Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged energy

Rss Feed Group items tagged

D'coda Dcoda

German Nuclear Decommissioning and Renewables Build-Out [23Oct11] - 0 views

  • Germany will be redirecting its economy towards renewable energy, because of the political decision to decommission its nuclear plants, triggered by the Fukushima event in Japan and subsequent public opposition to nuclear energy. Germany's decision would make achieving its 2020 CO2 emission reduction targets more difficult.   To achieve the CO2 emissions reduction targets and replace nuclear energy, renewable energy would need to scale up from 17% in 2010 to 57% of total electricity generation of 603 TWh in 2020, according to a study by The Breakthrough Institute. As electricity generation was 603 TWh in 2010, increased energy efficiency measures will be required to flat-line electricity production during the next 9 years.   Germany has 23 nuclear reactors (21.4 GW), 8 are permanently shut down (8.2 GW) and 15 (13.2 GW) will be shut down by 2022. Germany will be adding a net of 5 GW of coal plants, 5 GW of new CCGT plants and 1.4 GW of new biomass plants in future years. The CCGT plants will reduce the shortage of quick-ramping generation capacity for accommodating variable wind and solar energy to the grid.
  • Germany is planning a $14 billion build-out of transmission systems for onshore and future offshore wind energy in northern Germany and for augmented transmission with France for CO2-free hydro and nuclear energy imports to avoid any shortages.    Germany had fallen behind on transmission system construction in the north because of public opposition and is using the nuclear plant shutdown as leverage to reduce public opposition. Not only do people have to look at a multitude of 450-ft tall wind turbines, but also at thousands of 80 to 135 ft high steel structures and wires of the transmission facilities.   The $14 billion is just a minor down payment on the major grid reorganization required due to the decommissioning of the nuclear plants and the widely-dispersed build-outs of renewables. The exisitng grid is mostly large-central-plant based. 
  • This article includes the estimated capital costs of shutting down Germany's nuclear plants, reorganizing the grids of Germany and its neighbors, and building out renewables to replace the nuclear energy.    Germany’s Renewable Energy Act (EEG) in 2000, guarantees investors above-market fees for solar power for 20 years from the point of installation. In 2010, German investments in  renewables was about $41.2 billion, of which about $36.1 billion in 7,400 MW of solar systems ($4,878/kW). In 2010, German incentives for all renewables was about $17.9 billion, of which about half was for solar systems.   The average subsidy in 2010 was about ($9 billion x 1 euro/1.4 $)/12 TWh = 53.6 eurocents/kWh; no wonder solar energy is so popular in Germany. These subsidies are rolled into electric rates as fees or taxes, and will ultimately make Germany less competitive in world markets.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://mobile.bloomberg.com/news/2011-05-31/merkel-faces-achilles-heel-in-grids-to-unplug-german-nuclear.html http://www.theecologist.org/News/news_analysis/829664/revealed_how_your_country_compares_on_renewable_investment.html http://en.wikipedia.org/wiki/Solar_power_in_Germany  
  • ...12 more annotations...
  • SUMMARY OF ESTIMATED CAPITAL AND OTHER COSTS   The estimated capital costs and other costs for decommissioning the nuclear plants, restoring the sites, building out renewables, wind and solar energy balancing plants, and reorganizing electric grids over 9 years are summarized below.    The capital cost and subsidy cost for the increased energy efficiency measures was not estimated, but will likely need to be well over $180 billion over 9 years, or $20 billion/yr, or $20 b/($3286 b in 2010) x 100% = 0.6% of GDP, or $250 per person per yr.     Decommission nuclear plants, restore sites: 23 @ $1 billion/plant = $23 billion Wind turbines, offshore: 53,300 MW @ $4,000,000/MW = $213.2 billion   Wind turbines, onshore: 27,900 MW @ $2,000,000/MW = $55.8 billion Wind feed-in tariff extra costs rolled into electric rates over 9 years: $200 billion  Solar systems: 82,000 MW @ $4,500,000/MW = $369 billion Solar feed-in tariff extra costs rolled into electric rates over 9 years = $250 billion. Wind and solar energy balancing plants: 25,000 MW of CCGTs @ $1,250,000/MW = $31.3 billion Reorganizing European elecric grids tied to German grids: $150 billion
  • RENEWABLE ENERGY AND ENERGY EFFICIENCY TARGETS   In September 2010 the German government announced the following targets:   Renewable electricity - 35% by 2020 and 80% by 2050 Renewable energy - 18% by 2020, 30% by 2030, and 60% by 2050 Energy efficiency - Reducing the national electricity consumption 50% below 2008 levels by 2050.  http://en.wikipedia.org/wiki/Renewable_energy_in_Germany   Germany has a target to reduce its nation-wide CO2 emissions from all sources by 40% below 1990 levels by 2020 and 80-85% below 1990 levels by 2050. That goal could be achieved, if 100% of electricity is generated by renewables, according to Mr. Flasbarth. Germany is aiming to convince the rest of Europe to follow its lead.
  • A 2009 study by EUtech, engineering consultants, concluded Germany will not achieve its nation-wide CO2 emissions target; the actual reduction will be less than 30%. The head of Germany's Federal Environment Agency (UBA), Jochen Flasbarth, is calling for the government to improve CO2 reduction programs to achieve targets. http://www.spiegel.de/international/germany/0,1518,644677,00.html   GERMAN RENEWABLE ENERGY TO-DATE   Germany announced it had 17% of its electrical energy from renewables in 2010; it was 6.3% in 2000. The sources were 6.2% wind, 5.5% biomass, 3.2% hydro and 2.0% solar. Electricity consumption in 2010 was 603 TWh (production) - 60 TWh (assumed losses) = 543 TWh http://www.volker-quaschning.de/datserv/ren-Strom-D/index_e.php  
  • Wind: At the end of 2010, about 27,200 MW of onshore and offshore wind turbines was installed in Germany at a capital cost of about $50 billion. Wind energy produced was 37.5 TWh, or 6.2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into electricity costs of rate payers was about $50 billion during the past 11 years.   Most wind turbines are in northern Germany. When wind speeds are higher wind curtailment of 15 to 20 percent takes place because of insufficient transmission capacity and quick-ramping gas turbine plants. The onshore wind costs the Germany economy about 12 eurocent/kWh and the offshore wind about 24 eurocent/kWh. The owners of the wind turbines are compensated for lost production.   The alternative to curtailment is to “sell” the energy at European spot prices of about 5 eurocent/kWh to Norway and Sweden which have significant hydro capacity for balancing the variable wind energy; Denmark has been doing it for about 20 years.   As Germany is very marginal for onshore wind energy (nation-wide onshore wind CF 0.167) and nearly all of the best onshore wind sites have been used up, or are off-limits due to noise/visual/environmental impacts, most of the additional wind energy will have to come from OFFSHORE facilities which produce wind energy at about 2 to 3 times the cost of onshore wind energy. http://theenergycollective.com/willem-post/61774/wind-energy-expensive
  • Biomass: At the end of 2010, about 5,200 MW of biomass was installed at a capital cost of about $18 billion. Biomass energy produced was 33.5 TWh, or 5.5% of production. Plans are to add 1,400 MW of biomass plants in future years which, when fully implemented, would produce about 8.6 TWh/yr.   Solar: At the end of 2010, about 17,320 MW of PV solar was installed in Germany at a capital cost of about $100 billion. PV solar energy produced was 12 TWh, or 2% of total production. The excess cost of the feed-in-tariff energy bought by utilities and rolled into the electricity costs of rate payers was about $80 billion during the past 11 years.   Most solar panels are in southern Germany (nation-wide solar CF 0.095). When skies are clear, the solar production peaks at about 7 to 10 GW. Because of insufficient capacity of transmission and quick-ramping gas turbine plants, and because curtailment is not possible, part of the solar energy, produced at a cost to the German economy of about 30 to 50 eurocent/kWh is “sold” at European spot prices of about 5 eurocent/kWh to France which has significant hydro capacity for balancing the variable solar energy. http://theenergycollective.com/willem-post/46142/impact-pv-solar-feed-tariffs-germany  
  • Hydro: At the end of 2010, about 4,700 MW of hydro was installed. Hydro energy produced was 19.5 TWh, or 3.2% of production. Hydro growth has been stagnant during the past 20 years. See below website.   As it took about $150 billion of direct investment, plus about $130 billion excess energy cost during the past 11 years to achieve 8.2% of total production from solar and wind energy, and assuming hydro will continue to have little growth, as was the case during the past 20 years (almost all hydro sites have been used up), then nearly all of the renewables growth by 2020 will be mostly from wind, with the remainder from solar and biomass. http://www.renewableenergyworld.com/rea/news/article/2011/03/new-record-for-german-renewable-energy-in-2010??cmpid=WNL-Wednesday-March30-2011   Wind and Solar Energy Depend on Gas: Wind and solar energy is variable and intermittent. This requires quick-ramping gas turbine plants to operate at part-load and quickly ramp up with wind energy ebbs and quickly ramp down with wind energy surges; this happens about 100 to 200 times a day resulting in increased wear and tear. Such operation is very inefficient for gas turbines causing them to use extra fuel/kWh and emit extra CO2/kWh that mostly offset the claimed fuel and CO2 reductions due to wind energy. http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent  
  • Wind energy is often sold to the public as making a nation energy independent, but Germany will be buying gas mostly from Russia supplied via the newly constructed pipeline under the Baltic Sea from St. Petersburg to Germany, bypassing Poland.   GERMANY WITHOUT NUCLEAR ENERGY   A study performed by The Breakthrough Institute concluded to achieve the 40% CO2 emissions reduction target and the decommissioning of 21,400 MW of nuclear power plants by 2022, Germany’s electrical energy mix would have to change from 60% fossil, 23% nuclear and 17% renewables in 2010 to 43% fossil and 57% renewables by 2020. This will require a build-out of renewables, reorganization of Europe’s electric grids (Europe’s concurrence will be needed) and acceleration of energy efficiency measures.   According to The Breakthrough Institite, Germany would have to reduce its total electricity consumption by about 22% of current 2020 projections AND achieve its target for 35% electricity generated from renewables by 2020. This would require increased energy efficiency measures to effect an average annual decrease of the electricity consumption/GDP ratio of 3.92% per year, significantly greater than the 1.47% per year decrease assumed by the IEA's BAU forecasts which is based on projected German GDP growth and current German efficiency policies.
  • The Breakthrough Institute projections are based on electricity consumption of 544  and 532 TWh  in 2008 and 2020, respectively; the corresponding production is 604 TWh in 2008 and 592 TWh in 2020.   http://thebreakthrough.org/blog//2011/06/analysis_germanys_plan_to_phas-print.html http://www.iea.org/textbase/nppdf/free/2007/germany2007.pdf   Build-out of Wind Energy: If it is assumed the current wind to solar energy ratio is maintained at 3 to 1, the wind energy build-out will be 80% offshore and 20% onshore, and the electricity production will be 592 TWh, then the estimated capital cost of the offshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.8 offshore/(8,760 hr/yr x average CF 0.35) = 0.0533 TW offshore wind turbines @ $4 trillion/TW = $213 billion and of the onshore wind turbines will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 3/4] x 0.2 onshore/(8,760 hr/yr x average CF 0.167) = 0.279 TW of wind turbines @ $2 trillion/TW = $56 billion, for a total of $272 billion. The feed in tariff subsidy for 9 years, if maintained similar to existing subsidies to attract adequate capital, will be about $150 billion offshore + $50 billion onshore, for a total of $200 billion.    
  • Note: The onshore build-out will at least double Germany’s existing onshore wind turbine capacity, plus required transmission systems; i.e., significant niose, environmental and visual impacts over large areas.   Recent studies, based on measured, real-time, 1/4-hour grid operations data sets of the Irish, Colorado and Texas grids, show wind energy does little to reduce CO2 emissions. Such data sets became available during the past 2 to 3 years. Prior studies, based on assumptions, estimates, modeling scenarios, and statistics, etc., significantly overstate CO2 reductions.  http://theenergycollective.com/willem-post/64492/wind-energy-reduces-co2-emissions-few-percent   Build-out of PV Solar Energy: The estimated capital cost of the PV solar capacity will be [{0.57 (all renewables) - 0.11 (assumed biomass + hydro)} x 592 TWh x 1/4]/(8,760 hr/yr x average CF 0.095) = 0.082 TW @ $4.5 trillion/TW = $369 billion. The feed in tariff subsidy, if maintained similar to existing subsidies to attract adequate capital, will be about $250 billion.   Reorganizating Electric Grids: For GW reasons, a self-balancing grid system is needed to minimize CO2 emissions from gas-fired CCGT balancing plants. One way to implement it is to enhance the interconnections of the national grids with European-wide HVDC overlay systems (owning+O&M costs, including transmission losses), and with European-wide selective curtailment of wind energy, and with European-wide demand management and with pumped hydro storage capacity. These measures will reduce, but not eliminate, the need for balancing energy, at greater wind energy penetrations during high-windspeed weather conditions, as frequently occur in Iberia (Spain/Portugal).  
  • European-wide agreement is needed, the capital cost will be in excess of $150 billion and the adverse impacts on quality of life (noise, visuals, psychological), property values and the environment will be significant over large areas.    Other Capital Costs: The capacity of the quick-ramping CCGT balancing plants was estimated at 25,000 MW; their capital cost is about 25,000 MW x $1,250,000/MW = $31.3 billion. The capital costs of decommissioning and restoring the sites of the 23 nuclear plants will be about $23 billion.   Increased Energy Efficiency: Increased energy efficiency would be more attractive than major build-outs of renewables, because it provides the quickest and biggest "bang for the buck", AND it is invisible, AND it does not make noise, AND it has minimal environmental impact, AND it usually reduces at least 3 times the CO2 per invested dollar, AND it usually creates at least 3 times the jobs per invested dollar, AND it usually creates at least 3 times the energy reduction per invested dollar, AND it does all this without public resistance and controversy.   Rebound, i.e., people going back to old habits of wasting energy, is a concept fostered by the PR of proponents of conspicuous consumption who make money on such consumption. People with little money love their cars getting 35-40 mpg, love getting small electric and heating bills. The rebound is mostly among people who do not care about such bills.
  • A MORE RATIONAL APPROACH   Global warming is a given for many decades, because the fast-growing large economies of the non-OECD nations will have energy consumption growth far outpacing the energy consumption growth of the slow-growing economies of the OECD nations, no matter what these OECD nations do regarding reducing CO2 emissions of their economies.   It is best to PREPARE for the inevitable additional GW by requiring people to move away from flood-prone areas (unless these areas are effectively protected, as in the Netherlands), requiring new  houses and other buildings to be constructed to a standard such as the Passivhaus standard* (such buildings stay cool in summer and warm in winter and use 80 to 90 percent less energy than standard buildings), and requiring the use of new cars that get at least 50 mpg, and rearranging the world's societies for minimal energy consumption; making them walking/bicycling-friendly would be a good start.   If a nation, such as the US, does not do this, the (owning + O&M) costs of its economy will become so excessive (rising resource prices, increased damage and disruptions from weather events) that its goods and services will become less competitive and an increasing percentage of its population will not be able to afford a decent living standard in such a society.   For example: In the US, the median annual household income (inflation-adjusted) was $49,445, a decline of 7% since 2000. As the world’s population increases to about 10 billion by 2050, a triage-style rationing of resources will become more prevalent. http://www.usatoday.com/news/nation/story/2011-09-13/census-household-income/50383882/1
  • * A 2-year-old addition to my house is built to near-Passivhaus standards; its heating system consists of a thermostatically-controlled 1 kW electric heater, set at 500 W, that cycles on/off on the coldest days for less than 100 hours/yr. The addition looks inside and out entirely like standard construction. http://theenergycollective.com/willem-post/46652/reducing-energy-use-houses
  •  
    Excellent, lengthy article , lots of data
D'coda Dcoda

The nuclear power plans that have survived Fukushima [28Sep11] - 0 views

  • SciDev.Net reporters from around the world tell us which countries are set on developing nuclear energy despite the Fukushima accident. The quest for energy independence, rising power needs and a desire for political weight all mean that few developing countries with nuclear ambitions have abandoned them in the light of the Fukushima accident. Jordan's planned nuclear plant is part of a strategy to deal with acute water and energy shortages.
  • The Jordan Atomic Energy Commission (JAEC) wants Jordan to get 60 per cent of its energy from nuclear by 2035. Currently, obtaining energy from neighbouring Arab countries costs Jordan about a fifth of its gross domestic product. The country is also one of the world's most water-poor nations. Jordan plans to desalinate sea water from the Gulf of Aqaba to the south, then pump it to population centres in Amman, Irbid, and Zarqa, using its nuclear-derived energy. After the Fukushima disaster, Jordan started re-evaluating safety procedures for its nuclear reactor, scheduled to begin construction in 2013. The country also considered more safety procedures for construction and in ongoing geological and environmental investigations.
  • The government would not reverse its decision to build nuclear reactors in Jordan because of the Fukushima disaster," says Abdel-Halim Wreikat, vice Chairman of the JAEC. "Our plant type is a third-generation pressurised water reactor, and it is safer than the Fukushima boiling water reactor." Wreikat argues that "the nuclear option for Jordan at the moment is better than renewable energy options such as solar and wind, as they are still of high cost." But some Jordanian researchers disagree. "The cost of electricity generated from solar plants comes down each year by about five per cent, while the cost of producing electricity from nuclear power is rising year after year," says Ahmed Al-Salaymeh, director of the Energy Centre at the University of Jordan. He called for more economic feasibility studies of the nuclear option.
  • ...20 more annotations...
  • And Ahmad Al-Malabeh, a professor in the Earth and Environmental Sciences department of Hashemite University, adds: "Jordan is rich not only in solar and wind resources, but also in oil shale rock, from which we can extract oil that can cover Jordan's energy needs in the coming years, starting between 2016 and 2017 ... this could give us more time to have more economically feasible renewable energy."
  • Finance, rather than Fukushima, may delay South Africa's nuclear plans, which were approved just five days after the Japanese disaster. South Africa remains resolute in its plans to build six new nuclear reactors by 2030. Katse Maphoto, the director of Nuclear Safety, Liabilities and Emergency Management at the Department of Energy, says that the government conducted a safety review of its two nuclear reactors in Cape Town, following the Fukushima event.
  • Vietnam's nuclear energy targets remain ambitious despite scientists' warning of a tsunami risk. Vietnam's plan to power 10 per cent of its electricity grid with nuclear energy within 20 years is the most ambitious nuclear energy plan in South-East Asia. The country's first nuclear plant, Ninh Thuan, is to be built with support from a state-owned Russian energy company and completed by 2020. Le Huy Minh, director of the Earthquake and Tsunami Warning Centre at Vietnam's Institute of Geophysics, has warned that Vietnam's coast would be affected by tsunamis in the adjacent South China Sea.
  • Larkin says nuclear energy is the only alternative to coal for generating adequate electricity. "What other alternative do we have? Renewables are barely going to do anything," he said. He argues that nuclear is capable of supplying 85 per cent of the base load, or constantly needed, power supply, while solar energy can only produce between 17 and 25 per cent. But, despite government confidence, Larkin says that a shortage of money may delay the country's nuclear plans.
  • The government has said yes but hasn't said how it will pay for it. This is going to end up delaying by 15 years any plans to build a nuclear station."
  • The Ninh Thuan nuclear plant would sit 80 to 100 kilometres from a fault line on the Vietnamese coast, potentially exposing it to tsunamis, according to state media. But Vuong Huu Tan, president of the state-owned Vietnam Atomic Energy Commission, told state media in March, however, that lessons from the Fukushima accident will help Vietnam develop safe technologies. And John Morris, an Australia-based energy consultant who has worked as a geologist in Vietnam, says the seismic risk for nuclear power plants in the country would not be "a major issue" as long as the plants were built properly. Japan's nuclear plants are "a lot more earthquake prone" than Vietnam's would be, he adds.
  • Undeterred by Fukushima, Nigeria is forging ahead with nuclear collaborations. There is no need to panic because of the Fukushima accident, says Shamsideen Elegba, chair of the Forum of Nuclear Regulatory Bodies in Africa. Nigeria has the necessary regulatory system to keep nuclear activities safe. "The Nigerian Nuclear Regulatory Authority [NNRA] has established itself as a credible organisation for regulatory oversight on all uses of ionising radiation, nuclear materials and radioactive sources," says Elegba who was, until recently, the NNRA's director general.
  • Vietnam is unlikely to experience much in the way of anti-nuclear protests, unlike neighbouring Indonesia and the Philippines, where civil society groups have had more influence, says Kevin Punzalan, an energy expert at De La Salle University in the Philippines. Warnings from the Vietnamese scientific community may force the country's ruling communist party to choose alternative locations for nuclear reactors, or to modify reactor designs, but probably will not cause extreme shifts in the one-party state's nuclear energy strategy, Punzalan tells SciDev.Net.
  • Will the Philippines' plans to rehabilitate a never-used nuclear power plant survive the Fukushima accident? The Philippines is under a 25-year moratorium on the use of nuclear energy which expires in 2022. The government says it remains open to harnessing nuclear energy as a long-term solution to growing electricity demand, and its Department of Science and Technology has been making public pronouncements in favour of pursuing nuclear energy since the Fukushima accident. Privately, however, DOST officials acknowledge that the accident has put back their job of winning the public over to nuclear by four or five years.
  • In the meantime, the government is trying to build capacity. The country lacks, for example, the technical expertise. Carmencita Bariso, assistant director of the Department of Energy's planning bureau, says that, despite the Fukushima accident, her organisation has continued with a study on the viability, safety and social acceptability of nuclear energy. Bariso says the study would include a proposal for "a way forward" for the Bataan Nuclear Power Plant, the first nuclear reactor in South East Asia at the time of its completion in 1985. The $2.3-billion Westinghouse light water reactor, about 60 miles north of the capital, Manila, was never used, though it has the potential to generate 621 megawatts of power. President Benigno Aquino III, whose mother, President Corazon Aquino, halted work on the facility in 1986 because of corruption and safety issues, has said it will never be used as a nuclear reactor but could be privatised and redeveloped as a conventional power plant.
  • But Mark Cojuangco, former lawmaker, authored a bill in 2008 seeking to start commercial nuclear operations at the Bataan reactor. His bill was not passed before Congress adjourned last year and he acknowledges that the Fukushima accident has made his struggle more difficult. "To go nuclear is still the right thing to do," he says. "But this requires a societal decision. We are going to spark public debates with a vengeance as soon as the reports from Fukushima are out." Amended bills seeking both to restart the reactor, and to close the issue by allowing either conversion or permanent closure, are pending in both the House and the Senate. Greenpeace, which campaigns against nuclear power, believes the Fukushima accident has dimmed the chances of commissioning the Bataan plant because of "increased awareness of what radioactivity can do to a place". Many parts of the country are prone to earthquakes and other natural disasters, which critics say makes it unsuitable both for the siting of nuclear power stations and the disposal of radioactive waste.
  • In Kenya, nuclear proponents argue for a geothermal – nuclear mix In the same month as the Fukushima accident, inspectors from the International Atomic Energy Agency approved Kenya's application for its first nuclear power station (31 March), a 35,000 megawatt facility to be built at a cost of Sh950 billion (US$9.8 billion) on a 200-acre plot on the Athi Plains, about 50km from Nairobi
  • The plant, with construction driven by Kenya's Nuclear Electricity Project Committee, should be commissioned in 2022. The government claims it could satisfy all of Kenya's energy needs until 2040. The demand for electricity is overwhelming in Kenya. Less than half of residents in the capital, Nairobi, have grid electricity, while the rural rate is two per cent. James Rege, Chairman of the Parliamentary Committee on Energy, Communication and Information, takes a broader view than the official government line, saying that geothermal energy, from the Rift Valley project is the most promising option. It has a high production cost but remains the country's "best hope". Nuclear should be included as "backup". "We are viewing nuclear energy as an alternative source of power. The cost of fossil fuel keeps escalating and ordinary Kenyans can't afford it," Rege tells SciDev.Net.
  • Hydropower is limited by rivers running dry, he says. And switching the country's arable land to biofuel production would threaten food supplies. David Otwoma, secretary to the Energy Ministry's Nuclear Electricity Development Project, agrees that Kenya will not be able to industrialise without diversifying its energy mix to include more geothermal, nuclear and coal. Otwoma believes the expense of generating nuclear energy could one day be met through shared regional projects but, until then, Kenya has to move forward on its own. According to Rege, much as the nuclear energy alternative is promising, it is extremely important to take into consideration the Fukushima accident. "Data is available and it must be one step at a time without rushing things," he says. Otwoma says the new nuclear Kenya can develop a good nuclear safety culture from the outset, "but to do this we need to be willing to learn all the lessons and embrace them, not forget them and assume that won't happen to us".
  • But the government adopted its Integrated Resource Plan (IRP) for 2010-2030 five days after the Fukushima accident. Elliot Mulane, communications manager for the South African Nuclear Energy Corporation, (NECSA) a public company established under the 1999 Nuclear Energy Act that promotes nuclear research, said the timing of the decision indicated "the confidence that the government has in nuclear technologies". And Dipuo Peters, energy minister, reiterated the commitment in her budget announcement earlier this year (26 May), saying: "We are still convinced that nuclear power is a necessary part of our strategy that seeks to reduce our greenhouse gas emissions through a diversified portfolio, comprising some fossil-based, renewable and energy efficiency technologies". James Larkin, director of the Radiation and Health Physics Unit at the University of the Witwatersrand, believes South Africa is likely to go for the relatively cheap, South Korean generation three reactor.
  • It is not only that we say so: an international audit came here in 2006 to assess our procedure and processes and confirmed the same. Elegba is firmly of the view that blame for the Fukushima accident should be allocated to nature rather than human error. "Japan is one of the leaders not only in that industry, but in terms of regulatory oversight. They have a very rigorous system of licensing. We have to make a distinction between a natural event, or series of natural events and engineering infrastructure, regulatory infrastructure, and safety oversight." Erepamo Osaisai, Director General of the Nigeria Atomic Energy Commission (NAEC), has said there is "no going back" on Nigeria's nuclear energy project after Fukushima.
  • Nigeria is likely to recruit the Russian State Corporation for Atomic Energy, ROSATOM, to build its first proposed nuclear plant. A delegation visited Nigeria (26- 28 July) and a bilateral document is to be finalised before December. Nikolay Spassy, director general of the corporation, said during the visit: "The peaceful use of nuclear power is the bedrock of development, and achieving [Nigeria's] goal of being one of the twenty most developed countries by the year 2020 would depend heavily on developing nuclear power plants." ROSATOM points out that the International Atomic Energy Agency monitors and regulates power plant construction in previously non-nuclear countries. But Nnimmo Bassey, executive director of the Environmental Rights Action/Friends of the Earth Nigeria (ERA/FoEN), said "We cannot see the logic behind the government's support for a technology that former promoters in Europe, and other technologically advanced nations, are now applying brakes to. "What Nigeria needs now is investment in safe alternatives that will not harm the environment and the people. We cannot accept the nuclear option."
  • Thirsty for electricity, and desirous of political clout, Egypt is determined that neither Fukushima ― nor revolution ― will derail its nuclear plans. Egypt was the first country in the Middle East and North Africa to own a nuclear programme, launching a research reactor in 1961. In 2007 Egypt 'unfroze' a nuclear programme that had stalled in the aftermath of the Chernobyl disaster. After the Egyptian uprising in early 2011, and the Fukushima accident, the government postponed an international tender for the construction of its first plant.
  • Yassin Ibrahim, chairman of the Nuclear Power Plants Authority, told SciDev.Net: "We put additional procedures in place to avoid any states of emergency but, because of the uprising, the tender will be postponed until we have political stability after the presidential and parliamentary election at the end of 2011". Ibrahim denies the nuclear programme could be cancelled, saying: "The design specifications for the Egyptian nuclear plant take into account resistance to earthquakes and tsunamis, including those greater in magnitude than any that have happened in the region for the last four thousand years. "The reactor type is of the third generation of pressurised water reactors, which have not resulted in any adverse effects to the environment since they began operation in the early sixties."
  • Ibrahim El-Osery, a consultant in nuclear affairs and energy at the country's Nuclear Power Plants Authority, points out that Egypt's limited resources of oil and natural gas will run out in 20 years. "Then we will have to import electricity, and we can't rely on renewable energy as it is still not economic yet — Egypt in 2010 produced only two per cent of its needs through it." But there are other motives for going nuclear, says Nadia Sharara, professor of mineralogy at Assiut University. "Owning nuclear plants is a political decision in the first place, especially in our region. And any state that has acquired nuclear technology has political weight in the international community," she says. "Egypt has the potential to own this power as Egypt's Nuclear Materials Authority estimates there are 15,000 tons of untapped uranium in Egypt." And she points out it is about staying ahead with technology too. "If Egypt freezes its programme now because of the Fukushima nuclear disaster it will fall behind in many science research fields for at least the next 50 years," she warned.
D'coda Dcoda

Short-Termism and Energy Revolutions [30Sep11] - 0 views

  • The calls these days for a technological “energy revolution” are widespread. But how do you spark breakthroughs when the natural bias of businesses, investors and governments is toward the here and now? In governance, politics creates a bias toward the short term. This is why bridges sometimes fall down for lack of maintenance. That’s also why it’s so hard to sustain public investment in the research and intellectual infrastructure required to make progress on the frontiers of chemistry, biology and physics, even though it is this kind of work that could produce leaps in how we harvest, harness, store and move energy. (This is why I asked, “Are Chemists and Engineers on the Green Jobs List?” back in 2008.)
  • To get the idea, you only have to look at the sputtering state of President Obama’s mostly unfunded innovation hubs, or look once again at the energy sliver in the graph showing America’s half-century history of public investment in basic scientific research. (There’s not much difference in research patterns in most other industrialized countries.) You can also look at the first Quadrennial Technology Review produced by the Department of Energy (summarized by Climate Progress earlier this week). The review was conducted after the President’s Council of Advisers on Science and Technology wisely recommended regular reviews of this sort as part of its prescription for accelerating change in energy technologies.
  • This excerpt from the new review articulates the tension pretty transparently for a government report: There is a tension between supporting work that industry doesn’t— which biases the department’s portfolio toward the long term—and the urgency of the nation’s energy challenges. The appropriate balance requires the department to focus on accelerating innovation relevant to today’s energy technologies, since such evolutionary advances are more likely to have near- to mid-term impact on the nation’s challenges. We found that too much effort in the department is devoted to research on technologies that are multiple generations away from practical use at the expense of analyses, modeling and simulation, or other highly relevant fundamental engineering research activities that could influence the private sector in the nearer term.
  • ...16 more annotations...
  • In finding that balance, I’m not sure it’s possible to overcome the political pressures tugging agencies and officials to stress refinement and deployment of known and maturing technologies (even though that’s where industry and private investors are most focused).
  • On the left, the pressure is for resources to deploy today’s “green” technology. On the right, as illustrated in a Heritage Foundation report on ways to cut President Obama’s budget for the Energy Department, the philosophy seems to be to discourage all government spending on basic inquiry related to energy.
  • According to Heritage, science “in service of a critical national interest that is not being met by the private sector” is fine if that interest is national defense, but not fine if it’s finding secure and sustainable (environmentally and economically) sources of energy.
  • I solicited reactions to the Energy Department review from a variety of technology and innovation analysts. The first to weigh in are Daniel M. Kammen, an energy technology researcher at the University of California, Berkeley, who is on leave working for the World Bank, and Robert D Atkinson, the founder and president of the Information Technology and Innovation Foundation. Here’s Kammen: The idea of a regular review and status report on both energy innovation and deployment spending is a good one. Some of the findings in the QTR review are useful, although little is new. Overall, though, this is a useful exercise, and one that should be a requirement from any major programmatic effort.
  • he real need in the R&D sector is continuity and matching an increasing portfolio of strategic research with market expansion. My former student and colleague Greg Nemet have written consistently on this: - U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion - Reversing the Incredible Shrinking Energy R&D Budget
  • Perhaps the biggest worry in this report, however, is the missing logic and value of a ’shift to near term priorities in energy efficiency and in electric vehicles.’ This may be a useful deployment of some resources, but a range of questions are simply never addressed. Among the questions that need firmer answers are:
  • Following record levels funding made available to the energy industry through the [stimulus package of spending], what are the clearly identified market failures that exist in this area that added funding will solve? Funding is always welcome, but energy efficiency in particular, can be strongly driven by regulation and standards, and because good energy efficiency innovations have such rapid payback times, would regulatory approaches, or state-federal partnerships in regulation and incentives not accomplish a great deal of what can be done in this area? Congressman Holt raises a number of key questions on related issues, while pointing to some very hopeful experiences, notably in the Apollo program, in his 16 September editorial in Science.
  • given the state-by-state laboratories we already have of differing approaches to energy efficiency, the logic of spending in this area remains to be proven (as much as we all rightly love and value and benefit from energy efficiency).
  • Near-term electric vehicle deployment. A similar story could be told here. As the director of the University of California at Berkeley’s Transportation Sustainability Research Center (http://tsrc.berkeley.edu) I am huge believer in electric vehicles [EVs]. However, the review does not make clear what advances in this area are already supported through [the Advanced Research Projects Agency for Energy], and what areas of near-term research are also not best driven though regulation, such as low-carbon fuel standards, R&D tax credits, ‘feebates’ that transfer funds from those individuals who purchase inefficient vehicles to those who purchase efficient ones. Similar to the story in energy efficiency, we do have already an important set of state-by-state experiments that have been in place for some time, and these warrant an assessment of how much innovation they have driven, and which ones do and do not have an application in scale-up at the federal level.
  • Finally, the electric vehicle landscape is already very rich in terms of plans for deployment by automakers. What are the barriers five-plus years out that the companies see research-versus-deployment and market-expansion support as the most effective way to drive change in the industry? Where will this focus put the U.S. industry relative to China?
  • There are some very curious omissions from the report, such as more detail on the need to both generate and report on jobs created in this sector — a political ‘must’ these days (see, e.g., the “green jobs” review by the Renewable and Appropriate Energy Laboratory at Berkeley) — and straightforward comparisons in the way of ‘report cards’ on how the US is stacking up relative to other key players (e.g. China, Germany…).
  • Here’s Robert Atkinson: If DOE is shifting toward a more short-term focus, this is quite disturbing.  It would mean that DOE has given up on addressing the challenge of climate change and instead is just focused on the near term goal of reducing oil imports and modestly reducing the expansion the coal fired power plants. If DOE thinks it is still focused on climate change, do they think they are fighting “American warming”?
  • If so, cutting the growth of our emissions make sense.  But its global warming and solving this means supporting the development of scalable, cheap low or no-carbon energy so that every country, rich and poor, will have an economic incentive to transitioning to cheap energy.  Increasing building efficiency, modernizing the electric grid, alternative hydrocarbon fuels, and increasing vehicle efficiency do virtually nothing to meet this goal. They are “American warming” solutions.
  • This is also troubling because (as you point out) who else is going to invest in the long-term, more fundamental, high risk, breakthrough research than the U.S. government.  It certainly won’t be VCs. And it won’t be the Chinese who are principally interested in cutting their energy imports and exporting current generation clean energy, not developing technology to save the planet.  Of course all the folks out there who have been pushing the mistaken view that we have all the clean technologies we need, will hail this as the right direction.  But it’s doing what the rest of the market has been doing in recent years – shifting from high risk, long-term research to short-term, low risk.  If the federal government is doing this it is troubling to say the least.
  • or those seeking more, here are the slides used by Steven Koonin, the physicist and former BP scientist who now is under secretary for science at the department, in presenting the review earlier this week:
  • Rolling Out the Quadrennial Technology Review Report
D'coda Dcoda

4 Ways the Department of Energy Is Tapping Tech for a Greener Future [03Aug11] - 0 views

  • This week, the U.S. Department of Energy (DOE) re-launched its website, Energy.gov, to provide tools to help individuals and businesses better understand how to save energy and money. You can type your zip code into the site and get hyper-local information about your city, county and state, including information on tax credits, rebates and energy saving tips.
  • The site presents DOE data visually using the open source MapBox suite of tools, and localized data and maps can be shared or embedded on any website or blog. Other data sets the DOE is mapping include alternative fuel locations and per capita energy usage. Anyone can now compare how his state’s energy usage compares with others across the country. In addition to making the data more palatable for the public, the DOE is offering open data sets for others to use.
  • Our goal is simple — to improve the delivery of public services online. We’re using government data to go local in a way that’s never been possible before. We’re connecting the work of the Energy Department with what’s happening in your backyard,” says Cammie Croft, senior advisor and director of new media and citizen engagement at the DOE. “We’re making Energy.gov relevant and accessible to consumers and small businesses in their communities.”
  • ...16 more annotations...
  • How else is the Energy Department working to bring better information about energy, renewable energies and energy technology to the public? Here are a few examples.
  • 1. Your MPG
  • The “Your MPG” feature on the site lets you upload data about your own vehicle’s fuel usage to your “cyber” garage and get a better picture of how your vehicle is doing in terms of energy consumption. The system also aggregates the personal car data from all of the site’s users anonymously so people can share their fuel economy estimates. “You can track your car’s fuel economy over time to see if your efforts to increase MPG are working,” says David Greene, research staffer at Oak Ridge National Lab. “Then you can compare your fuel data with others and see how you are doing relative to those who own the same vehicle.”
  • In the works for the site is a predictive tool you can use when you are in the market for a new or used vehicle to more accurately predict the kind of mileage any given car will give you, based on your particular driving style and conditions. The system, says Greene, reduces the +/- 7 mpg margin of error of standard EPA ratings by about 50% to give you a more accurate estimate of what your MPG will be.
  • Solar Decathlon
  • In response to the White House’s Startup America program supporting innovation and entrepreneurship, the Energy Department launched its own version — America’s Next Top Energy Innovator Challenge. The technology transfer program gives startups the chance to license Energy Department technologies developed at the 17 national laboratories across the country at an affordable price. Entrepreneurs can identify Energy Department technologies through the Energy Innovation Portal, where more than 15,000 patent and patent applications are listed along with more than 450 market summaries describing some of the technologies in layman’s terms.
  • Once a company selects the technology of interest to them, they fill out a short template to apply for an option — a precursor to an actual license of the patent — for $1,000. A company can license up to three patents on one technology from a single lab per transaction, and patent fees are deferred for two years. The program also connects entrepreneurs to venture capitalists as mentors.
  • 3. Products: Smarter Windows
  • DOE funding, along with private investments, supports a number of companies including the Michigan-based company Pleotint. Pleotint developed a specialized glass film that uses energy generated by the sun to limit the amount of heat and light going into a building or a home. The technology is called Sunlight Responsive Thermochromic (SRT™), and it involves a chemical reaction triggered by direct sunlight that lightens or darkens the window’s tint. Windows made from this glass technology are designed to change based on specific preset temperatures.
  • Another DOE-funded company, Sage ElectroChromics, created SageGlass®, electronically controlled windows that use small electric charges to switch between clear and tinted windows in response to environmental heat and light conditions. And Soladigm has an electronic tinted glass product that is currently undergoing durability testing.
  • 2. America’s Next Top Energy Innovator
  • Since 2002, the U.S. Department of Energy’s Solar Decathlon has challenged collegiate students to develop solar-powered, highly efficient houses. Student teams build modular houses on campus, dismantle them and then reassemble the structures on the National Mall. The competition has taken place biennially since 2005. Open to the public and free of charge, the next event will take place at the National Mall’s West Potomac Park in Washington, D.C. from September 23 to October 2, 2011. There are 19 teams competing this year.
  • Teams spend nearly two years planning and constructing their houses, incorporating innovative technology to compete in 10 contests. Each contest is worth 100 points to the winner in the areas of Architecture, Market Appeal, Engineering, Communications, Affordability, Comfort Zone, Hot Water, Appliances, Home Entertainment and Energy Balance. The team with the most points at the end of the competition wins.
  • Since its inception, the Solar Decathlon has seen the majority of the 15,000 participants move on to jobs related to clean energy and sustainability. The DOE’s digital strategy for the Solar Decathlon includes the use of QR codes to provide a mobile interactive experience for visitors to the event in Washington, D.C., as well as Foursquare checkin locations for the event and for each participating house. Many of the teams are already blogging leading up to the event and there are virtual tours and computer animated video walkthroughs to share the Solar Decathlon experience with a global audience. There will be TweetChats using the hashtag #SD2011 and other activities on Twitter, Facebook, Flickr and YouTube.
  • The Future
  • In terms of renewable energies, the DOE tries to stay on the cutting edge. Some of their forward-thinking projects include the Bioenergy Knowledge Discovery Framework (KDF), containing an interactive database toolkit for access to data relevant to anyone engaged with the biofuel, bioenergy and bioproduct industries. Another is an interactive database that maps the energy available from tidal streams in the United States. The database, developed by the Georgia Institute of Technology in cooperation with the Energy Department, is available online. The tidal database gives researchers a closer look at the potential of tidal energy, which is a “predictable” clean energy resource. As tides ebb and flow, transferring tidal current to turbines to become mechanical energy and then converting it to electricity. There are already a number of marine and hydrokinetic energy projects under development listed on the site.
D'coda Dcoda

CPS must die [24Oct07} - 0 views

  • Collectively, Texas eats more energy than any other state, according to the U.S. Department of Energy. We’re fifth in the country when it comes to our per-capita energy intake — about 532 million British Thermal Units per year. A British Thermal Unit, or Btu, is like a little “bite” of energy. Imagine a wooden match burning and you’ve got a Btu on a stick. Of course, the consumption is with reason. Texas, home to a quarter of the U.S. domestic oil reserves, is also bulging with the second-highest population and a serious petrochemical industry. In recent years, we managed to turn ourselves into the country’s top producer of wind energy. Despite all the chest-thumping that goes on in these parts about those West Texas wind farms (hoist that foam finger!), we are still among the worst in how we use that energy. Though not technically “Southern,” Texans guzzle energy like true rednecks. Each of our homes use, on average, about 14,400 kilowatt hours per year, according to the U.S. Energy Information Administration. It doesn’t all have to do with the A/C, either. Arizonans, generally agreed to be sharing the heat, typically use about 12,000 kWh a year; New Mexicans cruise in at an annual 7,200 kWh. Don’t even get me started on California’s mere 6,000 kWh/year figure.
  • Let’s break down that kilowatt-hour thing. A watt is the energy of one candle burning down. (You didn’t put those matches away, did you?) A kilowatt is a thousand burnin’ candles. And a kilowatt hour? I think you can take it from there. We’re wide about the middle in Bexar, too. The average CPS customer used 1,538 kilowatt hours this June when the state average was 1,149 kWh, according to ERCOT. Compare that with Austin residents’ 1,175 kWh and San Marcos residents’ 1,130 kWh, and you start to see something is wrong. So, we’re wasteful. So what? For one, we can’t afford to be. Maybe back when James Dean was lusting under a fountain of crude we had if not reason, an excuse. But in the 1990s Texas became a net importer of energy for the first time. It’s become a habit, putting us behind the curve when it comes to preparing for that tightening energy crush. We all know what happens when growing demand meets an increasingly scarce resource … costs go up. As the pressure drop hits San Anto, there are exactly two ways forward. One is to build another massively expensive power plant. The other is to transform the whole frickin’ city into a de-facto power plant, where energy is used as efficiently as possible and blackouts simply don’t occur.
  • CPS has opted for the Super Honkin’ Utility model. Not only that — quivering on the brink of what could be a substantial efficiency program, CPS took a leap into our unflattering past when it announced it hopes to double our nuclear “portfolio” by building two new nuke plants in Matagorda County. The utility joined New Jersey-based NRG Energy in a permit application that could fracture an almost 30-year moratorium on nuclear power plant creation in the U.S.
  • ...17 more annotations...
  • CPS didn’t just pull nukes out of a hat when it went looking for energy options. CEO Milton Lee may be intellectually lazy, but he’s not stupid. Seeking to fulfill the cheap power mandate in San Antonio and beyond (CPS territory covers 1,566 square miles, reaching past Bexar County into Atascosa, Bandera, Comal, Guadalupe, Kendall, Medina, and Wilson counties), staff laid natural gas, coal, renewables and conservation, and nuclear side-by-side and proclaimed nukes triumphant. Coal is cheap upfront, but it’s helplessly foul; natural gas, approaching the price of whiskey, is out; and green solutions just aren’t ready, we’re told. The 42-member Nuclear Expansion Analysis Team, or NEAT, proclaimed “nuclear is the lowest overall risk considering possible costs and risks associated with it as compared to the alternatives.” Hear those crickets chirping?
  • NEAT members would hold more than a half-dozen closed-door meetings before the San Antonio City Council got a private briefing in September. When the CPS board assembled October 1 to vote the NRG partnership up or down, CPS executives had already joined the application pending with the U.S. Nuclear Regulatory Commission. A Supplemental Participation Agreement allowed NRG to move quickly in hopes of cashing in on federal incentives while giving San Antonio time to gather its thoughts. That proved not too difficult. Staff spoke of “overwhelming support” from the Citizen’s Advisory Board and easy relations with City staff. “So far, we haven’t seen any fatal flaws in our analysis,” said Mike Kotera, executive vice president of energy development for CPS. With boardmember and Mayor Phil Hardberger still in China inspecting things presumably Chinese, the vote was reset for October 29.
  • No one at the meeting asked about cost, though the board did request a month-by-month analysis of the fiasco that has been the South Texas Project 1&2 to be delivered at Monday’s meeting. When asked privately about cost, several CPS officers said they did not know what the plants would run, and the figure — if it were known — would not be public since it is the subject of contract negotiations. “We don’t know yet,” said Bob McCullough, director of CPS’s corporate communications. “We are not making the commitment to build the plant. We’re not sure at this point we really understand what it’s going to cost.” The $206 million outlay the board will consider on Monday is not to build the pair of 1,300-megawatt, Westinghouse Advanced Boiling Water Reactors. It is also not a contract to purchase power, McCullough said. It is merely to hold a place in line for that power.
  • It’s likely that we would come on a recurring basis back to the board to keep them apprised of where we are and also the decision of whether or not we think it makes sense for us to go forward,” said Larry Blaylock, director of CPS’s Nuclear Oversight & Development. So, at what point will the total cost of the new plants become transparent to taxpayers? CPS doesn’t have that answer. “At this point, it looks like in order to meet our load growth, nuclear looks like our lowest-risk choice and we think it’s worth spending some money to make sure we hold that place in line,” said Mark Werner, director of Energy Market Operations.
  • Another $10 million request for “other new nuclear project opportunities” will also come to the board Monday. That request summons to mind a March meeting between CPS officials and Exelon Energy reps, followed by a Spurs playoff game. Chicago-based Exelon, currently being sued in Illinois for allegedly releasing millions of gallons of radioactive wastewater beneath an Illinois plant, has its own nuclear ambitions for Texas. South Texas Project The White House champions nuclear, and strong tax breaks and subsidies await those early applicants. Whether CPS qualifies for those millions remains to be seen. We can only hope.
  • Consider, South Texas Project Plants 1&2, which send us almost 40 percent of our power, were supposed to cost $974 million. The final cost on that pair ended up at $5.5 billion. If the planned STP expansion follows the same inflationary trajectory, the price tag would wind up over $30 billion. Applications for the Matagorda County plants were first filed with the Atomic Energy Commission in 1974. Building began two years later. However, in 1983 there was still no plant, and Austin, a minority partner in the project, sued Houston Power & Lighting for mismanagement in an attempt to get out of the deal. (Though they tried to sell their share several years ago, the city of Austin remains a 16-percent partner, though they have chosen not to commit to current expansion plans).
  • After Unit 1 came online in 1988, it had to be shut down after water-pump shaft seared off in May, showering debris “all over the place,” according to Nucleonics Week. The next month two breakers failed during a test of backup power, leading to an explosion that sheared off a steam-generator pump and shot the shaft into the station yard. After the second unit went online the next year, there were a series of fires and failures leading to a half-million-dollar federal fine in 1993 against Houston Power. Then the plant went offline for 14 months. Not the glorious launch the partnership had hoped for. Today, CPS officials still do not know how much STP has cost the city, though they insist overall it has been a boon worth billions. “It’s not a cut-and-dried analysis. We’re doing what we can to try to put that in terms that someone could share and that’s a chore,” said spokesman McCollough. CPS has appealed numerous Open Records requests by the Current to the state Attorney General. The utility argues that despite being owned by the City they are not required to reveal, for instance, how much it may cost to build a plant or even how much pollution a plant generates, since the electricity market is a competitive field.
  • Even without good financial data, the Citizen’s Advisory Board has gone along with the plan for expansion. The board would be “pennywise and pound foolish” not to, since the city is already tied to STP 1&2, said at-large member Jeannie O’Sullivan. “Yes, in the past the board of CPS had been a little bit not as for taking on a [greater] percentage of nuclear power. I don’t know what their reasons were, I think probably they didn’t have a dialogue with a lot of different people,” O’Sullivan said.
  • A 2003 study at the Massachusetts Institute of Technology estimates the cost of nuclear power to exceed that of both coal and natural gas. A U.S. Energy Information Administration report last year found that will still be the case when and if new plants come online in the next decade. If ratepayers don’t pay going in with nuclear, they can bet on paying on the way out, when virtually the entire power plant must be disposed of as costly radioactive waste. The federal government’s inability to develop a repository for the tens of thousands of tons of nuclear waste means reactors across the country are storing spent fuel in onsite holding ponds. It is unclear if the waste’s lethality and tens of thousands of years of radioactivity were factored into NEAT’s glowing analysis.
  • The federal dump choice, Nevada’s Yucca Mountain, is expected to cost taxpayers more than $60 billion. If it opens, Yucca will be full by the time STP 3&4 are finished, requiring another federal dump and another trainload of greenbacks. Just the cost of Yucca’s fence would set you back. Add the price of replacing a chain-link fence around, let’s say, a 100-acre waste site. Now figure you’re gonna do that every 50 years for 10,000 years or more. Security guards cost extra. That is not to say that the city should skip back to the coal mine. Thankfully, we don’t need nukes or coal, according to the American Council for an Energy-Efficient Economy, a D.C.-based non-profit that champions energy efficiency. A collection of reports released this year argue that a combination of ramped-up efficiency programs, construction of numerous “combined heat and power” facilities, and installation of on-site renewable energy resources would allow the state to avoid building new power plants. Texas could save $73 billion in electric generation costs by spending $50 billion between now and 2023 on such programs, according to the research group. The group also claims the efficiency revolution would even be good for the economy, creating 38,300 jobs. If ACEEE is even mostly right, plans to start siphoning millions into a nuclear reservoir look none too inspired.
  • To jump tracks will take a major conversion experience inside CPS and City Hall, a turning from the traditional model of towering plants, reels of transmission line, and jillions of dependent consumers. CPS must “decentralize” itself, as cities as close as Austin and as far away as Seattle are doing. It’s not only economically responsible and environmentally sound, but it is the best way to protect our communities entering what is sure to be a harrowing century. Greening CPS CPS is grudgingly going greener. In 2004, a team of consultants, including Wisconsin-based KEMA Inc., hired to review CPS operations pegged the utility as a “a company in transition.” Executives interviewed didn’t understand efficiency as a business model. Even some managers tapped to implement conservation programs said such programs were about “appearing” concerned, according to KEMA’s findings.
  • While the review exposed some philosophical shortcomings, it also revealed for the first time how efficiency could transform San Antonio. It was technically possible, for instance, for CPS to cut electricity demand by 1,935 megawatts in 10 years through efficiency alone. While that would be accompanied with significant economic strain, a less-stressful scenario could still cut 1,220 megawatts in that period — eliminating 36 percent of 2014’s projected energy use. CPS’s current plans call for investing $96 million to achieve a 225-megawatt reduction by 2016. The utility plans to spend more than four times that much by 2012 upgrading pollution controls at the coal-fired J.T. Deely power plant.
  • In hopes of avoiding the construction of Spruce 2 (now being built, a marvel of cleanliness, we are assured), Citizen Oversight Committee members asked KEMA if it were possible to eliminate 500 megawatts from future demand through energy efficiency alone. KEMA reported back that, yes, indeed it was possible, but would represent an “extreme” operation and may have “unintended consequences.” Such an effort would require $620 million and include covering 90 percent of the cost of efficiency products for customers. But an interesting thing happens under such a model — the savings don’t end in 2012. They stretch on into the future. The 504 megawatts that never had to be generated in 2012 end up saving 62 new megawatts of generation in 2013 and another 53 megawatts in 2014. With a few tweaks on the efficiency model, not only can we avoid new plants, but a metaphorical flip of the switch can turn the entire city into one great big decentralized power generator.
  • How do we usher in this new utopia of decentralized power? First, we have to kill CPS and bury it — or the model it is run on, anyway. What we resurrect in its place must have sustainability as its cornerstone, meaning that the efficiency standards the City and the utility have been reaching for must be rapidly eclipsed. Not only are new plants not the solution, they actively misdirect needed dollars away from the answer. Whether we commit $500 million to build a new-fangled “clean-coal” power plant or choose to feed multiple billions into a nuclear quagmire, we’re eliminating the most plausible option we have: rapid decentralization.
  • For this, having a City-owned utility offers an amazing opportunity and gives us the flexibility to make most of the needed changes without state or federal backing. “Really, when you start looking, there is a lot more you can do at the local level,” said Neil Elliott of the ACEEE, “because you control building codes. You control zoning. You can control siting. You can make stuff happen at the local level that the state really doesn’t have that much control of.” One of the most empowering options for homeowners is homemade energy provided by a technology like solar. While CPS has expanded into the solar incentives field this year, making it only the second utility in the state to offer rebates on solar water heaters and rooftop panels, the incentives for those programs are limited. Likewise, the $400,000 CPS is investing at the Pearl Brewery in a joint solar “project” is nice as a white tiger at a truck stop, but what is truly needed is to heavily subsidize solar across the city to help kickstart a viable solar industry in the state. The tools of energy generation, as well as the efficient use of that energy, must be spread among the home and business owners.
  • Joel Serface, with bulb-polished pate and heavy gaze, refers to himself as a “product of the oil shock” who first discovered renewables at Texas Tech’s summer “geek camp.” The possibilities stayed with him through his days as a venture capitalist in Silicon Valley and eventually led him to Austin to head the nation’s first clean-energy incubation center. Serface made his pitch at a recent Solar San Antonio breakfast by contrasting Texas with those sun-worshipping Californians. Energy prices, he says, are “going up. They’re not going down again.” That fact makes alternative energies like solar, just starting to crack the 10-cent-per-killowatt barrier, financially viable. “The question we have to solve as an economy is, ‘Do we want to be a leader in that, or do we want to allow other countries [to outpace us] and buy this back from them?’” he asked.
  • To remain an energy leader, Texas must rapidly exploit solar. Already, we are fourth down the list when it comes not only to solar generation, but also patents issued and federal research awards. Not surprisingly, California is kicking silicon dust in our face.
D'coda Dcoda

Energy Forecast: Fracking in China, Nuclear Uncertain, CO2 Up [09Nov11] - 0 views

  • This year’s World Energy Outlook report has been published by the International Energy Agency, and says wealthy and industrializing countries are stuck on policies that threaten to lock in “an insecure, inefficient and high-carbon energy system.”You can read worldwide coverage of the report here. Fiona Harvey of the Guardian has a piece on the report that focuses on the inexorable trajectories for carbon dioxide, driven by soaring energy demand in Asia.A variety of graphs and slides can be reviewed here:
  • According to the report, Russia will long remain the world’s leading producer of natural gas, but exploitation of shale deposits in the United States, and increasingly in China, will greatly boost production in those countries (which will be in second and third place for gas production in 2035).Last month, in an interview with James Kanter of The Times and International Herald Tribune, the new head of the energy agency, Maria van der Hoeven, discussed one point made in the report today — that concerns raised by the damage to the Fukushima Daiichi power plant could continue to dampen expansion of nuclear power and add to the challenge of avoiding a big accumulation of carbon dioxide, saying: “Such a reduction would certainly make it more difficult for the world to meet the goal of stabilizing the rise in temperature to 2 degrees Centigrade.”
  • Here’s the summary of the main points, released today by the agency: “Growth, prosperity and rising population will inevitably push up energy needs over the coming decades. But we cannot continue to rely on insecure and environmentally unsustainable uses of energy,” said IEA Executive Director Maria van der Hoeven. “Governments need to introduce stronger measures to drive investment in efficient and low-carbon technologies. The Fukushima nuclear accident, the turmoil in parts of the Middle East and North Africa and a sharp rebound in energy demand in 2010 which pushed CO2 emissions to a record high, highlight the urgency and the scale of the challenge.”
  • ...5 more annotations...
  • In the WEO’s central New Policies Scenario, which assumes that recent government commitments are implemented in a cautious manner, primary energy demand increases by one-third between 2010 and 2035, with 90% of the growth in non-OECD economies. China consolidates its position as the world’s largest energy consumer: it consumes nearly 70% more energy than the United States by 2035, even though, by then, per capita demand in China is still less than half the level in the United States. The share of fossil fuels in global primary energy consumption falls from around 81% today to 75% in 2035. Renewables increase from 13% of the mix today to 18% in 2035; the growth in renewables is underpinned by subsidies that rise from $64 billion in 2010 to $250 billion in 2035, support that in some cases cannot be taken for granted in this age of fiscal austerity. By contrast, subsidies for fossil fuels amounted to $409 billion in 2010.
  • Short-term pressures on oil markets are easing with the economic slowdown and the expected return of Libyan supply. But the average oil price remains high, approaching $120/barrel (in year-2010 dollars) in 2035. Reliance grows on a small number of producers: the increase in output from Middle East and North Africa (MENA) is over 90% of the required growth in world oil output to 2035. If, between 2011 and 2015, investment in the MENA region runs one-third lower than the $100 billion per year required, consumers could face a near-term rise in the oil price to $150/barrel.Oil demand rises from 87 million barrels per day (mb/d) in 2010 to 99 mb/d in 2035, with all the net growth coming from the transport sector in emerging economies. The passenger vehicle fleet doubles to almost 1.7 billion in 2035. Alternative technologies, such as hybrid and electric vehicles that use oil more efficiently or not at all, continue to advance but they take time to penetrate markets.
  • The use of coal – which met almost half of the increase in global energy demand over the last decade – rises 65% by 2035. Prospects for coal are especially sensitive to energy policies – notably in China, which today accounts for almost half of global demand. More efficient power plants and carbon capture and storage (CCS) technology could boost prospects for coal, but the latter still faces significant regulatory, policy and technical barriers that make its deployment uncertain.Fukushima Daiichi has raised questions about the future role of nuclear power. In the New Policies Scenario, nuclear output rises by over 70% by 2035, only slightly less than projected last year, as most countries with nuclear programmes have reaffirmed their commitment to them. But given the increased uncertainty, that could change. A special Low Nuclear Case examines what would happen if the anticipated contribution of nuclear to future energy supply were to be halved. While providing a boost to renewables, such a slowdown would increase import bills, heighten energy security concerns and make it harder and more expensive to combat climate change.
  • The future for natural gas is more certain: its share in the energy mix rises and gas use almost catches up with coal consumption, underscoring key findings from a recent WEO Special Report which examined whether the world is entering a “Golden Age of Gas”. One country set to benefit from increased demand for gas is Russia, which is the subject of a special in-depth study in WEO-2011. Key challenges for Russia are to finance a new generation of higher-cost oil and gas fields and to improve its energy efficiency. While Russia remains an important supplier to its traditional markets in Europe, a shift in its fossil fuel exports towards China and the Asia-Pacific gathers momentum. If Russia improved its energy efficiency to the levels of comparable OECD countries, it could reduce its primary energy use by almost one-third, an amount similar to the consumption of the United Kingdom. Potential savings of natural gas alone, at 180 bcm, are close to Russia’s net exports in 2010.
  • In the New Policies Scenario, cumulative CO2 emissions over the next 25 years amount to three-quarters of the total from the past 110 years, leading to a long-term average temperature rise of 3.5°C. China’s per-capita emissions match the OECD average in 2035. Were the new policies not implemented, we are on an even more dangerous track, to an increase of 6°C.“As each year passes without clear signals to drive investment in clean energy, the “lock-in” of high-carbon infrastructure is making it harder and more expensive to meet our energy security and climate goals,” said Fatih Birol, IEA Chief Economist. The WEO presents a 450 Scenario, which traces an energy path consistent with meeting the globally agreed goal of limiting the temperature rise to 2°C. Four-fifths of the total energy-related CO2 emissions permitted to 2035 in the 450 Scenario are already locked-in by existing capital stock, including power stations, buildings and factories. Without further action by 2017, the energy-related infrastructure then in place would generate all the CO2 emissions allowed in the 450 Scenario up to 2035. Delaying action is a false economy: for every $1 of investment in cleaner technology that is avoided in the power sector before 2020, an additional $4.30 would need to be spent after 2020 to compensate for the increased emissions.
D'coda Dcoda

Interaction Between Social Media and Nuclear Energy [17Jul11] - 0 views

  • As blogger on nuclear energy for the past five years, I realize I’m writing on a niche subject that isn’t going to pull in millions of readers. Unlike some entertainment blogs, a site on nuclear energy is never going to be able to link the words “reactor pressure vessel” with the antics of a Hollywood celebrity at a New York night club. So, what can be said about the use of social media and how it has evolved as a new communication tool in a mature industry?
  • EBR-1 chalkboard ~ the 1st known nuclear energy blog post 12/21/51 on the Arco desert of eastern Idaho
  • Evidence of acceptance of social media is widespread, with the most recent example being the launch of the Nuclear Information Center, a social media presence by Duke Energy (NYSE:DUK). Content written for the Nuclear Information Center by a team of the utility’s employees is clearly designed to reach out to the general public. This effort goes beyond the usual scope of a utility Web site, which includes things like how to pay your bill online, where to call when the lights go out, and so forth.
  • ...13 more annotations...
  • Most nuclear blogs have a “blog roll”which list other publishers of information on the nuclear energy field.  Areva has done this on its North American blog. Areva handles the issue of avoiding any appearance of endorsement by noting that the list with more than two dozen entries is one of “blogs we read.” Areva also has several years of experience reaching out to the nuclear blogger community with monthly conference calls. The blog of the Nuclear Energy Institute, NEI Nuclear Notes,  lists a wide range of nuclear blogs including this one as well as the blogs published by independent analysts.
  • Duke’s Web site is a completely modern effort set up like a blog, with new entries on a frequent basis. On the right column, the site has a list of other places to get nuclear energy information, including the American Nuclear Society (ANS), the Nuclear Energy Institute (NEI), and the Nuclear Regulatory Commission (NRC).
  • The Nuclear Information Center announces right at the top that “In this online space, you will find educational information on the nuclear industry and the nuclear stations operated by Duke Energy. We will feature insights into radiation, new nuclear, emergency planning and more . . . allowing readers to get an inside view of the industry.” That’s a big step for a nuclear utility. The reason is that like many publicly traded electric utilities, it generates electricity from several fuel sources, including coal, natural gas, solar, wind, and nuclear. Because these utilities have huge customer rate bases and supply chains, they are inherently conservative about the information they publish on their Web sites. Also, there are significant legal and financial reasons why a utility might or might not put information out there for public consumption. Press releases receive scrutiny from the general counsel and chief financial officer for very important reasons having to do with regulatory oversight and shareholder value.
  • Who reads nuclear energy blogs? So, who is reading nuclear blogs? On the ANS Social Media listserv, I asked this question recently and got some interesting results for the month of May 2011. Here’s a sample of the replies: Michele Kearny, at the Nuclear Wire, a news service, reports for the month of May 18,812 page views. Michele’s blog is a fast-moving series of news links that keeps readers coming back for updates. Will Davis, at Atomic Power Review, who has been publishing high quality, in-depth technical updates about Fukushima, reports 31,613 page views for the same month. Rod Adams, who recently updated the template at his blog at Atomic Insights, reported his numbers in terms of absolute visitors. He cites Google Analytics as reporting 10,583 unique visitors for May. Rod emphasizes commentary and analysis across a wide range of nuclear subjects. At my blog Idaho Samizdat, I can report 6,945 visitors and 24,938 page views for May 2011. The blog covers economic and political news about nuclear energy and nonproliferation issues. At ANS Nuclear Cafe, this blog uses WordPress to track readers, reporting 24,476 page views for the same four-week period as the other blogs. During the height of the Fukushima crisis on a single day, March 14, 2011, the blog attained over 55,000 page views as people poured on to the Internet in search of information about the situation in Japan.
  • Taken together, the four blogs that reported monthly page views represent 100,000 visits to online information pages on nuclear energy or an effective rate of well over 1 million page views per year. These are real numbers and the data are just for a small sample of the more than two dozen blogs on nuclear energy that update at least once a week. Another interesting set of statistics is who reads North American blogs overseas? It turns out that the international readership is concentrated in a small group of countries. They include, in alphabetical order for the same sample of blogs, the following countries: Australia Canada France Germany India Japan United Kingdom
  • Idaho National Laboratory, Areva, and recruiter CoolHandNuke.
  • 5,000 people interact on LinkedIn, moderated by nuclear industry consultant Ed Kee. It is called “Nuclear Power Next Generation” and is one of dozens of such groups related to nuclear energy on the professional networking site.
  • Nuclear energy is not so widely represented on Facebook as on LinkedIn, despite its enormous popularity, and isn’t conducive to the kinds of technical dialogs that populate other nuclear social media sites. While the Facebook format is attractive to lifestyle information such as dating and the promotion of entertainment, sports, and consumer packaged goods, it doesn’t seem to work as well for business and engineering topics. It turns out Facebook is a good way to offer a “soft sell” for recruitment purposes to drive traffic to nuclear energy organization recruitment pages. It can answer the questions of what’s it like to work for an organization and the attractive amenities of life in the employer’s home town. Videos and photos can help deliver these messages.
  • On the other hand, Twitter, even with its limits of 140 characters, is enormously useful for the nuclear energy field. Twitter users who follow the output of nuclear bloggers number in the tens of thousands, and many nuclear energy organizations, including the major utilities such as Entergy, have invested in a Twitter account to have a presence on the service. The American Nuclear Society “tweets” under @ans_org and posts updates daily on the situation at Fukushima
  • Web sites maintained by NEI and the World Nuclear Organization had to make fast upgrades to their computer servers to handle millions of inquires from the media and the public and on a global scale. Getting out the facts of the situation to respond to these inquiries was facilitated by this online presence at an unprecedented scale. Even so, newspapers often had anti-nuclear groups on speed dial early in the crisis and their voices reached an unsettled public with messages of fear, uncertainty, and doubt. In response, ANS used technical experts on its social media listserv to information media engagements, which reached millions of views on network television and major newspapers like the New York Times and Washington Post.
  • This useful mix of free form communication on the listserv and excellent outreach by Clark Communications, working for ANS, made a difference in getting the facts about Fukushima to an understandably anxious public. Margaret Harding, a consulting nuclear engineer with deep experience with boiling water reactor fuels, was one of the people tapped by ANS to be a spokesperson for the society. She wrote to me in a personal e-mail that social media made a difference for her in many ways.
  • In summary, she said that it would have been impossible for her to fulfill this role without many hands helping her from various quarters at ANS. She pointed out that the ANS Social Media listserv group “provided invaluable background information . . that helped me keep up-to-date and ready for the question from the next reporter.” In fact, she said, she might not have even started down this road if the listserv hadn’t already proven itself as a source of information and expertise.
  • Another take on the news media’s shift into anti-nuclear skepticism following Fukushima comes from Andrea Jennetta, publisher of Fuel Cycle Week.  Writing in the March 17 issue, she said that this time the “bunker mentality” that has characterized communications in prior years by the nuclear industry gave way to something new. “But instead of rolling over, the nuclear community for once is mobilizing and fighting back. I am impressed at the efforts of various pronuclear activists, bloggers, advocates and professional organizations.
  •  
    important one
D'coda Dcoda

The Death of Nuclear Power: The Five Global Energy Moves to Make Now [07Jun11] - 0 views

  • out
  • Nuclear power was gaining a lot of momentum prior to the terrible disaster at Japan's Fukushima powerplant in March.
  • But since then, atomic energy has come under increased scrutiny and once again drawn the ire of environmentalists who were just warming up to its carbon-free emissions.
  • ...16 more annotations...
  • The German government's decision to close all of its existing nuclear reactors by 2022 shows that this shift in sentiment is gaining traction. And it increases the likelihood that the nuclear-powerplant building boom that had seemed at hand will be set back. Without a doubt, this new reality will lead to global energy shortages and much-higher energy costs.But for us as investors, the real issue is this: Which sectors will step up to alleviate the shortfall resulting from the inevitable disappearance of nuclear power?
  • As the recent development in Germany so clearly illustrates, one key difficulty about major energy decisions is that far too many are political in nature.
  • Too often, rational scientific analysis and cost-benefit analyses are ignored as hard-line environmentalists push their own agendas. Many of the environmentalists' objections are valid - at least as far as they go. But more and more, those objections seem to include every source of energy that actually works.
  • Windmills are objectionable because they look ugly and kill birds. Geothermal energy is objectionable because it causes earthquakes. Even solar energy is objectionable because of the vast acreages of land required to house the solar panels
  • Replacing Nuclear Power Figuring out which energy sources will offset the decline in nuclear power output requires three calculations:
  • First, a calculation of the cost of an energy source - as it now exists - in its economically most practicable uses. However, much as we may like solar power, we are not about to get solar-powered automobiles; likewise, oil-fueled power stations are inefficient on many grounds.
  • Second, a calculation that demonstrates whether the cost of that energy source is likely to increase or decline. With oil and hydro-electric power, for instance, the cost is likely to increase: The richest oil wells have been tapped and the best rivers have been dammed. With solar, on the other hand, the cost could decline, given how quickly the technology is advancing.
  • And third, an estimate that includes our best guess as to whether hard-line environmentalists will win or lose in their attempt to prevent its use.
  • On nuclear energy, the environmentalists appear to have won - at least for the time being. Their victory probably extends to fusion power, if that ever becomes economical. Conversely, their battles against wind and solar power are futile, as there are no scary disaster scenarios involved.
  • I regard the German decision to abandon nuclear power as foolish, and it should make us very cautious when investing in large-scale German manufacturers, which may be made uncompetitive by excessive power costs. But as an investor, I think it opens up a number of profit opportunities.
  • Actions To Take: Environmental concerns have chased investment away from nuclear energy - at least for the time being. For that reason the nuclear build-out that was just starting to gain momentum now is likely to stumble. As investors, we must look for energy sources that will most likely replace lost nuclear power output. They include:
  • Shale Gas: Potential damage to the environment caused by "fracking," which is the process by which shale gas is extracted, has not impeded this industry's growth. Natural gas has grown increasingly popular, as it is relatively cheap and clean, and readily abundant in the United States. A recent study by the Massachusetts Institute of Technology (MIT) suggests that natural gas will provide 40% of U.S. energy needs in the future, up from 20% today. You might look at Chesapeake Energy Corp. (NYSE:CHK), the largest leaseholder in Pennsylvania's Marcellus Shale, which is trading at a reasonable 9.5 times projected 2012 earnings.
  • Shale gas. Tar sands. And solar energy. Let's look at each of the three - and identify the best ways to play them
  • Tar Sands: The Athabasca tar sands in Canada contain more oil than the Middle East. And at an oil price of $100 per barrel, it is highly profitable to extract. Of course, extraction makes a huge mess of the local environment, but environmentalists seem to have lost that battle - reasonably enough, in view of the "energy security" implications of dependence on the Middle East. A play I like here is Cenovus Energy Inc. (NYSE: CVE). It's a purer Athabasca play than Suncor Energy Inc. (NYSE: SU), but it's currently pricey at 16.5 times projected 2012 earnings. Suncor's cheaper at only 11 times projected 2012 earnings - so take your pick
  • Solar Energy: Of the many new energy sources that have received so much taxpayer money in the last five years, solar is the one with real potential. Unlike with wind farms, where there is almost no opportunity for massive technological improvement or cost reduction, there is great potential upside with solar power: The technology and economics of solar panels and their manufacture is improving steadily. Indeed, solar power seems likely to be competitive as a source of electricity without subsidy sometime around 2016-2020, if energy prices stay high.
  • There are a number of ways to play this. You can select a solar-panel manufacturer like the Chinese JA Solar Holdings Co. Ltd. (Nasdaq ADR: JASO), or a rectifier producer like Power-One Inc. (Nasdaq: PWER). JA Solar is trading at a startling forward Price/Earnings (P/E) ratio of less than 5.0, mostly likely because of the Chinese accounting scandals, whereas Power-One is also cheap at less than seven times forward earnings and is U.S.-domiciled. Again, take your pick, depending on which risks you are comfortable with.
D'coda Dcoda

Reactor reaction: 5 countries joining Japan in rethinking nuclear energy [13Jul11] - 0 views

  • (check out this ebook from Foreign Policy on Japan's post-Fukushima future). Anti-nuclear sentiment has grown ever since -- making it a major political issue.
  • There are legitimate questions, nevertheless, about whether Japan could actually shift away from nuclear power. Japan is incredibly dependent on nuclear energy -- the country's 54 nuclear reactors account for 30 percent of its electricity; pre-earthquake estimates noted that the share to grow to 40 percent by 2017 and 50 percent by 2030. The prime minister today offered few details on how he'll transition away from nuclear reliance.   Japan joins a list of nuclear countries that have grown increasingly skittish about the controversial energy source since the disaster in March.
  • The country plans to make up the difference by cutting energy usage by 10 percent, it said, with more energy efficient appliances and buildings and to increase the use of wind energy.
  • ...7 more annotations...
  • Germany announced plans in late May to close all the country's nuclear power plants by 2022 -- making it the largest industrialized nation to do so. Nuclear power supplies 23 percent of its energy grid. Since the Japan disaster it has permanently shuttered eight plants (including the seven oldest in the country). That leaves nine plants to go -- six of which, the government announced, will close up by 2021.
  • Italy Last month, Silvio Berlusconi's plans to return Italy to the nuclear club were dashed by a referendum that found 90 percent of Italians rejected the technology.
  • Switzerland No neutrality here -- the government announced in May it too was taking a side against nuclear technology, in response to Japan's disaster. Nuclear energy accounts for roughly 40 percent of Switzerland's energy supply. Its five nuclear reactors won't fully be phased out, experts estimate, until 2040. The move is popular with the Swiss citizens -- 20,000 of whom demonstrated against the technology before the government's decision
  • As a result the embattled prime minister said, "We shall probably have to say goodbye to nuclear [energy]." He noted that the government will instead shift its energies to developing renewable energy sources. Berlusconi had been trying to reconstitute an industry that was already abandoned once before -- back in 1987. Currently there are no nuclear plants, but the prime minister hoped to get nuclear power to account for a quarter of the country's energy needs and planned to begin building new plants by as early as 2013.
  • Mexico Despite the fact that nuclear energy only accounts for less than 5 percent of the market in Mexico, which has only one plant, a recent worldwide survey found that Mexico was one of the most anti-nuclear countries in the world, with about 80 percent of its population opposing the power source. That doesn't bode well for future nuclear development.
  • Mexico is one of only three Latin American nations that uses nuclear power. And last year the country delayed a decision until at least 2012 on whether to go ahead with plans to build 10 more plants, according to the country's energy minister. President Felipe Calderon has said he'd push to make sure "clean energy" accounts for at least 35 percent of the country's energy needs.
  • France Let's be clear, France is unlikely to ditch nuclear power completely anytime soon. A longtime champion of the technology, it accounts for 75 percent of the country's energy needs. But there are indications political leaders are falling out of love -- ever so slightly -- with the power source. On Friday, July 8 the government launched a study of energy technologies that included one potential scenario of completely doing away with nuclear power by 2040. It's the first time the government has ever even mentioned the possibility. A more likely result of the study will be cutting the nuclear share of the market. Indeed, France has increased its investment in wind energy lately. The government is likely responding to growing public pressure to do away with nuclear energy. A recent BBC survey found 57 percent of French respondents opposed the technology.
D'coda Dcoda

Announcing India Nuclear Energy 2011 - The Road Ahead! [27Sep11] - 0 views

  • Economies around the world continue to grow, and the need for electricity, near-carbon-free, reliable, and low-cost energy is growing tremendously. In order to reap the benefits of nuclear energy, to effectively bridge the demand supply gap for India and to also necessitate the need to bring the industry at one platform, UBM India is pleased to bring the 3rd edition of ‘India Nuclear Energy 2011’ – International Exhibition and Conference. India Nuclear Energy 2011 will be held from 29th September – 1st October, 2011 at the Bombay Exhibition Centre, Goregaon (East), Mu
  • India Nuclear Energy 2011 is co-partnered by Department of Atomic Energy (DAE), the nodal Government body in the Indian Nuclear Energy sector and Supported by Indian Nuclear Society (INS). The topic of discussion at the press conference revolved around India’s use of nuclear energy to meet growing electricity demand and to endorse programs to expand the peaceful use of nuclear energy while minimizing the risks of proliferation. The Conference provides a platform for luminaries from the power sector and the government to share their views on India’s Nuclear Power future. Mr. S.K. Malhotra, Department of Atomic Energy (Government of India), Mr. M.V. Kotwal, Senior Executive Vice-President and Director, L&T, Mr. Eric P. Loewen, President, American Nuclear Society, and Mr. Sanjeev Khaira, MD, UBM India, addressed the media.
  • Mr. Sanjeev Khaira, MD–UBM India said: “India’s effort has been to achieve continuous improvement and innovation in nuclear safety.  The basic principle being, for all projects the Government gives priority to people’s safety as generation of power. This is important at a time when we are in the process of expanding nuclear capacity at an incredible pace.” In tandem with the Asian peers India is recording a high growth rate and the demand for energy is always on the upper curve. India is facing an acute shortage of fuel, like the coal and gas. Primarily, India has coal-fired (thermal) stations; however the shortage is forcing the power producers to resort to importing coal, which is more expensive. This in turn has caused prices of power to increase and the shortage has also resulted in certain regions facing power failures.
  • ...2 more annotations...
  • Considering the capital involved in solar, wind and other power generation options, the viable option for the developing nations is nuclear energy which provides a feasible source of energy. The conference supports the establishment and implementation of national and international safety standards in the design, construction, operation, and decommissioning of nuclear facilities. The Conference enumerated various pro’s & con’s that could be brought about by Nuclear energy, for India, Nuclear power is foreseeable as there is no other viable option. Due to the lack of indigenous uranium, India has uniquely been developing and utilizing a nuclear fuel cycle to exploit its reserves of thorium. And now with foreign technology and funding, it is expected that India’s Nuclear Power programme will receive a considerable boost. Through the upcoming three day event from 29th September, 2011, the Indian Power & Energy Sector will be linked to global players providing efficient and innovative solutions to make India a world leader in nuclear technology in the future.
  • Dr. Srikumar Banerjee – Chairman, Atomic Energy Commision will deliver the Key Note Address at “India Nuclear Energy Summit 2011” on 29th September 2011. Mr. Pierre Lellouche, French Minister of State for Foreign Trade has confirmed to be Guest of Honor for India Nuclear Energy Summit 2011. “The event will see participation from leading companies like DAE, L&T, GMR, Areva, GE, Westinghouse, Alstom, HCC, JSL, REC, Power Grid Corporation of India, Nuvia India, Nuscale Power, Schiess, American Nuclear Society, UBI France, Rosatom, Infotech, Lisega, United to name a few. The event will highlight the participation from various countries like USA, France, Russia and individual companies from UK, Germany & Canada. The event will also host symposium of Indo-US Nuclear Energy safety summit on 30th September 2011 and Indo- French Seminar, organized by French Trade Commission on 1st October 2011. The event will also witness the presence of French Ambassador, Jean-Raphael PEYTREGNET-Consul General of France in Mumbai, US Ambassador, US Consul General in Mumbai. It will also open doors of opportunities for domestic & international companies to tap the unexploited market of the nuclear sector in India. The format of the event has been designed to offer an opportunity for best networking and business opportunities and provide an interactive platform for equipment, technology suppliers and end users.
D'coda Dcoda

The myth of renewable energy | Bulletin of the Atomic Scientists - 0 views

  • "Clean." "Green." What do those words mean? When President Obama talks about "clean energy," some people think of "clean coal" and low-carbon nuclear power, while others envision shiny solar panels and wind turbines. And when politicians tout "green jobs," they might just as easily be talking about employment at General Motors as at Greenpeace. "Clean" and "green" are wide open to interpretation and misappropriation; that's why they're so often mentioned in quotation marks. Not so for renewable energy, however.
  • people across the entire enviro-political spectrum seem to have reached a tacit, near-unanimous agreement about what renewable means: It's an energy category that includes solar, wind, water, biomass, and geothermal power.
  • Renewable energy sounds so much more natural and believable than a perpetual-motion machine, but there's one big problem: Unless you're planning to live without electricity and motorized transportation, you need more than just wind, water, sunlight, and plants for energy. You need raw materials, real estate, and other things that will run out one day. You need stuff that has to be mined, drilled, transported, and bulldozed -- not simply harvested or farmed. You need non-renewable resources:
  • ...15 more annotations...
  • Solar power. While sunlight is renewable -- for at least another four billion years -- photovoltaic panels are not. Nor is desert groundwater, used in steam turbines at some solar-thermal installations. Even after being redesigned to use air-cooled condensers that will reduce its water consumption by 90 percent, California's Blythe Solar Power Project, which will be the world's largest when it opens in 2013, will require an estimated 600 acre-feet of groundwater annually for washing mirrors, replenishing feedwater, and cooling auxiliary equipment.
  • Geothermal power. These projects also depend on groundwater -- replenished by rain, yes, but not as quickly as it boils off in turbines. At the world's largest geothermal power plant, the Geysers in California, for example, production peaked in the late 1980s and then the project literally began running out of steam.
  • Wind power. According to the American Wind Energy Association, the 5,700 turbines installed in the United States in 2009 required approximately 36,000 miles of steel rebar and 1.7 million cubic yards of concrete (enough to pave a four-foot-wide, 7,630-mile-long sidewalk). The gearbox of a two-megawatt wind turbine contains about 800 pounds of neodymium and 130 pounds of dysprosium -- rare earth metals that are rare because they're found in scattered deposits, rather than in concentrated ores, and are difficult to extract.
  • Biomass.
  • t expanding energy crops will mean less land for food production, recreation, and wildlife habitat. In many parts of the world where biomass is already used extensively to heat homes and cook meals, this renewable energy is responsible for severe deforestation and air pollution
  • Hydropower.
  • "renewable energy" is a meaningless term with no established standards.
  • The amount of concrete and steel in a wind-tower foundation is nothing compared with Grand Coulee or Three Gorges, and dams have an unfortunate habit of hoarding sediment and making fish, well, non-renewable.
  • All of these technologies also require electricity transmission from rural areas to population centers. Wilderness is not renewable once roads and power-line corridors fragment it
  • the life expectancy of a solar panel or wind turbine is actually shorter than that of a conventional power plant.
  • meeting the world's total energy demands in 2030 with renewable energy alone would take an estimated 3.8 million wind turbines (each with twice the capacity of today's largest machines), 720,000 wave devices, 5,350 geothermal plants, 900 hydroelectric plants, 490,000 tidal turbines, 1.7 billion rooftop photovoltaic systems, 40,000 solar photovoltaic plants, and 49,000 concentrated solar power systems. That's a heckuva lot of neodymium.
  • hydroelectric power from dams is a proved technology. It already supplies about 16 percent of the world's electricity, far more than all other renewable sources combined.
  • None of our current energy technologies are truly renewable, at least not in the way they are currently being deployed. We haven't discovered any form of energy that is completely clean and recyclable, and the notion that such an energy source can ever be found is a mirage.
  • Long did the math for California and discovered that even if the state replaced or retrofitted every building to very high efficiency standards, ran almost all of its cars on electricity, and doubled its electricity-generation capacity while simultaneously replacing it with emissions-free energy sources, California could only reduce emissions by perhaps 60 percent below 1990 levels -- far less than its 80 percent target. Long says reaching that target "will take new technology."
  • it will also take a new honesty about the limitations of technology
D'coda Dcoda

Nuclear Energy Quarterly Deals Analysis - M&A and Investment Trends, Q2 2011 [25Aug11] - 0 views

  • a new market research report is available in its catalogue: Nuclear Energy Quarterly Deals Analysis - M&A and Investment Trends, Q2 2011 http://www.reportlinker.com/p0285100/Nuclear-Energy-Quarterly-Deals-Analysis---MA-and-Investment-Trends-Q2-2011.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Nuclear_energy Nuclear Energy Quarterly Deals Analysis - M&A and Investment Trends, Q2 2011
  • Summary GlobalData's "Nuclear Energy Quarterly Deals Analysis - M&A and Investment Trends, Q2 2011" report is an essential source of data and trend analysis on Mergers and Acquisitions (M&As) and financings in the nuclear energy market. The report provides detailed information on M&As, equity and debt offerings, private equity and venture capital (PE/VC) and partnership transactions recorded in the nuclear energy industry in Q2 2011. The report provides detailed comparative data on the number of deals and their value in the last five quarters, categorized by deal types, segments and geographies. The report also provides information on the top advisory firms in the nuclear energy industry. Data presented in this report is derived from GlobalData's proprietary in-house Nuclear Energy eTrack deals database and primary and secondary research.
  • Scope - Analyze market trends for the nuclear energy market in the global arena - Review of deal trends in uranium mining & processing, equipment and services, and power generation markets - Analysis of M&A, Equity/Debt Offerings, Private Equity, Venture Financing and Partnerships in the nuclear energy industry - Summary of nuclear energy deals globally in the last five quarters - Information on top deals happened in the nuclear energy industry - Geographies covered include – North America, Europe, Asia Pacific, South & Central America, and Middle East & Africa - League Tables of financial advisors in M&A and equity/debt offerings. This includes key advisors such as Morgan Stanley, Credit Suisse, and Goldman Sachs
  • ...1 more annotation...
  • Reasons to buy - Enhance your decision making capability in a more rapid and time sensitive manner - Find out the major deal performing segments for investments in your industry - Evaluate type of companies divesting / acquiring and ways to raise capital in the market - Do deals with an understanding of how competitors are financed, and the mergers and partnerships that have shaped the nuclear energy market - Identify major private equity/venture capital firms that are providing finance in the nuclear energy market - Identify growth segments and opportunities in each region within the industry - Look for key financial advisors where you are planning to raise capital from the market or for acquisitions within the industry - Identify top deals makers in the nuclear energy market
  •  
    For purchase report
D'coda Dcoda

The Intermittency of Fossil Fuels & Nuclear [19Aug11] - 0 views

  • You’ve likely heard this argument before: “The wind doesn’t always blow and the sun doesn’t always shine, so we can’t rely on renewable energy.” However, a series of recent events undermine the false dichotomy that renewable energies are unreliable and that coal, nuclear and natural gas are reliable.
  • There are too many reasons to list in a single blogpost why depending on fossil and nuclear energies is dangerous, but one emerging trend is that coal, natural gas and even nuclear energy are not as reliable as they are touted to be. Take for instance the nuclear disaster still unfolding in Japan. On March 11, that country experienced a massive earthquake and the resulting tsunami knocked out several nuclear reactors on the coast. Three days later, an operator of a nearby wind farm in Japan restarted its turbines - turbines that were intentionally turned off  immediately after the earthquake. Several countries, including France and Germany, are now considering complete phase-outs of nuclear energy in favor of offshore wind energy in the aftermath of the Japanese disaster. Even China has suspended its nuclear reactor plans while more offshore wind farms are being planned off that country’s coast.
  • In another example much closer to home, here in the Southeast, some of TVA’s nuclear fleet is operating at lower levels due to extreme temperatures. When the water temperatures in the Tennessee River reach more than 90 degrees, the TVA Browns Ferry nuclear reactors cannot discharge the already-heated power plant water into the river. If water temperatures become too high in a natural body of water, like a river, the ecosystem can be damaged and fish kills may occur. This problem isn’t limited to nuclear power plants either.
  • ...5 more annotations...
  • Texas has been experiencing a terrible heat wave this summer - along with much of the rest of the country. According to the Dallas Morning News, this heat wave has caused more than 20 power plants to shut down, including coal and natural gas plants. On the other hand, Texan wind farms have been providing a steady, significant supply of electricity during the heat wave, in part because wind farms require no water to generate electricity. The American Wind Energy Association (AWEA) noted on their blog: “Wind plants are keeping the lights on and the air conditioners running for hundreds of thousands of homes in Texas.”
  • This near-threat of a blackout is not a one-time or seasonal ordeal for Texans. Earlier this year, when winter storms were hammering the Lone Star State, rolling blackouts occurred due to faltering fossil fuel plants. In February, 50 power plants failed and wind energy helped pick up the slack.
  • Although far from the steady winds of the Great Plains, Cape Wind Associates noted that if their offshore wind farm was already operational, the turbines would have been able to harness the power of the heat wave oppressing the Northeast, mostly at full capacity. Cape Wind, vying to be the nation’s first offshore wind farm, has a meteorological tower stationed off Nantucket Sound in Massachusetts. If Cape Wind had been built, it could have been using these oppressive heat waves to operate New England’s cooling air conditioners. These three examples would suggest that the reliability of fossil fuels and nuclear reactors has been overstated, as has the variability of wind.
  • So just how much electricity can wind energy realistically supply as a portion of the nation’s energy? A very thorough report completed by the U.S. Department of Energy in 2008 (completed during President George W. Bush’s tenure) presents one scenario where wind energy could provide 20% of the U.S.’s electrical power by 2030. To achieve this level, the U.S. Department of Energy estimates energy costs would increase only 50 cents per month per household. A more recent study, the Eastern Wind Integration and Transmission Study (EWITS), shows that wind could supply 30% of the Eastern Interconnect’s service area (all of the Eastern U.S. from Nebraska eastward) with the proper transmission upgrades. As wind farms become more spread out across the country, and are better connected to each other via transmission lines, the variability of wind energy further decreases. If the wind isn’t blowing in Nebraska, it may be blowing in North Carolina, or off the coast of Georgia and the electricity generated in any state can then be transported across the continent. A plan has been hatched in the European Union to acquire 50% of those member states’ electricity from wind energy by 2050 - mostly from offshore wind farms, spread around the continent and heavily connected with transmission lines.
  • With a significant amount of wind energy providing electricity in the U.S., what would happen if the wind ever stops blowing? Nothing really - the lights will stay on, refrigerators will keep running and air conditions will keep working. As it so happens, wind energy has made the U.S. electrical supply more diversified and protects us against periodic shut downs from those pesky, sometimes-unreliable fossil fuel power plants and nuclear reactors.
  •  
    a series of recent events undermine the false dichotomy that renewable energies are unreliable and that coal, nuclear and natural gas are reliable.
D'coda Dcoda

The True Cost of Nuclear Energy | Greenpeace Africa [04Aug11] - 0 views

  • In our new report “True Cost of Nuclear Power in South Africa”, presented to the Department of Energy today, we expose the significant social and economic impacts of the country’s nuclear program in the past, and highlight the benefits of a nuclear-free future. At the same time we also made a submission to the Environmental Impact Assessment on the proposed Nuclear-1 power station to the DoE.
  • Greenpeace urges the Minister of Energy to reconsider the role of nuclear energy in South Africa and put a moratorium on any new nuclear reactors at least until the safety implications of the Fukushima nuclear disaster in Japan have been fully evaluated. Rather than investing in dangerous energy technologies, our country should opt for clean energy options. The True Cost of Nuclear report outlines South Africa’s costly nuclear history, its failure to learn from past mistakes, and how the country could leave dirty and dangerous energy behind by investing in renewables. To achieve a nuclear-free South Africa, whilst still reducing the country’s dependency on coal, the electricity sector needs to be the pioneer of renewable energy utilisation. According to our Advanced Energy [R]evolution, 49% of electricity can be produced from renewable sources by 2030, increasing to 94% by 2050. “Nuclear energy is a dangerous distraction from the clean energy development needed to prevent catastrophic climate change. Nuclear power simply delivers too little, too late, and at too high a price for the environment,” said Kumi Naidoo, Executive Director of Greenpeace International.
  • As host of the international climate negotiations COP17 in Durban this year, South Africa should play a leading role both in terms of its domestic energy choices, and by debunking false energy solutions to catastrophic climate change, such as nuclear. Greenpeace Africa is calling for decisive action and the political leadership required to secure the brighter future South Africans deserve. A future that is free of the threats posed by nuclear energy. “We need an Energy [R]evolution driven by the creation of green jobs. With the political will and South Africa’s abundance of renewable energy resources, the country could and should become a renewable energy leader in Africa,” said Ferrial Adam, Greenpeace Africa campaigner.
D'coda Dcoda

France Commits to Nuclear Future [07Jul11] - 0 views

  • As a long time proponent of nuclear power, last week France announced that it will invest $1.4 billion in its nuclear energy program, diverging from contentious deliberation from neighboring states on nuclear energy policy after the earthquake and tsunami in Japan that damaged the Fukushima Daiichi plant in March. The President of France, Nicholas Sarkozy, issued a strong commitment announcing the energy funding package by declaring there is “no alternative to nuclear energy today.” With the capital used to fund fourth generation nuclear power plant technology, focusing research development in nuclear safety, the announcement validates many decades of energy infrastructure and legacy expansion. France currently operates the second largest nuclear fleet in the world with 58 reactors, responsible for supplying more than 74 percent of domestic electricity demand supplied to the world’s fifth largest economy last year. At the end of last month, French uranium producer, Areva Group (EPA:AREVA), and Katko announced plans to increase production to 4,000 tonnes of uranium next year.  Katco is a joint venture for Areva, the world’s largest builder of nuclear power plants, and Kazatomprom the national operator for uranium prospecting, exploration and production for Kazakhstan.
  • German closure The pronouncement to maintain the nuclear prominence in France provides a strong counterweight to other countries in the region. Germany recently announced the phased shutdown of its 17 nuclear power stations by 2022.  Last week, Germany’s federal parliament voted overwhelmingly to close its remaining nine active plants according to a preset 11 year schedule. A Federal Network Agency, which oversees German energy markets, will decide by the end of September whether one of the eight nuclear plants already closed in recent months should be kept ready on a “cold reserve” basis, to facilitate the transition for national energy supply. The German commitment to an energy policy transition indicates that the national power mix towards renewable sources will have to double from its present range of 17 percent to an ambitious 35 percent. Subsidies for hydro electric and geothermal energy will increase; however, financial support for biomass, solar, and wind energy will be reduced. German Chancellor Angela Merkel has said she would prefer for utility suppliers not to make up any electrical shortfalls after 2022 by obtaining nuclear power from neighboring countries like France. Germany will require an expansive supergrid to effectively distribute electricity from the north to growing industrial urban centers like Munich, in the south. In order to execute this plan the new laws call for the addition of some 3,600 kilometers of high capacity power lines. Germany’s strategy will partially include the expansion of wind turbines on the North Sea, enabling some 25,000 megawatts’ worth of new offshore wind power which will have to be developed by 2030. Nuclear persistence in the United Kingdom Last month, the government in the United Kingdom maintained its strong commitment to nuclear energy, confirming a series of potential locations for new nuclear builds.  The national policy statements on energy said renewables, nuclear and fossil fuels with carbon capture and storage “all have a part to play in delivering the United Kingdom’s decarbonisation objectives,” and confirmed eight sites around the country as suitable for building new nuclear stations by 2025. The statements, which are to be debated in Parliament, include a commitment for an additional 33,000 megawatts of renewable energy capacity, while the government said more than $160 billion will be required to replace around 25 percent of the country’s generating capacity, due to close by 2020. The Scottish government has also softened its tough opposition to nuclear power, following recognition by the energy minister of a “rational case” to extend operations at Scotland’s two nuclear plants. Additional Eurozone participation In June, Italian voters rejected a government proposal to reintroduce nuclear power. The plan by Prime Minister Silvio Berlusconi to restart Italy’s nuclear energy program abandoned during the 1980s, was rejected by 94 percent of voters in the referendum. Another regional stakeholder, the Swiss government has decided not to replace the four nuclear power plants that supply about 40 percent of the country’s electricity. The last of Switzerland’s power nuclear plants is expected to end production by 2034, leaving time for the country to develop alternative power sources. Although the country is home to the oldest nuclear reactor presently in operation, the Swiss Energy Foundation has stated an objective to work for “an ecological, equitable and sustainable energy policy”. Its “2000 watt society” promotes energy solutions which employ renewable energy resources other than fossil fuels or nuclear power.
D'coda Dcoda

Nuclear safety: A dangerous veil of secrecy [11Aug11] - 0 views

  • There are battles being fought on two fronts in the five months since a massive earthquake and tsunami damaged the Daiichi nuclear power plant in Fukushima, Japan. On one front, there is the fight to repair the plant, operated by the Tokyo Electric Power Company (TEPCO) and to contain the extent of contamination caused by the damage. On the other is the public’s fight to extract information from the Japanese government, TEPCO and nuclear experts worldwide.
  • The latter battle has yielded serious official humiliation, resulting high-profile resignations, scandals, and promises of reform in Japan’s energy industry whereas the latter has so far resulted in a storm of anger and mistrust. Even most academic nuclear experts, seen by many as the middle ground between the anti-nuclear activists and nuclear lobby itself, were reluctant to say what was happening: That in Fukushima, a community of farms, schools and fishing ports, was experiencing a full-tilt meltdown, and that, as Al Jazeera reported in June, that the accident had most likely caused more radioactive contamination than Chernobyl
  • As recently as early August, those seeking information on the real extent of the damage at the Daiichi plant and on the extent of radioactive contamination have mostly been reassured by the nuclear community that there’s no need to worry.
  • ...29 more annotations...
  • The money trail can be tough to follow - Westinghouse, Duke Energy and the Nuclear Energy Institute (a "policy organisation" for the nuclear industry with 350 companies, including TEPCO, on its roster) did not respond to requests for information on funding research and chairs at universities. But most of the funding for nuclear research does not come directly from the nuclear lobby, said M.V. Ramana, a researcher at Princeton University specialising in the nuclear industry and climate change. Most research is funded by governments, who get donations - from the lobby (via candidates, political parties or otherwise).
  • “There's a lot of secrecy that can surround nuclear power because some of the same processes can be involved in generating electricity that can also be involved in developing a weapon, so there's a kind of a veil of secrecy that gets dropped over this stuff, that can also obscure the truth” said Biello. "So, for example in Fukushima, it was pretty apparent that a total meltdown had occurred just based on what they were experiencing there ... but nobody in a position of authority was willing to say that."
  • This is worrying because while both anti-nuclear activists and the nuclear lobby both have openly stated biases, academics and researchers are seen as the middle ground - a place to get accurate, unbiased information. David Biello, the energy and climate editor at Scientific American Online, said that trying to get clear information on a scenario such as the Daiichi disaster is tough.
  • "'How is this going to affect the future of nuclear power?'That’s the first thought that came into their heads," said Ramana, adding, "They basically want to ensure that people will keep constructing nuclear power plants." For instance, a May report by MIT’s Center For Advanced Nuclear Energy Systems (where TEPCO funds a chair) points out that while the Daiichi disaster has resulted in "calls for cancellation of nuclear construction projects and reassessments of plant license extensions" which might "lead to a global slow-down of the nuclear enterprise," that  "the lessons to be drawn from the Fukushima accident are different."
  • "In the United States, a lot of the money doesn’t come directly from the nuclear industry, but actually comes from the Department of Energy (DOE). And the DOE has a very close relationship with the industry, and they sort of try to advance the industry’s interest," said Ramana. Indeed, nuclear engineering falls under the "Major Areas of Research" with the DOE, which also has nuclear weapons under its rubric. The DOE's 2012 fiscal year budge request to the US Congress for nuclear energy programmes was $755m.
  • "So those people who get funding from that….it’s not like they (researchers) want to lie, but there’s a certain amount of, shall we say, ideological commitment to nuclear power, as well as a certain amount of self-censorship."  It comes down to worrying how their next application for funding might be viewed, he said. Kathleen Sullivan, an anti-nuclear specialist and disarmament education consultant with the United Nations Office of Disarmament Affairs, said it's not surprising that research critical of the nuclear energy and weapons isn't coming out of universities and departments that participate in nuclear research and development.
  • "It (the influence) of the nuclear lobby could vary from institution to institution," said Sullivan. "If you look at the history of nuclear weapons manufacturing in the United States, you can see that a lot of research was influenced perverted, construed in a certain direction."
  • Sullivan points to the DOE-managed Lawrence Berkeley National Laboratory at the University of California in Berkley (where some of the research for the first atomic bomb was done) as an example of how intertwined academia and government-funded nuclear science are.
  • "For nuclear physics to proceed, the only people interested in funding it are pro-nuclear folks, whether that be industry or government," said Biello. "So if you're involved in that area you've already got a bias in favour of that technology … if you study hammers, suddenly hammers seem to be the solution to everything."
  • And should they find results unfavourable to the industry, Ramana said they would "dress it up in various ways by saying 'Oh, there’s a very slim chance of this, and here are some safety measure we recommend,' and then the industry will say, 'Yeah,yeah, we’re incorporating all of that.'" Ramana, for the record, said that while he's against nuclear weapons, he doesn't have a moral position on nuclear power except to say that as a cost-benefit issue, the costs outweigh the benefits, and that "in that sense, expanding nuclear power isn't a good idea." 
  • The Center for Responsive Politics - a non-partisan, non-profit elections watchdog group – noted that even as many lobbying groups slowed their spending the first quarter of the year, the Nuclear industry "appears to be ratcheting up its lobbying" increasing its multi-million dollar spending.
  • Among the report's closing thoughts are concerns that "Decision-making in the  immediate aftermath of a major crisis is often influenced by emotion," and whether"an accident like Fukushima, which is so far beyond design basis, really warrant a major overhaul of current nuclear safety regulations and practises?" "If so," wonder the authors, "When is safe safe enough? Where do we draw the line?"
  • The Japanese public, it seems, would like some answers to those very questions, albeit from a different perspective.  Kazuo Hizumi, a Tokyo-based human rights lawyer, is among those pushing for openness. He is also an editor at News for the People in Japan, a news site advocating for transparency from the government and from TEPCO. With contradicting information and lack of clear coverage on safety and contamination issues, many have taken to measuring radiation levels with their own Geiger counters.
  • "The public fully trusted the Japanese Government," said Hizumi. But the absence of "true information" has massively diminished that trust, as, he said, has the public's faith that TEPCO would be open about the potential dangers of a nuclear accident.
  • A report released in July by Human Rights Now highlights the need for immediately accessible information on health and safety in areas where people have been affected by the disaster, including Fukushima, especially on the issues of contaminated food and evacuation plans.
  • A 'nuclear priesthood' Biello describes the nuclear industry is a relatively small, exclusive club.
  • The interplay between academia and also the military and industry is very tight. It's a small community...they have their little club and they can go about their business without anyone looking over their shoulder. " This might explain how, as the Associated Press reported in June, that the U.S. Nuclear Regulatory Commission was "working closely with the nuclear power industry to keep the nationalise ageing reactors operating within standards or simply failing to enforce them."
  • However, with this exclusivity comes a culture of secrecy – "a nuclear priesthood," said Biello, which makes it very difficult to parse out a straightforward answer in the very technical and highly politicised field.  "You have the proponents, who believe that it is the technological salvation for our problems, whether that's energy, poverty, climate change or whatever else. And then you have opponents who think that it's literally the worst thing that ever happened and should be immediately shut back up in a box and buried somewhere," said Biello, who includes "professors of nuclear engineering and Greenpeace activists" as passionate opponents on the nuclear subject.
  • In fact, one is hard pressed to find a media report quoting a nuclear scientist at any major university sounding the alarms on the risks of contamination in Fukushima. Doing so has largely been the work of anti-nuclear activists (who have an admitted bias against the technology) and independent scientists employed by think tanks, few of whom responded to requests for interviews.
  • So, one's best bet, said Biello, is to try and "triangulate the truth" - to take "a dose" from anti-nuclear activists, another from pro-nuclear lobbyists and throw that in with a little bit of engineering and that'll get you closer to the truth. "Take what everybody is saying with a grain of salt."
  • Since World War II, the process of secrecy – the readiness to invoke "national security" - has been a pillar of the nuclear establishment…that establishment, acting on the false assumption that "secrets" can be hidden from the curious and knowledgeable, has successfully insisted that there are answers which cannot be given and even questions which cannot be asked. The net effect is to stifle debate about the fundamental of nuclear policy. Concerned citizens dare not ask certain questions, and many begin to feel that these matters which only a few initiated experts are entitled to discuss.  If the above sounds like a post-Fukushima statement, it is not. It was written by Howard Morland for the November 1979 issue of The Progressive magazine focusing on the hydrogen bomb as well as the risks of nuclear energy.
  • The US government - citing national security concerns - took the magazine to court in order to prevent the issue from being published, but ultimately relented during the appeals process when it became clear that the information The Progressive wanted to publish was already public knowledge and that pursuing the ban might put the court in the position of deeming the Atomic Energy Act as counter to First Amendment rights (freedom of speech) and therefore unconstitutional in its use of prior restraint to censor the press.
  • But, of course, that's in the US, although a similar mechanism is at work in Japan, where a recently created task force aims to "cleanse" the media of reportage that casts an unfavourable light on the nuclear industry (they refer to this information as "inaccurate" or a result of "mischief." The government has even go so far as to accept bids from companies that specialise in scouring the Internet to monitor the Internet for reports, Tweets and blogs that are critical of its handling of the Daiichi disaster, which has presented a unique challenge to the lobby there.
  • "They do not know how to do it," he said of some of the community groups and individuals who have taken to measure contamination levels in the air, soil and food
  •  Japan's government has a history of slow response to TEPCO's cover-ups. In 1989, that Kei Sugaoka, a nuclear energy at General Electric who inspected and repaired plants in Japan and elsewhere, said he spotted cracks in steam dryers and a "misplacement" or 180 degrees in one dryer unit. He noticed that the position of the dryer was later omitted from the inspection record's data sheet. Sugaoka told a Japanese networkthat TEPCO had instructed him to "erase" the flaws, but he ultimately wrote a whistleblowing letter to METI, which resulted in the temporary 17 TEPCO reactors, including ones at the plant in Fukushima.
  • the Japanese nuclear lobby has been quite active in shaping how people see nuclear energy. The country's Ministry of Education, together with the Natural Resources Ministry (of of two agencies under Japan's Ministry of Economy, Trade and Industry - METI - overseeing nuclear policies) even provides schools with a nuclear energy information curriculum. These worksheets - or education supplements - are used to inform children about the benefits of nuclear energy over fossil fuels.
  • There’s reason to believe that at least in one respect, Fukushima can’t and won’t be another Chernobyl, at least due to the fact that the former has occurred in the age of the Internet whereas the latter took place in the considerably quaint 80s, when a car phone the size of a brick was considered the height of communications technology to most. "It (a successful cover up) is definitely a danger in terms of Fukushima, and we'll see what happens. All you have to do is look at the first couple of weeks after Chernobyl to see the kind of cover up," said Biello. "I mean the Soviet Union didn't even admit that anything was happening for a while, even though everybody was noticing these radiation spikes and all these other problems. The Soviet Union was not admitting that they were experiencing this catastrophic nuclear failure... in Japan, there's a consistent desire, or kind of a habit, of downplaying these accidents, when they happen. It's not as bad as it may seem, we haven't had a full meltdown."
  • Fast forward to 2011, when video clips of each puff of smoke out of the Daiichi plant make it around the world in seconds, news updates are available around the clock, activists post radiation readings on maps in multiple languages and Google Translate picks up the slack in translating every last Tweet on the subject coming out of Japan.
  • it will be a heck of a lot harder to keep a lid on things than it was 25 years ago. 
D'coda Dcoda

Americans' Support for Nuclear Energy Holds at Majority Level 6 Months After Japan Acci... - 0 views

  • WASHINGTON, Oct. 3, 2011 -- /PRNewswire-USNewswire/ -- Six months after the Fukushima Daiichi accident in Japan, solid majorities of Americans still view nuclear energy favorably, still support the extension of operating licenses at existing facilities that meet federal safety standards, and still believe that construction of a new reactor is acceptable at the site of the nearest nuclear power plant that already is operating, a new national survey shows.While support for nuclear energy has declined from the historically high level seen one year ago, support on a variety of measures is holding at the majority levels found consistently in public opinion surveys conducted throughout the past decade.
  • Nuclear energy supplies electricity to 20 percent of U.S. homes and businesses, even though the 104 nuclear facilities operating in 31 states constitute only 10 percent of the nation's electric generating capacity.Eighty-five percent of those surveyed agree that, "When their original operating licenses expire, we should renew the license of nuclear power plants that continue to meet federal safety standards." Seven months ago, 88 percent of Americans agreed with this statement.
  • "While there is some evidence of impact of the Fukushima events, support for nuclear energy continues at much higher levels than in earlier decades," company President Ann Bisconti said. "Turmoil in oil-rich areas of the world and hikes in oil prices historically have focused public opinion even more on nuclear energy, and may have helped to preclude serious impact of events in Japan on public attitudes."Despite the Fukushima accident, 67 percent of Americans rate U.S. nuclear power plant safety high. This is identical to the safety rating found in a national survey last February, one month prior to the earthquake and tsunami that caused the Fukushima accident. Eighty-two percent of Americans believe that "we should learn the lessons from the Japanese accident and continue to develop advanced nuclear energy plants to meet America's growing electricity demand," the new survey showed.
  • ...3 more annotations...
  • In the new telephone survey of 1,000 U.S. adults, 62 percent of respondents said they favor the use of nuclear energy as one of the ways to provide electricity in the United States, with 35 percent opposed. Those strongly favoring nuclear energy outnumber those strongly opposed by a two-to-one ratio, 28 percent vs. 13 percent, according to the survey conducted Sept. 22-24 by Bisconti Research Inc. with GfK Roper. The survey was sponsored by the Nuclear Energy Institute and has a margin of error of plus or minus three percentage points. Numerous surveys conducted by Bisconti Research over the past decade show that public support for nuclear energy topped 60 percent each year, rising as high as 74 percent of Americans in March 2010.
  • In the latest survey, 59 percent of Americans agree, "We should definitely build more nuclear power plants in the future." Thirty-eight percent disagree. Still, 75 percent of Americans agree that, "Electric utilities should prepare now so that new nuclear power plants could be built if needed in the next decade." Twenty-two percent disagree.Two-thirds of Americans (67 percent) say they would find a new reactor acceptable at the site of the nearest nuclear power plant that already is operating, while 28 percent find this unacceptable. Seven months ago, 76 percent of Americans found this expansion acceptable, with 20 percent saying it was not acceptable.
  • "This survey, like other recent surveys, confirms that large majorities of Americans associate nuclear energy with issues they care about, including clean air, reliable and affordable electricity, energy independence, and economic growth and job creation," Bisconti said.Details on the new survey are accessible at: http://www.nei.org/resourcesandstats/documentlibrary/reliableandaffordableenergy/reports/latest-trends-in-us-public-opinion-about-nuclear-energy-sept-2011.
D'coda Dcoda

Asia's non-nuclear energy options [25Jul11] - 0 views

  • In Japan, Premier Kan’s call is already facing opposition from pro-nuclear energy companies and LDP Opposition politicians. With PM Kan’s low poll ratings, some suggest neither he nor the policy will last. Beyond the shadow of Fukushima, others across Asia must take into account a wider energy challenge. In the global financial crisis, worldwide energy consumption paused. But Asia continues to grow, despite the dour economic outlook in the US and Europe, and so does its energy needs. Some talk of a power shift to Asia, but what is most certain is that Asians need more power.
  • Yet supply has been hit by uncertainties in the Middle East
  • Asia is not well positioned in this. The regional economies need but mostly are not self-sufficient in energy. China and India have few domestic energy sources, other than to use pollutive and carbon-heavy coal. Imports from the Middle East remain critical but look to be increasingly risky and expensive.
  • ...6 more annotations...
  • This sets the context for nuclear energy ambitions across Asia.
  • The Chinese intend to roll out the grandest nuclear power plant building program seen in history. Countries in Southeast Asia with no prior experience in large scale, nuclear power generation — Vietnam, Indonesia, Malaysia and Thailand — plan to build their first plants.
  • Post-Fukushima, Beijing has called for a pause in order to re-look at safety issues. Other Asians however continue to push time lines, notably Vietnam and Malaysia. In many cases, their own citizens are not consulted, despite public concerns over environmental protection, human health and safety.
  • The overarching context of energy policy seems lost in the anxiety to push ahead with nuclear plants. Vietnam, Indonesia and Malaysia continue to subsidize energy, increasing government burdens as oil prices rise. Their artificially low energy prices increases waste and destroys incentives to build new capacity, and invest in energy efficiency and alternative technologies.
  • Moreover, aside from China, others in Asia project only small percentages of their total energy needs will come from nuclear power. Indonesia targets to meet just 5 percent of their needs from nuclear by 2025. In Vietnam, the plan is for 14 plants by 2030, providing a modest 8 percent of power needs. Given safety and security concerns, the Southeast Asian nations seem to be risking a considerable amount for relatively small returns.
  • In contrast, studies suggest that energy efficiency measures can achieve at least the equivalent savings in power needs with safe, off-the-shelf technology at a much lower cost. Renewable energy currently costs more but with technological advances may prove viable in the medium term.
D'coda Dcoda

Federation of American Scientists :U.S. Leadership Essential for International Nuclear ... - 0 views

  • Global growth in the civilian nuclear energy sector represents an annual trade market estimated at $500 billion to $740 billion over the next 10 years.  As new nations consider nuclear energy technology to produce low-carbon electricity, the United States should take a leadership role that will enhance the safety and nuclear nonproliferation regimes globally, while creating tens of thousands of new American jobs. The United States is the world leader in safe and efficient operation of nuclear power plants, with an average capacity factor of 90 percent or higher in each of the past 10 years.  When ranked by 36-month unit capability factor, the United States has the top three best performing nuclear reactors in the world, seven of the top 10, and 16 of the top 20.  Nuclear energy facilities produce electricity in 31 states and have attained a four-fold improvement in safety during the past 20 years.  This underpinning in safety and reliability is one reason why America generates more electricity from nuclear energy than the next two largest nuclear programs combined.
  • Bilateral agreements on nuclear energy cooperation are vital to advancing global nonproliferation and safety goals as well as America’s interests in global nuclear energy trade.  A 123 agreement, named after section 123 of the Atomic Energy Act, establishes an accord for cooperation as a prerequisite for nuclear energy trade between the United States and other nations.  The agreement contains valuable nonproliferation controls and commitments.  One of the most significant elements of U.S. agreements is approval granted by our government as to how other countries process uranium fuel after it is used in a commercial reactor.  Under U.S. agreements, these nations cannot reprocess the fuel—chemically separating the uranium and plutonium—without U.S. notification and consent to do so.  This is a significant safeguard against the potential misuse of low-enriched uranium from the commercial sector.
  • Several public policy considerations must be weighed in evaluating the impact of 123 agreements, including those related to national security, economic development, energy production, and environmental protection. In the competitive global marketplace for commercial nuclear technology, inconsistent bilateral agreements will have unintended consequences for U.S. suppliers.  Imposing overly restrictive commercial restrictions or conditions in U.S. 123 agreements that are not matched by other nations’ bilateral agreements may significantly bias the country against selecting U.S.-based suppliers, even if the agreements don’t have malicious intentions. 
  • ...4 more annotations...
  • The imposition of requirements that seem unnecessary and unfair can affect commercial decision-making by the affected country.  Such conditions put U.S. commercial contracts and jobs at risk. Moreover, if the country does not use U.S.-based technology, fuels or services, the value of conditions in the 123 agreement (i.e., consent rights) would be lost. Some U.S. leaders are proposing a prohibition on uranium enrichment and reprocessing as part of all bilateral nuclear energy agreements for cooperation.  Ensuring enrichment technology and reprocessing technology are used only for peaceful purposes is a paramount goal for government and industry. But U.S. 123 agreements are neither the best, nor in most cases, the appropriate mechanism to achieve that goal. 
  • Multilateral agreements are more appropriate mechanisms for policy regarding the global challenge of nuclear proliferation.  Promising mechanisms include the decision by the International Atomic Energy Agency to establish a uranium fuel bank, potential nuclear fuel lease/takeback contracts, and other multilateral, institutional nonproliferation arrangements.  In addition, the Nuclear Suppliers Group (an international body of 46 nuclear technology supplier nations that sets standards for commercial nuclear trade) recently adopted new clear and strict criteria for the transfer of nuclear energy technology.  These institutional controls do not require the receiving country to cede sovereign rights, which the U.S. government and other countries with civilian nuclear energy programs would never give up. 
  • Fast-growing electricity needs in developing countries and concern about air quality and climate change are stimulating significant global demand for nuclear energy.  Sixty-six plants are being built worldwide and another 154 are in the licensing and advanced planning stage. U.S. suppliers are vying for business around the world – including China, Poland and India.  Continued U.S. leadership in global nuclear safety and nonproliferation matters go hand-in-hand with a strong presence in the global marketplace.  Both are critical to our national and global security.  We must continue to participate in worldwide trade and nonproliferation policy discussions, or cede leadership in these areas to other governments and industrial competitors.  Unless we choose engagement, America will lose tens of thousands of jobs and other benefits such trade has for our economy while forfeiting the nonproliferation benefits that 123 agreements are intended to achieve.
  • BIO- Everett Redmond is director of nonproliferation and fuel cycle policy at the Nuclear Energy Institute in Washington, D.C.
  •  
    From the "Opinion" section
D'coda Dcoda

We Were Once Terrified of Fire, Too [05Oct11] - 0 views

  • The discovery of fire a million years ago must have been terrifying to cave men and women. Since that time, many people have died and much damage to the earth has occurred as a result of chemical energy released through fire. Nevertheless, that chemical energy found its place in the world, providing great benefits, and most people take it for granted.  In stark contrast, humankind began to develop and use nuclear energy less than a hundred years ago. In 2010, nuclear energy provided 13.5 percent of worldwide electricity. 
  • On March 11, 2011, several of the Fukushima-Daiichi, Japan, nuclear power plants were damaged from a 9.0 magnitude earthquake and a 14 meter tsunami. The event dominated headlines and, with help from the mass media, re-sparked the public’s fears of nuclear radiation. Fifteen thousand people died as a direct result of the earthquake and tsunami. Nobody died from radiation exposure. Yet no governments have called for a moratorium on coastal development. However, some have on nuclear energy. Some people wrongly believe that radiation has no place in a safe and healthy world. Yet radiation has always been around us. It comes from a variety of natural sources, and it is widely used in medicine.
  • The 1986 Chernobyl nuclear accident – by far the worst – is most instructive. In 2006, the Chernobyl Forum published an authoritative analysis of the health, environmental and socio-economic impacts of Chernobyl. The report concluded that 31 emergency workers died as a direct consequence of their response to the Chernobyl accident. The Forum was unable to reliably assess the precise number of fatalities by radiation exposure. The best it was able to do was speculate based on the experience of other populations exposed to radiation. By 2002, 15 deaths were reported from among 4,000 people exposed to radiation and diagnosed with thyroid cancer. These data are in stark contrast to a number of other poorly referenced sources which have speculated on large numbers of radiation-related deaths from Chernobyl.
  • ...3 more annotations...
  • The difference between radiation levels that pose a significant health risk and radiation levels that pose negligible or no risks has everything to do with emission rate, concentration, dispersion, distance from, and duration of exposure. Other key factors include the unique properties of each isotope, such as how it affects the body and how long it remains radioactive. In light of the public’s fear, examining how nuclear energy has fared in terms of safety and environment is useful. Chemical energy and hydroelectric energy have caused their share of environmental damage and deaths.   The undercurrent of fear affects all matters related to this industry. It must be addressed. Doing so requires examining the risks and consequences of nuclear energy and comparing it to other energy technologies, for none is perfect.  
  • Clearly, the fears about nuclear energy are based on perceptions, imagined or engineered, and not on the consequences of actual events. For example, in August 1975, the Banqiao hydroelectric dam in western Henan province, China, failed as a result of Typhoon Nina, 180,000 people died. Another example is that 1 billion gallons of oil from 21 disasters have been spilled in the oceans since 1967. A third example is that, in Nigeria, on Oct. 18, 1998, a natural gas pipeline explosion took the lives of 1,082 people. Members of the public would benefit from scrutinizing the comparative safety and track record of clean, emission-free nuclear energy. The nuclear industry would benefit by helping the public learn the basic concepts and principles of nuclear technology. Nuclear energy can help achieve quality of life for those who don’t have it and help sustain it for those who do.
  • Steven B. Krivit is the senior editor of New Energy Times, an online magazine specializing in low-energy nuclear reaction research.  He also is the editor-in-chief of the 2011 Wiley and Sons Nuclear Energy Encyclopedia.
1 - 20 of 581 Next › Last »
Showing 20 items per page