increase the number of workers to promptly wind down the accident.
  • However, as the prime minister wanted to appeal "the end of the accident", the limit was lowered back to the normal limit.
  • According to TEPCO, the radiation exposure levels of workers exceeded [annualized?] 250 millisieverts in some cases right after the accident, but since April it has been within 100 millisieverts.
  • However, the workers voice concerns over the safety management. One of the subcontract workers told the newspaper:
  • He also says the safety management cannot be fully enforced by TEPCO alone, and demands the national government to step in. "They need to come up with the management system that include the subcontract workers. Unless they secure the [safe] work environment and work conditions, they cannot deal with the restoration work that may continue for a long while."
  • From Tokyo Shinbun (1/27/2012):(The first half of the article is asbout Mr. Osumi, the first worker to die in May last year after the plant "recovery" work started. About him and his Thai wife, please read my post from July 11, 2011.)
  • Then the workers start working at the site. But there are not enough radiation control personnel who measure radiation levels in the high-radiation locations, and warn and instruct the workers. There are too many workers because the nature of the work is to wind down the accident. There are workers who take off their masks or who smoke even in the dangerous [high radiation] locations. I'm worried for their internal radiation exposures."
  • In the rest area where the workers eat lunch and smoke, the radiation level is 12 microsieverts/hour. "Among workers, we don't talk about radiation levels. There's no point."
  • The worker divulged to us, "For now, they've managed to get workers from all over Japan. But there won't be enough workers by summer, all bosses at the employment agencies say so." Local construction companies also admit [to the scarcity of workers by summer.]
  • "Local contractors who have been involved in the work at Fukushima I Nuclear Power Plant do not work there any more. It's dangerous, and there are jobs other than at the nuke plant, such as construction of temporary housing. The professional migrant workers who hop from one nuclear plant to another all over Japan avoid Fukushima I Nuke Plant. The pay is not particularly good, so what is the point of getting high radiation to the max allowed and losing the opportunity to work in other nuclear plants? So, it's mostly amateurs who work at the plant right now. Sooner or later, the supply of workers will dry up."
  • As to the working conditions and wage levels of the subcontract workers, TEPCO's PR person explains, "We believe the subcontracting companies are providing appropriate guidance." As to securing the workers, he emphasizes that "there is no problem at this point in sourcing enough workers. We will secure necessary workers depending on how the work progresses."
  • However, Katsuyasu Iida, Director General of Tokyo Occupational Safety and Health Center who have been dealing with the health problems of nuclear workers, points out, "Workers are made to work in a dangerous environment. The wage levels are going down, and there are cases of non-payment. It is getting harder to secure the workers."
  • As to the safety management, he said, "Before you start working at a nuclear power plant, you have to go through the "training before entering radiation control area". But in reality the training is ceremonial. The assumptions in the textbook do not match the real job site in an emergency situation. There were some who could not read, but someone else filled in the test for them at the end of the training."
  • Memo from the desk [at Tokyo Shinbun]: Workers at Fukushima I Nuke Plant are risking their lives. Some are doing it for 8000 yen per day. A councilman who also happens to work for TEPCO earns more than 10 million yen [US$130,000] per year. Executives who "descended from heaven" to cushy jobs in the "nuclear energy village" are alive and well. To move away from nuclear power generation is not just about energy issues. It is to question whether we will continue to ignore such "absurdity".
  • Well said. Everybody in the nuclear industry in Japan knew that the industry depended (still does) on migrant workers who were (still are) hired on the cheap thorough layer after layer of subcontracting companies. Thanks to the Fukushima I Nuclear Plant accident, now the general public know that. But there are plenty of those who are still comfortable with the nuclear power generated by the nuclear power plants maintained at the expense of such workers and see nothing wrong with it.
D'coda Dcoda

The High Cost of Freedom from Fossil Fuels [10Nov11] - 0 views

shared by D'coda Dcoda on 11 Nov 11 - No Cached
  • During the 1970s and 1980s, at the peak of the nuclear reactor construction, organized groups of protestors mounted dozens of anti-nuke campaigns. They were called Chicken Littles, the establishment media generally ignored their concerns, and the nuclear industry trotted out numerous scientists and engineers from their payrolls to declare nuclear energy to be safe, clean, and inexpensive energy that could reduce America’s dependence upon foreign oil. Workers at nuclear plants are highly trained, probably far more than workers in any other industry; operating systems are closely regulated and monitored. However, problems caused by human negligence, manufacturing defects, and natural disasters have plagued the nuclear power industry for its six decades. It isn’t alerts like what happened at San Onofre that are the problem; it’s the level 3 (site area emergencies) and level 4 (general site emergencies) disasters. There have been 99 major disasters, 56 of them in the U.S., since 1952, according to a study conducted by Benjamin K. Sovacool Director of the Energy Justice Program at Institute for Energy and Environment  One-third of all Americans live within 50 miles of a nuclear plant.
  • At Windscale in northwest England, fire destroyed the core, releasing significant amounts of Iodine-131. At Rocky Flats near Denver, radioactive plutonium and tritium leaked into the environment several times over a two decade period. At Church Rock, New Mexico, more than 90 million gallons of radioactive waste poured into the Rio Puerco, directly affecting the Navajo nation. In the grounds of central and northeastern Pennsylvania, in addition to the release of radioactive Cesium-137 and Iodine-121, an excessive level of Strontium-90 was released during the Three Mile Island (TMI) meltdown in 1979, the same year as the Church Rock disaster. To keep waste tanks from overflowing with radioactive waste, the plant’s operator dumped several thousand gallons of radioactive waste into the Susquehanna River. An independent study by Dr. Steven Wing of the University of North Carolina revealed the incidence of lung cancer and leukemia downwind of the TMI meltdown within six years of the meltdown was two to ten times that of the rest of the region.
  • Although nuclear plant security is designed to protect against significant and extended forms of terrorism, the NRC believes as many as one-fourth of the 104 U.S. nuclear plants may need upgrades to withstand earthquakes and other natural disasters, according to an Associated Press investigation. About 20 percent of the world’s 442 nuclear plants are built in earthquake zones, according to data compiled by the International Atomic Energy Agency. The NRC has determined that the leading U.S. plants in the Eastern Coast in danger of being compromised by an earthquake are in the extended metropolitan areas of Boston, New York City, Philadelphia, Pittsburgh, and Chattanooga. Tenn. The highest risk, however, may be California’s San Onofre and Diablo Canyon plants, both built near major fault lines. Diablo Canyon, near San Luis Obispo, was even built by workers who misinterpreted the blueprints.  
  • ...2 more annotations...
  • A Department of Energy analysis revealed the budget for 75 of the first plants was about $45 billion, but cost overruns ran that to $145 billion. The last nuclear power plant completed was the Watts Bar plant in eastern Tennessee. Construction began in 1973 and was completed in 1996. Part of the federal Tennessee Valley Authority, the Watts Bar plant cost about $8 billion to produce 1,170 mw of energy from its only reactor. Work on a second reactor was suspended in 1988 because of a lack of need for additional electricity. However, construction was resumed in 2007, with completion expected in 2013. Cost to complete the reactor, which was about 80 percent complete when work was suspended, is estimated to cost an additional $2.5 billion. The cost to build new power plants is well over $10 billion each, with a proposed cost of about $14 billion to expand the Vogtle plant near Augusta, Ga. The first two units had cost about $9 billion.
  • Added to the cost of every plant is decommissioning costs, averaging about $300 million to over $1 billion, depending upon the amount of energy the plant is designed to produce. The nuclear industry proudly points to studies that show the cost to produce energy from nuclear reactors is still less expensive than the costs from coal, gas, and oil. The industry also rightly points out that nukes produce about one-fifth all energy, with no emissions, such as those from the fossil fuels. For more than six decades, this nation essentially sold its soul for what it thought was cheap energy that may not be so cheap, and clean energy that is not so clean. It is necessary to ask the critical question. Even if there were no human, design, and manufacturing errors; even if there could be assurance there would be no accidental leaks and spills of radioactivity; even if there became a way to safely and efficiently dispose of long-term radioactive waste; even if all of this was possible, can the nation, struggling in a recession while giving subsidies to the nuclear industry, afford to build more nuclear generating plants at the expense of solar, wind, and geothermal energy?
D'coda Dcoda

U.S. Government Confirms Link Between Earthquakes and Hydraulic Fracturing at Oil Price - 0 views

  • On 5 November an earthquake measuring 5.6 rattled Oklahoma and was felt as far away as Illinois. Until two years ago Oklahoma typically had about 50 earthquakes a year, but in 2010, 1,047 quakes shook the state. Why? In Lincoln County, where most of this past weekend's seismic incidents were centered, there are 181 injection wells, according to Matt Skinner, an official from the Oklahoma Corporation Commission, the agency which oversees oil and gas production in the state. Cause and effect? The practice of injecting water into deep rock formations causes earthquakes, both the U.S. Army and the U.S. Geological Survey have concluded.
  • The U.S. natural gas industry pumps a mixture of water and assorted chemicals deep underground to shatter sediment layers containing natural gas, a process called hydraulic fracturing, known more informally as “fracking.” While environmental groups have primarily focused on fracking’s capacity to pollute underground water, a more ominous byproduct emerges from U.S. government studies – that forcing fluids under high pressure deep underground produces increased regional seismic activity. As the U.S. natural gas industry mounts an unprecedented and expensive advertising campaign to convince the public that such practices are environmentally benign, U.S. government agencies have determined otherwise. According to the U.S. Army’s Rocky Mountain Arsenal website, the RMA drilled a deep well for disposing of the site’s liquid waste after the U.S. Environmental Protection Agency “concluded that this procedure is effective and protective of the environment.”  According to the RMA, “The Rocky Mountain Arsenal deep injection well was constructed in 1961, and was drilled to a depth of 12,045 feet” and 165 million gallons of Basin F liquid waste, consisting of “very salty water that includes some metals, chlorides, wastewater and toxic organics” was injected into the well during 1962-1966.
  • Why was the process halted? “The Army discontinued use of the well in February 1966 because of the possibility that the fluid injection was “triggering earthquakes in the area,” according to the RMA. In 1990, the “Earthquake Hazard Associated with Deep Well Injection--A Report to the U.S. Environmental Protection Agency” study of RMA events by Craig Nicholson, and R.I. Wesson stated simply, “Injection had been discontinued at the site in the previous year once the link between the fluid injection and the earlier series of earthquakes was established.” Twenty-five years later, “possibility” and ‘established” changed in the Environmental Protection Agency’s July 2001 87 page study, “Technical Program Overview: Underground Injection Control Regulations EPA 816-r-02-025,” which reported, “In 1967, the U.S. Army Corps of Engineers and the U.S. Geological Survey (USGS) determined that a deep, hazardous waste disposal well at the Rocky Mountain Arsenal was causing significant seismic events in the vicinity of Denver, Colorado.” There is a significant divergence between “possibility,” “established” and “was causing,” and the most recent report was a decade ago. Much hydraulic fracturing to liberate shale oil gas in the Marcellus shale has occurred since.
  • ...3 more annotations...
  • According to the USGS website, under the undated heading, “Can we cause earthquakes? Is there any way to prevent earthquakes?” the agency notes, “Earthquakes induced by human activity have been documented in a few locations in the United States, Japan, and Canada. The cause was injection of fluids into deep wells for waste disposal and secondary recovery of oil, and the use of reservoirs for water supplies. Most of these earthquakes were minor. The largest and most widely known resulted from fluid injection at the Rocky Mountain Arsenal near Denver, Colorado. In 1967, an earthquake of magnitude 5.5 followed a series of smaller earthquakes. Injection had been discontinued at the site in the previous year once the link between the fluid injection and the earlier series of earthquakes was established.” Note the phrase, “Once the link between the fluid injection and the earlier series of earthquakes was established.” So both the U.S Army and the U.S. Geological Survey over fifty years of research confirm on a federal level that that “fluid injection” introduces subterranean instability and is a contributory factor in inducing increased seismic activity.” How about “causing significant seismic events?”
  • Fast forward to the present. Overseas, last month Britain’s Cuadrilla Resources announced that it has discovered huge underground deposits of natural gas in Lancashire, up to 200 trillion cubic feet of gas in all. On 2 November a report commissioned by Cuadrilla Resources acknowledged that hydraulic fracturing was responsible for two tremors which hit Lancashire and possibly as many as fifty separate earth tremors overall. The British Geological Survey also linked smaller quakes in the Blackpool area to fracking. BGS Dr. Brian Baptie said, “It seems quite likely that they are related,” noting, “We had a couple of instruments close to the site and they show that both events occurred near the site and at a shallow depth.” But, back to Oklahoma. Austin Holland’s August 2011 report, “Examination of Possibly Induced Seismicity from Hydraulic Fracturing in the Eola Field, Garvin County, Oklahoma” Oklahoma Geological Survey OF1-2011, studied 43 earthquakes that occurred on 18 January, ranging in intensity from 1.0 to 2.8 Md (milliDarcies.) While the report’s conclusions are understandably cautious, it does state, “Our analysis showed that shortly after hydraulic fracturing began small earthquakes started occurring, and more than 50 were identified, of which 43 were large enough to be located.”
  • Sensitized to the issue, the oil and natural gas industry has been quick to dismiss the charges and deluge the public with a plethora of televisions advertisements about how natural gas from shale deposits is not only America’s future, but provides jobs and energy companies are responsible custodians of the environment. It seems likely that Washington will eventually be forced to address the issue, as the U.S. Army and the USGS have noted a causal link between the forced injection of liquids underground and increased seismic activity. While the Oklahoma quake caused a deal of property damage, had lives been lost, the policy would most certainly have come under increased scrutiny from the legal community. While polluting a local community’s water supply is a local tragedy barely heard inside the Beltway, an earthquake ranging from Oklahoma to Illinois, Kansas, Arkansas, Tennessee and Texas is an issue that might yet shake voters out of their torpor, and national elections are slightly less than a year away.
D'coda Dcoda

Energy Forecast: Fracking in China, Nuclear Uncertain, CO2 Up [09Nov11] - 0 views

  • This year’s World Energy Outlook report has been published by the International Energy Agency, and says wealthy and industrializing countries are stuck on policies that threaten to lock in “an insecure, inefficient and high-carbon energy system.”You can read worldwide coverage of the report here. Fiona Harvey of the Guardian has a piece on the report that focuses on the inexorable trajectories for carbon dioxide, driven by soaring energy demand in Asia.A variety of graphs and slides can be reviewed here:
  • According to the report, Russia will long remain the world’s leading producer of natural gas, but exploitation of shale deposits in the United States, and increasingly in China, will greatly boost production in those countries (which will be in second and third place for gas production in 2035).Last month, in an interview with James Kanter of The Times and International Herald Tribune, the new head of the energy agency, Maria van der Hoeven, discussed one point made in the report today — that concerns raised by the damage to the Fukushima Daiichi power plant could continue to dampen expansion of nuclear power and add to the challenge of avoiding a big accumulation of carbon dioxide, saying: “Such a reduction would certainly make it more difficult for the world to meet the goal of stabilizing the rise in temperature to 2 degrees Centigrade.”
  • Short-term pressures on oil markets are easing with the economic slowdown and the expected return of Libyan supply. But the average oil price remains high, approaching $120/barrel (in year-2010 dollars) in 2035. Reliance grows on a small number of producers: the increase in output from Middle East and North Africa (MENA) is over 90% of the required growth in world oil output to 2035. If, between 2011 and 2015, investment in the MENA region runs one-third lower than the $100 billion per year required, consumers could face a near-term rise in the oil price to $150/barrel.Oil demand rises from 87 million barrels per day (mb/d) in 2010 to 99 mb/d in 2035, with all the net growth coming from the transport sector in emerging economies. The passenger vehicle fleet doubles to almost 1.7 billion in 2035. Alternative technologies, such as hybrid and electric vehicles that use oil more efficiently or not at all, continue to advance but they take time to penetrate markets.
  • ...5 more annotations...
  • In the WEO’s central New Policies Scenario, which assumes that recent government commitments are implemented in a cautious manner, primary energy demand increases by one-third between 2010 and 2035, with 90% of the growth in non-OECD economies. China consolidates its position as the world’s largest energy consumer: it consumes nearly 70% more energy than the United States by 2035, even though, by then, per capita demand in China is still less than half the level in the United States. The share of fossil fuels in global primary energy consumption falls from around 81% today to 75% in 2035. Renewables increase from 13% of the mix today to 18% in 2035; the growth in renewables is underpinned by subsidies that rise from $64 billion in 2010 to $250 billion in 2035, support that in some cases cannot be taken for granted in this age of fiscal austerity. By contrast, subsidies for fossil fuels amounted to $409 billion in 2010.
  • Here’s the summary of the main points, released today by the agency: “Growth, prosperity and rising population will inevitably push up energy needs over the coming decades. But we cannot continue to rely on insecure and environmentally unsustainable uses of energy,” said IEA Executive Director Maria van der Hoeven. “Governments need to introduce stronger measures to drive investment in efficient and low-carbon technologies. The Fukushima nuclear accident, the turmoil in parts of the Middle East and North Africa and a sharp rebound in energy demand in 2010 which pushed CO2 emissions to a record high, highlight the urgency and the scale of the challenge.”
  • The use of coal – which met almost half of the increase in global energy demand over the last decade – rises 65% by 2035. Prospects for coal are especially sensitive to energy policies – notably in China, which today accounts for almost half of global demand. More efficient power plants and carbon capture and storage (CCS) technology could boost prospects for coal, but the latter still faces significant regulatory, policy and technical barriers that make its deployment uncertain.Fukushima Daiichi has raised questions about the future role of nuclear power. In the New Policies Scenario, nuclear output rises by over 70% by 2035, only slightly less than projected last year, as most countries with nuclear programmes have reaffirmed their commitment to them. But given the increased uncertainty, that could change. A special Low Nuclear Case examines what would happen if the anticipated contribution of nuclear to future energy supply were to be halved. While providing a boost to renewables, such a slowdown would increase import bills, heighten energy security concerns and make it harder and more expensive to combat climate change.
  • The future for natural gas is more certain: its share in the energy mix rises and gas use almost catches up with coal consumption, underscoring key findings from a recent WEO Special Report which examined whether the world is entering a “Golden Age of Gas”. One country set to benefit from increased demand for gas is Russia, which is the subject of a special in-depth study in WEO-2011. Key challenges for Russia are to finance a new generation of higher-cost oil and gas fields and to improve its energy efficiency. While Russia remains an important supplier to its traditional markets in Europe, a shift in its fossil fuel exports towards China and the Asia-Pacific gathers momentum. If Russia improved its energy efficiency to the levels of comparable OECD countries, it could reduce its primary energy use by almost one-third, an amount similar to the consumption of the United Kingdom. Potential savings of natural gas alone, at 180 bcm, are close to Russia’s net exports in 2010.
  • In the New Policies Scenario, cumulative CO2 emissions over the next 25 years amount to three-quarters of the total from the past 110 years, leading to a long-term average temperature rise of 3.5°C. China’s per-capita emissions match the OECD average in 2035. Were the new policies not implemented, we are on an even more dangerous track, to an increase of 6°C.“As each year passes without clear signals to drive investment in clean energy, the “lock-in” of high-carbon infrastructure is making it harder and more expensive to meet our energy security and climate goals,” said Fatih Birol, IEA Chief Economist. The WEO presents a 450 Scenario, which traces an energy path consistent with meeting the globally agreed goal of limiting the temperature rise to 2°C. Four-fifths of the total energy-related CO2 emissions permitted to 2035 in the 450 Scenario are already locked-in by existing capital stock, including power stations, buildings and factories. Without further action by 2017, the energy-related infrastructure then in place would generate all the CO2 emissions allowed in the 450 Scenario up to 2035. Delaying action is a false economy: for every $1 of investment in cleaner technology that is avoided in the power sector before 2020, an additional $4.30 would need to be spent after 2020 to compensate for the increased emissions.
D'coda Dcoda

BP's Deception in the Gulf : Part 1- The farcical 3 leaks on the broken riser story [10... - 0 views

  • Of all the lies that came out of the Gulf disaster, the most preposterous has been the 3 leaks on the riser story. Figure 165-0a to 165-0c were the first few schematic illustrations of BP’s blowout incident. They were so embarrassingly stupid and logic defying, most experts believed the schematics were deliberately drawn by cartoonists to confuse the average Joe Public. The patchwork of realities resembled a makeshift car hastily assembled from parts of different size vehicles. Obviously a mini car body does not match the oversize truck tires. It is obvious the 5½ inch drill pipe at leak(3) cannot be the same 21inch diameter riser (actually a well casing) at leak(2). Yet the world's technical experts willfully overlooked this fundamental discrepancy and allowed the criminals to get away with murders. And America, the world's greatest nation shouting human rights abuses all over the world, allowed this hideous crime of mass destruction in its own backyard to go unpunished? In China, the corporate criminals responsible for this environmental carnage would have been executed instead of having their lives back. Can the 11 dead crewmen, their young families and thousands of Gulf victims who suffered numerous medical problems from the toxic contaminated Gulf waters and corexit sprayed on them, ever have their lives back?
  • Surely the world's most technologically advanced country could not have been so easily fooled by this “3 wells & 3 leaks on a single riser” fairy tale (concocted Beyond Phantasm). Besides the many controversial circumstances surrounding the sinking of the burning rig (DWH) and the sudden breaking of the super-strong riser in calm water, how could a third open-ended leak (3) be even possible beyond the completely severed riser at the second leak (2)? See fig165-0c. Leak(2) has to be the blown crater of well no.#3 as illustrated in many of our previous articles and irrefutably shown in Figure 165-5 with the right coordinates in the few undoctored videos.
  • “When you have eliminated the impossible, whatever remains, however improbable, must be the truth.” S Homes.
  • ...4 more annotations...
  • ince June 2010, we have illustrated many physics of impossibilities concocted by BP. Two years later, it seems the world has not awaken from its ignorantly blissful slumber. This disaster is more than just a disastrous mega oil spill. If the world's foremost scientists and investigators cannot figure out the many fundamental flaws in the simple “3 leaks-3 wells” fairy tale, how can there be any hope of ever solving problems beyond kindergarten level? Forget the carbon tax, the ban on hazardous gas emission and just about any anti-pollution measures designed to improve the global environment. All these schemes have sinister undertones with profiting on mass miseries of others.
  • In the Gulf disaster, you have the biggest environmental polluter in human history. The punishment for a crime of mass destruction that could have been averted, was just a slap on the wrist? If this is not the clearest proof of corruption at the highest level and biggest HSE (health, safety & environment) farce, then what is?
  • It was not the failure of safety regulations but the enforcement of regulations. The government admitted this much by sacking MMS's director and changing it to BOEMRE. It was not the failure of technology but the devious use of technology to cloak unfair business practices or safety farce at the very least. But would shrewd corporate criminals risk billions of investment dollars just to skimp on some daily operation expenses and safety devices? Just like the fairy tale of the 3 leaks, this was just the red herring. The oil industry will start on its decline just as the coal industry did, after its replacement by alternative cheaper and cleaner energy sources (The Future of Free Energy).
  • Giant global oil corporations may not have the next 10 years to recover their mega billion dollar investments. With the writings on the wall and their failures to control (prevent) the advent of free energy, the oil oligarchs had to devise emergency exit schemes before oil independence becomes public knowledge. High crude oil prices cannot be manipulated too high or long enough to recoup their billions of investment dollars globally. They risk becoming economic dinosaurs.
  •  
    Lengthy article with lots of visuals, only partially annotated so read the entire article at the site
D'coda Dcoda

Fukushima Accident: Radioactivity Impact on the Environment [27Sep13] - 0 views

  •  
    Textbook: Fukushima disaster contaminated the territory of Japan, Sea of Japan, Korean Peninsula - Up to 8 orders of magnitude above global fallout background off prefecture's coast
D'coda Dcoda

Spent Fuel Pools in Japan Survived Disaster, Industry Notes [28Jul11] - 0 views

  • The staff of the Nuclear Regulatory Commission recently produced a list of safety improvements that might be undertaken at American nuclear plants in light of the Fukushima disaster in Japan. On Tuesday, the nuclear industry focused on two elements that were conspicuous by their absence.
  • In a presentation to Wall Street analysts, Marvin Fertel, the president and chief executive of the Nuclear Energy Institute, emphasized that spent fuel pools at the Fukushima Daiichi plant had “survived the accident quite well.”Early in the crisis, which began with an earthquake and tsunami on March 11, American regulators feared that water in one of the pools had almost completely boiled off, and the American Embassy in Tokyo advised Americans to stay 50 miles away. But “the pools may turn out to be a much better story at Fukushima than people envisioned,’’ Mr. Fertel said.
  • Noting that fuel pools at American reactors have far more radioactive material in them than the ones at Fukushima, the accident focused new attention on the idea of moving spent fuel out of the pools and into dry casks, Something already done at most American reactors when they run out of space.That idea first came to prominence after the terrorist attacks of Sept. 11, 2001.
  • ...7 more annotations...
  • But the Nuclear Regulatory Commission staff’s report does not call for moving more of the fuel.When the commission received an oral report from a six-member “task force” it appointed to study the safety implications of Fukushima, one commissioner, William C. Ostendorff, said he had received letters from members of Congress asking for wider use of the casks, however.But Charles L. Miller, who led the task force, replied that removing the fuel would not do much to reduce the basic problem, which is that fuel rods remain in the pool, and if cooling is knocked out, the water that provides protection against melting and the release of radioactive materials will boil away.
  • “Before you can take it out of the pool, it has to be at least five years old, and by that time, we call it, for lack of a better word, cold fuel,’’ Mr. Miller said.At the briefing on Tuesday, Mr. Fertel mentioned other recommendations from the task force, including better instruments for altering operators to how much water is in the pools and new ways of adding water in an emergency. Pulling more fuel out, he said, would provide certain advantages but is also certain to expose workers to radiation in the course of the transfer.
  • Fukushima used dry casks as well, and those appear to have survived without damage, Mr. Fertel said, although they have not been thoroughly inspected. “They’re fine, but so are the pools,’’ he said.
  • They were not unscathed, however; debris flew into the pools after the buildings surrounding them blew up in hydrogen explosions.
  • The task force also refrained from recommending changes in emergency planning zones, despite the embassy’s recommendation during the crisis for Americans to stay 50 miles away from Fukushima. In the United States, emergency evacuation planning is required within 10 miles of any reactor.
  • Mr. Fertel said the recommendation to evacuate to 50 miles “was based not on information, but on the lack thereof.’’
  • Opponents of nuclear power have argued that the commission should cease all extensions of reactors’ operating licenses until it has digested the lessons of the accident in Japan. But Mr. Fertel noted that since March 11, the commission has issued 20-year license extensions for the Vermont Yankee, Palo Verde, Prairie Island, Salem and Hope Creek reactors, and allowed higher power outputs for Limerick and Point Beach.
‹ Previous 21 - 40 of 198 Next › Last »
Showing 20 items per page