Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged on the ground

Rss Feed Group items tagged

D'coda Dcoda

Nuclear safety: A dangerous veil of secrecy [11Aug11] - 0 views

  • There are battles being fought on two fronts in the five months since a massive earthquake and tsunami damaged the Daiichi nuclear power plant in Fukushima, Japan. On one front, there is the fight to repair the plant, operated by the Tokyo Electric Power Company (TEPCO) and to contain the extent of contamination caused by the damage. On the other is the public’s fight to extract information from the Japanese government, TEPCO and nuclear experts worldwide.
  • The latter battle has yielded serious official humiliation, resulting high-profile resignations, scandals, and promises of reform in Japan’s energy industry whereas the latter has so far resulted in a storm of anger and mistrust. Even most academic nuclear experts, seen by many as the middle ground between the anti-nuclear activists and nuclear lobby itself, were reluctant to say what was happening: That in Fukushima, a community of farms, schools and fishing ports, was experiencing a full-tilt meltdown, and that, as Al Jazeera reported in June, that the accident had most likely caused more radioactive contamination than Chernobyl
  • As recently as early August, those seeking information on the real extent of the damage at the Daiichi plant and on the extent of radioactive contamination have mostly been reassured by the nuclear community that there’s no need to worry.
  • ...29 more annotations...
  • The money trail can be tough to follow - Westinghouse, Duke Energy and the Nuclear Energy Institute (a "policy organisation" for the nuclear industry with 350 companies, including TEPCO, on its roster) did not respond to requests for information on funding research and chairs at universities. But most of the funding for nuclear research does not come directly from the nuclear lobby, said M.V. Ramana, a researcher at Princeton University specialising in the nuclear industry and climate change. Most research is funded by governments, who get donations - from the lobby (via candidates, political parties or otherwise).
  • “There's a lot of secrecy that can surround nuclear power because some of the same processes can be involved in generating electricity that can also be involved in developing a weapon, so there's a kind of a veil of secrecy that gets dropped over this stuff, that can also obscure the truth” said Biello. "So, for example in Fukushima, it was pretty apparent that a total meltdown had occurred just based on what they were experiencing there ... but nobody in a position of authority was willing to say that."
  • This is worrying because while both anti-nuclear activists and the nuclear lobby both have openly stated biases, academics and researchers are seen as the middle ground - a place to get accurate, unbiased information. David Biello, the energy and climate editor at Scientific American Online, said that trying to get clear information on a scenario such as the Daiichi disaster is tough.
  • "'How is this going to affect the future of nuclear power?'That’s the first thought that came into their heads," said Ramana, adding, "They basically want to ensure that people will keep constructing nuclear power plants." For instance, a May report by MIT’s Center For Advanced Nuclear Energy Systems (where TEPCO funds a chair) points out that while the Daiichi disaster has resulted in "calls for cancellation of nuclear construction projects and reassessments of plant license extensions" which might "lead to a global slow-down of the nuclear enterprise," that  "the lessons to be drawn from the Fukushima accident are different."
  • "In the United States, a lot of the money doesn’t come directly from the nuclear industry, but actually comes from the Department of Energy (DOE). And the DOE has a very close relationship with the industry, and they sort of try to advance the industry’s interest," said Ramana. Indeed, nuclear engineering falls under the "Major Areas of Research" with the DOE, which also has nuclear weapons under its rubric. The DOE's 2012 fiscal year budge request to the US Congress for nuclear energy programmes was $755m.
  • "So those people who get funding from that….it’s not like they (researchers) want to lie, but there’s a certain amount of, shall we say, ideological commitment to nuclear power, as well as a certain amount of self-censorship."  It comes down to worrying how their next application for funding might be viewed, he said. Kathleen Sullivan, an anti-nuclear specialist and disarmament education consultant with the United Nations Office of Disarmament Affairs, said it's not surprising that research critical of the nuclear energy and weapons isn't coming out of universities and departments that participate in nuclear research and development.
  • "It (the influence) of the nuclear lobby could vary from institution to institution," said Sullivan. "If you look at the history of nuclear weapons manufacturing in the United States, you can see that a lot of research was influenced perverted, construed in a certain direction."
  • Sullivan points to the DOE-managed Lawrence Berkeley National Laboratory at the University of California in Berkley (where some of the research for the first atomic bomb was done) as an example of how intertwined academia and government-funded nuclear science are.
  • "For nuclear physics to proceed, the only people interested in funding it are pro-nuclear folks, whether that be industry or government," said Biello. "So if you're involved in that area you've already got a bias in favour of that technology … if you study hammers, suddenly hammers seem to be the solution to everything."
  • And should they find results unfavourable to the industry, Ramana said they would "dress it up in various ways by saying 'Oh, there’s a very slim chance of this, and here are some safety measure we recommend,' and then the industry will say, 'Yeah,yeah, we’re incorporating all of that.'" Ramana, for the record, said that while he's against nuclear weapons, he doesn't have a moral position on nuclear power except to say that as a cost-benefit issue, the costs outweigh the benefits, and that "in that sense, expanding nuclear power isn't a good idea." 
  • The Center for Responsive Politics - a non-partisan, non-profit elections watchdog group – noted that even as many lobbying groups slowed their spending the first quarter of the year, the Nuclear industry "appears to be ratcheting up its lobbying" increasing its multi-million dollar spending.
  • Among the report's closing thoughts are concerns that "Decision-making in the  immediate aftermath of a major crisis is often influenced by emotion," and whether"an accident like Fukushima, which is so far beyond design basis, really warrant a major overhaul of current nuclear safety regulations and practises?" "If so," wonder the authors, "When is safe safe enough? Where do we draw the line?"
  • The Japanese public, it seems, would like some answers to those very questions, albeit from a different perspective.  Kazuo Hizumi, a Tokyo-based human rights lawyer, is among those pushing for openness. He is also an editor at News for the People in Japan, a news site advocating for transparency from the government and from TEPCO. With contradicting information and lack of clear coverage on safety and contamination issues, many have taken to measuring radiation levels with their own Geiger counters.
  • "The public fully trusted the Japanese Government," said Hizumi. But the absence of "true information" has massively diminished that trust, as, he said, has the public's faith that TEPCO would be open about the potential dangers of a nuclear accident.
  • A report released in July by Human Rights Now highlights the need for immediately accessible information on health and safety in areas where people have been affected by the disaster, including Fukushima, especially on the issues of contaminated food and evacuation plans.
  • A 'nuclear priesthood' Biello describes the nuclear industry is a relatively small, exclusive club.
  • The interplay between academia and also the military and industry is very tight. It's a small community...they have their little club and they can go about their business without anyone looking over their shoulder. " This might explain how, as the Associated Press reported in June, that the U.S. Nuclear Regulatory Commission was "working closely with the nuclear power industry to keep the nationalise ageing reactors operating within standards or simply failing to enforce them."
  • However, with this exclusivity comes a culture of secrecy – "a nuclear priesthood," said Biello, which makes it very difficult to parse out a straightforward answer in the very technical and highly politicised field.  "You have the proponents, who believe that it is the technological salvation for our problems, whether that's energy, poverty, climate change or whatever else. And then you have opponents who think that it's literally the worst thing that ever happened and should be immediately shut back up in a box and buried somewhere," said Biello, who includes "professors of nuclear engineering and Greenpeace activists" as passionate opponents on the nuclear subject.
  • In fact, one is hard pressed to find a media report quoting a nuclear scientist at any major university sounding the alarms on the risks of contamination in Fukushima. Doing so has largely been the work of anti-nuclear activists (who have an admitted bias against the technology) and independent scientists employed by think tanks, few of whom responded to requests for interviews.
  • So, one's best bet, said Biello, is to try and "triangulate the truth" - to take "a dose" from anti-nuclear activists, another from pro-nuclear lobbyists and throw that in with a little bit of engineering and that'll get you closer to the truth. "Take what everybody is saying with a grain of salt."
  • Since World War II, the process of secrecy – the readiness to invoke "national security" - has been a pillar of the nuclear establishment…that establishment, acting on the false assumption that "secrets" can be hidden from the curious and knowledgeable, has successfully insisted that there are answers which cannot be given and even questions which cannot be asked. The net effect is to stifle debate about the fundamental of nuclear policy. Concerned citizens dare not ask certain questions, and many begin to feel that these matters which only a few initiated experts are entitled to discuss.  If the above sounds like a post-Fukushima statement, it is not. It was written by Howard Morland for the November 1979 issue of The Progressive magazine focusing on the hydrogen bomb as well as the risks of nuclear energy.
  • The US government - citing national security concerns - took the magazine to court in order to prevent the issue from being published, but ultimately relented during the appeals process when it became clear that the information The Progressive wanted to publish was already public knowledge and that pursuing the ban might put the court in the position of deeming the Atomic Energy Act as counter to First Amendment rights (freedom of speech) and therefore unconstitutional in its use of prior restraint to censor the press.
  • But, of course, that's in the US, although a similar mechanism is at work in Japan, where a recently created task force aims to "cleanse" the media of reportage that casts an unfavourable light on the nuclear industry (they refer to this information as "inaccurate" or a result of "mischief." The government has even go so far as to accept bids from companies that specialise in scouring the Internet to monitor the Internet for reports, Tweets and blogs that are critical of its handling of the Daiichi disaster, which has presented a unique challenge to the lobby there.
  • "They do not know how to do it," he said of some of the community groups and individuals who have taken to measure contamination levels in the air, soil and food
  •  Japan's government has a history of slow response to TEPCO's cover-ups. In 1989, that Kei Sugaoka, a nuclear energy at General Electric who inspected and repaired plants in Japan and elsewhere, said he spotted cracks in steam dryers and a "misplacement" or 180 degrees in one dryer unit. He noticed that the position of the dryer was later omitted from the inspection record's data sheet. Sugaoka told a Japanese networkthat TEPCO had instructed him to "erase" the flaws, but he ultimately wrote a whistleblowing letter to METI, which resulted in the temporary 17 TEPCO reactors, including ones at the plant in Fukushima.
  • the Japanese nuclear lobby has been quite active in shaping how people see nuclear energy. The country's Ministry of Education, together with the Natural Resources Ministry (of of two agencies under Japan's Ministry of Economy, Trade and Industry - METI - overseeing nuclear policies) even provides schools with a nuclear energy information curriculum. These worksheets - or education supplements - are used to inform children about the benefits of nuclear energy over fossil fuels.
  • There’s reason to believe that at least in one respect, Fukushima can’t and won’t be another Chernobyl, at least due to the fact that the former has occurred in the age of the Internet whereas the latter took place in the considerably quaint 80s, when a car phone the size of a brick was considered the height of communications technology to most. "It (a successful cover up) is definitely a danger in terms of Fukushima, and we'll see what happens. All you have to do is look at the first couple of weeks after Chernobyl to see the kind of cover up," said Biello. "I mean the Soviet Union didn't even admit that anything was happening for a while, even though everybody was noticing these radiation spikes and all these other problems. The Soviet Union was not admitting that they were experiencing this catastrophic nuclear failure... in Japan, there's a consistent desire, or kind of a habit, of downplaying these accidents, when they happen. It's not as bad as it may seem, we haven't had a full meltdown."
  • Fast forward to 2011, when video clips of each puff of smoke out of the Daiichi plant make it around the world in seconds, news updates are available around the clock, activists post radiation readings on maps in multiple languages and Google Translate picks up the slack in translating every last Tweet on the subject coming out of Japan.
  • it will be a heck of a lot harder to keep a lid on things than it was 25 years ago. 
D'coda Dcoda

Fukushima radiation alarms doctors [18Aug11] - 0 views

  • Scientists and doctors are calling for a new national policy in Japan that mandates the testing of food, soil, water, and the air for radioactivity still being emitted from Fukushima's heavily damaged Daiichi nuclear power plant."How much radioactive materials have been released from the plant?" asked Dr Tatsuhiko Kodama, a professor at the Research Centre for Advanced Science and Technology and Director of the University of Tokyo's Radioisotope Centre, in a July 27 speech to the Committee of Health, Labour and Welfare at Japan's House of Representatives. "The government and TEPCO have not reported the total amount of the released radioactivity yet," said Kodama, who believes things are far worse than even the recent detection of extremely high radiation levels at the plant. There is widespread concern in Japan about a general lack of government monitoring for radiation, which has caused people to begin their own independent monitoring, which are also finding disturbingly high levels of radiation. Kodama's centre, using 27 facilities to measure radiation across the country, has been closely monitoring the situation at Fukushima - and their findings are alarming.According to Dr Kodama, the total amount of radiation released over a period of more than five months from the ongoing Fukushima nuclear disaster is the equivalent to more than 29 "Hiroshima-type atomic bombs" and the amount of uranium released "is equivalent to 20" Hiroshima bombs.
  • Kodama, along with other scientists, is concerned about the ongoing crisis resulting from the Fukushima situation, as well as what he believes to be inadequate government reaction, and believes the government needs to begin a large-scale response in order to begin decontaminating affected areas.Distrust of the Japanese government's response to the nuclear disaster is now common among people living in the effected prefectures, and people are concerned about their health.Recent readings taken at the plant are alarming.When on August 2nd readings of 10,000 millisieverts (10 sieverts) of radioactivity per hour were detected at the plant, Japan's science ministry said that level of dose is fatal to humans, and is enough radiation to kill a person within one to two weeks after the exposure. 10,000 millisieverts (mSv) is the equivalent of approximately 100,000 chest x-rays.
  • t is an amount 250 per cent higher than levels recorded at the plant in March after it was heavily damaged by the earthquake and ensuing tsunami. The operator of Japan's crippled Fukushima Daiichi nuclear power plant, Tokyo Electric Power Company (TEPCO), that took the reading, used equipment to measure radiation from a distance, and was unable to ascertain the exact level because the device's maximum reading is only 10,000 mSv. TEPCO also detected 1,000 millisieverts (mSv) per hour in debris outside the plant, as well as finding 4,000 mSv per hour inside one of the reactor buildings.
  • ...35 more annotations...
  • he Fukushima disaster has been rated as a "level seven" on the International Nuclear and Radiological Event Scale (INES). This level, the highest, is the same as the Chernobyl nuclear disaster in 1986, and is defined by the scale as: "[A] major release of radioactive material with widespread health and environmental effects requiring implementation of planned and extended countermeasures."The Fukushima and Chernobyl disasters are the only nuclear accidents to have been rated level seven on the scale, which is intended to be logarithmic, similar to the scale used to describe the comparative magnitude of earthquakes. Each increasing level represents an accident approximately ten times more severe than the previous level.
  • Doctors in Japan are already treating patients suffering health effects they attribute to radiation from the ongoing nuclear disaster."We have begun to see increased nosebleeds, stubborn cases of diarrhoea, and flu-like symptoms in children," Dr Yuko Yanagisawa, a physician at Funabashi Futawa Hospital in Chiba Prefecture, told Al Jazeera.
  • She attributes the symptoms to radiation exposure, and added: "We are encountering new situations we cannot explain with the body of knowledge we have relied upon up until now.""The situation at the Daiichi Nuclear facility in Fukushima has not yet been fully stabilised, and we can't yet see an end in sight," Yanagisawa said. "Because the nuclear material has not yet been encapsulated, radiation continues to stream into the environment."
  • Al Jazeera's Aela Callan, reporting from Japan's Ibaraki prefecture, said of the recently detected high radiation readings: "It is now looking more likely that this area has been this radioactive since the earthquake and tsunami, but no one realised until now."Workers at Fukushima are only allowed to be exposed to 250 mSv of ionising radiation per year.
  • radioactive cesium exceeding the government limit was detected in processed tea made in Tochigi City, about 160km from the troubled Fukushima Daiichi nuclear plant, according to the Tochigi Prefectural Government, who said radioactive cesium was detected in tea processed from leaves harvested in the city in early July. The level is more than 3 times the provisional government limit.
  • anagisawa's hospital is located approximately 200km from Fukushima, so the health problems she is seeing that she attributes to radiation exposure causes her to be concerned by what she believes to be a grossly inadequate response from the government.From her perspective, the only thing the government has done is to, on April 25, raise the acceptable radiation exposure limit for children from 1 mSv/year to 20 mSv/year.
  • This has caused controversy, from the medical point of view," Yanagisawa told Al Jazeera. "This is certainly an issue that involves both personal internal exposures as well as low-dose exposures."Junichi Sato, Greenpeace Japan Executive Director, said: "It is utterly outrageous to raise the exposure levels for children to twenty times the maximum limit for adults."
  • The Japanese government cannot simply increase safety limits for the sake of political convenience or to give the impression of normality."Authoritative current estimates of the health effects of low-dose ionizing radiation are published in the Biological Effects of Ionising Radiation VII (BEIR VII) report from the US National Academy of Sciences.
  • he report reflects the substantial weight of scientific evidence proving there is no exposure to ionizing radiation that is risk-free. The BEIR VII estimates that each 1 mSv of radiation is associated with an increased risk of all forms of cancer other than leukemia of about 1-in-10,000; an increased risk of leukemia of about 1-in-100,000; and a 1-in-17,500 increased risk of cancer death.
  • r Helen Caldicott, the founding president of Physicians for Social Responsibility, a group that was awarded the Nobel Peace Prize in 1985, is equally concerned about the health effects from Japan's nuclear disaster."Radioactive elements get into the testicles and ovaries, and these cause genetic disease like diabetes, cystic fibrosis, and mental retardation," she told Al Jazeera. "There are 2,600 of these diseases that get into our genes and are passed from generation to generation, forever."
  • So far, the only cases of acute radiation exposure have involved TEPCO workers at the stricken plant. Lower doses of radiation, particularly for children, are what many in the medical community are most concerned about, according to Dr Yanagisawa.
  • Humans are not yet capable of accurately measuring the low dose exposure or internal exposure," she explained, "Arguing 'it is safe because it is not yet scientifically proven [to be unsafe]' would be wrong. That fact is that we are not yet collecting enough information to prove the situations scientifically. If that is the case, we can never say it is safe just by increasing the annual 1mSv level twenty fold."
  • Her concern is that the new exposure standards by the Japanese government do not take into account differences between adults and children, since children's sensitivity to radiation exposure is several times higher than that of adults.
  • Al Jazeera contacted Prime Minister Naoto Kan's office for comment on the situation. Speaking on behalf of the Deputy Cabinet Secretary for Public Relations for the Prime Minister's office, Noriyuki Shikata said that the Japanese government "refers to the ICRP [International Commission on Radiological Protection] recommendation in 2007, which says the reference levels of radiological protection in emergency exposure situations is 20-100 mSv per year. The Government of Japan has set planned evacuation zones and specific spots recommended for evacuation where the radiation levels reach 20 mSv/year, in order to avoid excessive radiation exposure."
  • he prime minister's office explained that approximately 23bn yen ($300mn) is planned for decontamination efforts, and the government plans to have a decontamination policy "by around the end of August", with a secondary budget of about 97bn yen ($1.26bn) for health management and monitoring operations in the affected areas. When questioned about the issue of "acute radiation exposure", Shikata pointed to the Japanese government having received a report from TEPCO about six of their workers having been exposed to more than 250 mSv, but did not mention any reports of civilian exposures.
  • Prime Minister Kan's office told Al Jazeera that, for their ongoing response to the Fukushima crisis, "the government of Japan has conducted all the possible countermeasures such as introduction of automatic dose management by ID codes for all workers and 24 hour allocation of doctors. The government of Japan will continue to tackle the issue of further improving the health management including medium and long term measures". Shikata did not comment about Kodama's findings.
  • Kodama, who is also a doctor of internal medicine, has been working on decontamination of radioactive materials at radiation facilities in hospitals of the University of Tokyo for the past several decades. "We had rain in Tokyo on March 21 and radiation increased to .2 micosieverts/hour and, since then, the level has been continuously high," said Kodama, who added that his reporting of radiation findings to the government has not been met an adequate reaction. "At that time, the chief cabinet secretary, Mr Edano, told the Japanese people that there would be no immediate harm to their health."
  • Kodama is an expert in internal exposure to radiation, and is concerned that the government has not implemented a strong response geared towards measuring radioactivity in food. "Although three months have passed since the accident already, why have even such simple things have not been done yet?" he said. "I get very angry and fly into a rage."
  • Radiation has a high risk to embryos in pregnant women, juveniles, and highly proliferative cells of people of growing ages. Even for adults, highly proliferative cells, such as hairs, blood, and intestinal epithelium cells, are sensitive to radiation."
  • Early on in the disaster, Dr Makoto Kondo of the department of radiology of Keio University's School of Medicine warned of "a large difference in radiation effects on adults compared to children".Kondo explained the chances of children developing cancer from radiation exposure was many times higher than adults.
  • Children's bodies are underdeveloped and easily affected by radiation, which could cause cancer or slow body development. It can also affect their brain development," he said.Yanagisawa assumes that the Japanese government's evacuation standards, as well as their raising the permissible exposure limit to 20mSv "can cause hazards to children's health," and therefore "children are at a greater risk".
  • Nishio Masamichi, director of Japan's Hakkaido Cancer Centre and a radiation treatment specialist, published an article on July 27 titled: "The Problem of Radiation Exposure Countermeasures for the Fukushima Nuclear Accident: Concerns for the Present Situation". In the report, Masamichi said that such a dramatic increase in permitted radiation exposure was akin to "taking the lives of the people lightly". He believes that 20mSv is too high, especially for children who are far more susceptible to radiation.
  • n early July, officials with the Japanese Nuclear Safety Commission announced that approximately 45 per cent of children in the Fukushima region had experienced thyroid exposure to radiation, according to a survey carried out in late March. The commission has not carried out any surveys since then.
  • Now the Japanese government is underestimating the effects of low dosage and/or internal exposures and not raising the evacuation level even to the same level adopted in Chernobyl," Yanagisawa said. "People's lives are at stake, especially the lives of children, and it is obvious that the government is not placing top priority on the people's lives in their measures."Caldicott feels the lack of a stronger response to safeguard the health of people in areas where radiation is found is "reprehensible".
  • Millions of people need to be evacuated from those high radiation zones, especially the children."
  • Dr Yanagisawa is concerned about what she calls "late onset disorders" from radiation exposure resulting from the Fukushima disaster, as well as increasing cases of infertility and miscarriages."Incidence of cancer will undoubtedly increase," she said. "In the case of children, thyroid cancer and leukemia can start to appear after several years. In the case of adults, the incidence of various types of cancer will increase over the course of several decades."Yanagisawa said it is "without doubt" that cancer rates among the Fukushima nuclear workers will increase, as will cases of lethargy, atherosclerosis, and other chronic diseases among the general population in the effected areas.
  • Radioactive food and water
  • An August 1 press release from Japan's MHLW said no radioactive materials have been detected in the tap water of Fukushima prefecture, according to a survey conducted by the Japanese government's Nuclear Emergency Response Headquarters. The government defines no detection as "no results exceeding the 'Index values for infants (radioactive iodine)'," and says "in case the level of radioactive iodine in tap water exceeds 100 Bq/kg, to refrain from giving infants formula milk dissolved by tap water, having them intake tap water … "
  • Yet, on June 27, results were published from a study that found 15 residents of Fukushima prefecture had tested positive for radiation in their urine. Dr Nanao Kamada, professor emeritus of radiation biology at Hiroshima University, has been to Fukushima prefecture twice in order to take internal radiation exposure readings and facilitated the study.
  • The risk of internal radiation is more dangerous than external radiation," Dr Kamada told Al Jazeera. "And internal radiation exposure does exist for Fukushima residents."According to the MHLW, distribution of several food products in Fukushima Prefecture remain restricted. This includes raw milk, vegetables including spinach, kakina, and all other leafy vegetables, including cabbage, shiitake mushrooms, bamboo shoots, and beef.
  • he distribution of tealeaves remains restricted in several prefectures, including all of Ibaraki, and parts of Tochigi, Gunma, Chiba, Kanagawa Prefectures.Iwate prefecture suspended all beef exports because of caesium contamination on August 1, making it the fourth prefecture to do so.
  • yunichi Tokuyama, an expert with the Iwate Prefecture Agricultural and Fisheries Department, told Al Jazeera he did not know how to deal with the crisis. He was surprised because he did not expect radioactive hot spots in his prefecture, 300km from the Fukushima nuclear plant."The biggest cause of this contamination is the rice straw being fed to the cows, which was highly radioactive," Tokuyama told Al Jazeera.
  • Kamada feels the Japanese government is acting too slowly in response to the Fukushima disaster, and that the government needs to check radiation exposure levels "in each town and village" in Fukushima prefecture."They have to make a general map of radiation doses," he said. "Then they have to be concerned about human health levels, and radiation exposures to humans. They have to make the exposure dose map of Fukushima prefecture. Fukushima is not enough. Probably there are hot spots outside of Fukushima. So they also need to check ground exposure levels."
  • Radiation that continues to be released has global consequences.More than 11,000 tonnes of radioactive water has been released into the ocean from the stricken plant.
  • Those radioactive elements bio-concentrate in the algae, then the crustaceans eat that, which are eaten by small then big fish," Caldicott said. "That's why big fish have high concentrations of radioactivity and humans are at the top of the food chain, so we get the most radiation, ultimately."
D'coda Dcoda

Japan's Nukes Following Earthquake - 1 views

  • TEPCO has just released "diaries" from early in the accident giving us a better view of the sequence of events from the operators point of view.
  • The bulk of the materials, distributed on discs with digital files, show reams of raw numerical data. They include photos of broadsheet computer printouts and other formatted charts with thousands of data points for measurements of reactor heat, pressure, water levels, fuel rod positions and the status of cooling pumps, among other functions. Tokyo Electric, or Tepco, also released a smaller batch of more recent documents highlighting its various efforts to restore electric power to each of the reactors, a task that was achieved on April 26. But a series of what Tepco terms reactor "diaries" from the first 48 hours after the quake include the most visually arresting materials. These feature snapshots of whiteboards on which plant employees—11 of whom remained in each of the plant's three control rooms—jotted down status updates on the progress of the reactor shutdowns and steadily increasing radiation levels around the facility.
  • Using red, black or blue ink markers, the plant operators appear to have scribbled down the notes quickly. Many are smudged or illegible. Others depict complex diagrams and are peppered with technical jargon or acronyms such as SBO for "station blackout." http://online.wsj.com/article/SB10001424052748704281504576329011846064194.html
  • ...11 more annotations...
  • So helpless were the plant's engineers that, as dusk fell after Japan's devastating March 11 quake and tsunami, they were forced to scavenge flashlights from nearby homes. They pulled batteries from cars not washed away by the tsunami in a desperate effort to revive reactor gauges that weren't working properly. The plant's complete power loss contributed to a failure of relief vents on a dangerously overheating reactor, forcing workers to open valves by hand.And in a significant miscalculation: At first, engineers weren't aware that the plant's emergency batteries were barely working, the investigation found—giving them a false impression that they had more time to make repairs. As a result, nuclear fuel began melting down hours earlier than previously assumed. This week Tokyo Electric Power Co., or Tepco, confirmed that one of the plant's six reactors suffered a substantial meltdown early in Day 1. http://online.wsj.com/article/SB10001424052748704322804576302553455643510.html
  • Lots of interesting information in this paper from TEPCO:http://www.tepco.co.jp/en/nu/fukushima-np/images/handouts_110525_01-e.pdfUnits 1-4 did not have RCIC.  They had isolation condensers.  Not only that, the isolation condensers were water cooled with 8 hours of water in the condenser reservoir. 
  • HPCI required DC power to operate.  The turbine lube oil pump was DC; it didn't have a shaft oil pump.  I think this may be common here too, anyone willing to verify that?That's why they had trouble so quick:  8 hours later and without AC power they had no way to get water to the pressure vessel.  About the same time the instruments died from a lack of battery power is about the time they lost the isolation condenser from a lack of water.They also verify that they didn't have the hardened vent modification.
  • Fukushima may have a group that could tackle the nuclear crisis looming over Japan. The Skilled Veterans Corps, retired engineers and professionals, want to volunteer to work in the dangerous conditions instead of putting younger generations at risk. More than 200 Japanese retirees are seeking to replace younger workers at Fukushima while the plant is being stabilized. http://www.digitaljournal.com/article/307378
  • The Nuclear and Industrial Safety Agency (NISA) on June 6 revised the level of radioactivity of materials emitted from the crisis hit Fukushima No. 1 Nuclear Power Plant from 370,000 terabecquerels to 850,000 terabecquerels. (from 10,000,000 curies to 22,972,972.97 curies)http://mdn.mainichi.jp/mdnnews/news/20110606p2a00m0na009000c.html
  • The following article focus's on US spent fuel storage safety, Several members of Congress are calling for the fuel to be moved from the pools into dry casks at a faster clip, noting that the casks are thought to be capable of withstanding an earthquake or a plane crash, they have no moving parts and they require no electricity. but there is a reference to Fukishima's dry storage casks farther into the article.But Robert Alvarez, a former senior adviser to the secretary of energy and expert on nuclear power, points out that unlike the fuel pools, dry casks survived the tsunami at Fukushima unscathed. “They don’t get much attention because they didn’t fail,” he said.http://www.nytimes.com/2011/07/06/business/energy-environment/06cask.html?_r=2&pagewanted=1&ref=science
  • In 1967, Tepco chopped 25 meters off the 35-meter natural seawall where the reactors were to be located, according to documents filed at the time with Japanese authorities. That little-noticed action was taken to make it easier to ferry equipment to the site and pump seawater to the reactors. It was also seen as an efficient way to build the complex atop the solid base of bedrock needed to better protect the plant from earthquakes.But the razing of the cliff also placed the reactors five meters below the level of 14- to 15-meter tsunami hitting the plant March 11, triggering a major nuclear disaster resulting in the meltdown of three reactor cores.http://online.wsj.com/article/SB10001424052702303982504576425312941820794.html
  • Toyota was a key executive who was involved in the Fukushima No. 1 plant construction.It is actually common practice to build primary nuclear plant facilities directly on bedrock because of the temblor factor.Toyota also cited two other reasons for Tepco clearing away the bluff — seawater pumps used to provide coolant water needed to be set up on the ground up to 10 meters from the sea, and extremely heavy equipment, including the 500-ton reator pressure vessels, were expected to be brought in by boat.In fact, Tepco decided to build the plant on low ground based on a cost-benefit calculation of the operating costs of the seawater pumps, according to two research papers separately written by senior Tepco engineers in the 1960s.
  • If the seawater pumps were placed on high ground, their operating costs would be accordingly higher."We decided to build the plant at ground level after comparing the ground construction costs and operating costs of the circulation water pumps," wrote Hiroshi Kaburaki, then deputy head of the Tepco's construction office at the Fukushima No. 1 plant, in the January 1969 edition of Hatsuden Suiryoku, a technical magazine on power plants.Still, Tepco believed ground level was "high enough to sufficiently secure safety against tsunami and typhoon waves," wrote Seiji Saeki, then civil engineering section head of Tepco's construction office, in his research paper published in October 1967.
  • Engineers at Tohoku Electric Power Co., on the other hand, had a different take on the tsunami threat when the Onagawa nuclear plant was built in Miyagi Prefecture in the 1980s.Like Fukushima, the plant was built along the Tohoku coast and was hit by tsunami as high as 13 meters on March 11.Before building the plant, Tohoku Electric, examining historic records of tsunami reported in the region, conducted computer simulations and concluded the local coast could face tsumani of up to 9.1 meters.Tohoku Electric had set the construction ground level at 14.8 meters above sea level — which barely spared the Onagawa plant from major damage from 13-meter-high tsunami that hit in March.
  • Former Tepco worker Naganuma said many locals now feel they have been duped by Tepco's long-running propaganda on the safety of its nuclear facilities, despite the huge economic benefits the plant brought to his hometown of Okuma, which hosts the Fukushima No. 1 plant.
  •  
    from a nuclear worker's forum so the dates run from May 20, 2011 to July 15, 2011...these are the points these nuclear workers thought important about Fukushima
D'coda Dcoda

News: Helicopter monitoring data is published [06Oct11] - 0 views

  • Ministry of Education, Culture, Sports, Science and Technology quit measuring plutonium but they mistakenly published the contamination map of Tokyo, Kanagawa and north Kanto area. It was measured by a helicopter. Page 3 Radiation level of Tokyo (1m from the ground) Page 4 Cesium 134+137 on the ground in Tokyo Page 5 Cesium 134 on the ground in Tokyo Page 6 Cesium 137 on the ground in Tokyo Page 7 Radiation level of Kanagawa (1m from the ground)
  • Page 8 Cesium 134+137 on the ground in Kanagawa Page 9 Cesium 134 on the ground in Kanagawa Page 10 Cesium 137 on the ground in Kanagawa Page 11 Radiation level of north kanto (1m from the ground) Page 12 Cesium 134+137 on the ground in north Kanto Page 13 Cesium 134 on the ground in north Kanto Page 14 Cesium 137 on the ground in north Kanto Overview: Gunma, Tochigi, and north Chiba have hot spots. also, Katsushika, Hachioji, and western part of Tokyo are very contaminated.
  •  
    The actual document is also here but in Japanese
D'coda Dcoda

Economic Aspects of Nuclear Fuel Reprocessing [12Jul05] - 0 views

  • On Tuesday, July 12, the Energy Subcommittee of the House Committee on Science will hold a hearing to examine whether it would be economical for the U.S. to reprocess spent nuclear fuel and what the potential cost implications are for the nuclear power industry and for the Federal Government. This hearing is a follow-up to the June 16 Energy Subcommittee hearing that examined the status of reprocessing technologies and the impact reprocessing would have on energy efficiency, nuclear waste management, and the potential for proliferation of weapons-grade nuclear materials.
  • Dr. Richard K. Lester is the Director of the Industrial Performance Center and a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. He co-authored a 2003 study entitled The Future of Nuclear Power. Dr. Donald W. Jones is Vice President of Marketing and Senior Economist at RCF Economic and Financial Consulting, Inc. in Chicago, Illinois. He co-directed a 2004 study entitled The Economic Future of Nuclear Power. Dr. Steve Fetter is the Dean of the School of Public Policy at the University of Maryland. He co-authored a 2005 paper entitled The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Mr. Marvin Fertel is the Senior Vice President and Chief Nuclear Officer at the Nuclear Energy Institute.
  • 3. Overarching Questions  Under what conditions would reprocessing be economically competitive, compared to both nuclear power that does not include fuel reprocessing, and other sources of electric power? What major assumptions underlie these analyses?  What government subsidies might be necessary to introduce a more advanced nuclear fuel cycle (that includes reprocessing, recycling, and transmutation—''burning'' the most radioactive waste products in an advanced reactor) in the U.S.?
  • ...13 more annotations...
  • 4. Brief Overview of Nuclear Fuel Reprocessing (from June 16 hearing charter)  Nuclear reactors generate about 20 percent of the electricity used in the U.S. No new nuclear plants have been ordered in the U.S. since 1973, but there is renewed interest in nuclear energy both because it could reduce U.S. dependence on foreign oil and because it produces no greenhouse gas emissions.  One of the barriers to increased use of nuclear energy is concern about nuclear waste. Every nuclear power reactor produces approximately 20 tons of highly radioactive nuclear waste every year. Today, that waste is stored on-site at the nuclear reactors in water-filled cooling pools or, at some sites, after sufficient cooling, in dry casks above ground. About 50,000 metric tons of commercial spent fuel is being stored at 73 sites in 33 states. A recent report issued by the National Academy of Sciences concluded that this stored waste could be vulnerable to terrorist attacks.
  • Under the current plan for long-term disposal of nuclear waste, the waste from around the country would be moved to a permanent repository at Yucca Mountain in Nevada, which is now scheduled to open around 2012. The Yucca Mountain facility continues to be a subject of controversy. But even if it opened and functioned as planned, it would have only enough space to store the nuclear waste the U.S. is expected to generate by about 2010.  Consequently, there is growing interest in finding ways to reduce the quantity of nuclear waste. A number of other nations, most notably France and Japan, ''reprocess'' their nuclear waste. Reprocessing involves separating out the various components of nuclear waste so that a portion of the waste can be recycled and used again as nuclear fuel (instead of disposing of all of it). In addition to reducing the quantity of high-level nuclear waste, reprocessing makes it possible to use nuclear fuel more efficiently. With reprocessing, the same amount of nuclear fuel can generate more electricity because some components of it can be used as fuel more than once.
  • The greatest drawback of reprocessing is that current reprocessing technologies produce weapons-grade plutonium (which is one of the components of the spent fuel). Any activity that increases the availability of plutonium increases the risk of nuclear weapons proliferation.  Because of proliferation concerns, the U.S. decided in the 1970s not to engage in reprocessing. (The policy decision was reversed the following decade, but the U.S. still did not move toward reprocessing.) But the Department of Energy (DOE) has continued to fund research and development (R&D) on nuclear reprocessing technologies, including new technologies that their proponents claim would reduce the risk of proliferation from reprocessing.
  • The report accompanying H.R. 2419, the Energy and Water Development Appropriations Act for Fiscal Year 2006, which the House passed in May, directed DOE to focus research in its Advanced Fuel Cycle Initiative program on improving nuclear reprocessing technologies. The report went on to state, ''The Department shall accelerate this research in order to make a specific technology recommendation, not later than the end of fiscal year 2007, to the President and Congress on a particular reprocessing technology that should be implemented in the United States. In addition, the Department shall prepare an integrated spent fuel recycling plan for implementation beginning in fiscal year 2007, including recommendation of an advanced reprocessing technology and a competitive process to select one or more sites to develop integrated spent fuel recycling facilities.''
  • During floor debate on H.R. 2419, the House defeated an amendment that would have cut funding for research on reprocessing. In arguing for the amendment, its sponsor, Mr. Markey, explicitly raised the risks of weapons proliferation. Specifically, the amendment would have cut funding for reprocessing activities and interim storage programs by $15.5 million and shifted the funds to energy efficiency activities, effectively repudiating the report language. The amendment was defeated by a vote of 110–312.
  • But nuclear reprocessing remains controversial, even within the scientific community. In May 2005, the American Physical Society (APS) Panel on Public Affairs, issued a report, Nuclear Power and Proliferation Resistance: Securing Benefits, Limiting Risk. APS, which is the leading organization of the Nation's physicists, is on record as strongly supporting nuclear power. But the APS report takes the opposite tack of the Appropriations report, stating, ''There is no urgent need for the U.S. to initiate reprocessing or to develop additional national repositories. DOE programs should be aligned accordingly: shift the Advanced Fuel Cycle Initiative R&D away from an objective of laying the basis for a near-term reprocessing decision; increase support for proliferation-resistance R&D and technical support for institutional measures for the entire fuel cycle.''  Technological as well as policy questions remain regarding reprocessing. It is not clear whether the new reprocessing technologies that DOE is funding will be developed sufficiently by 2007 to allow the U.S. to select a technology to pursue. There is also debate about the extent to which new technologies can truly reduce the risks of proliferation.
  •  It is also unclear how selecting a reprocessing technology might relate to other pending technology decisions regarding nuclear energy. For example, the U.S. is in the midst of developing new designs for nuclear reactors under DOE's Generation IV program. Some of the potential new reactors would produce types of nuclear waste that could not be reprocessed using some of the technologies now being developed with DOE funding.
  • 5. Brief Overview of Economics of Reprocessing
  • The economics of reprocessing are hard to predict with any certainty because there are few examples around the world on which economists might base a generalized model.  Some of the major factors influencing the economic competitiveness of reprocessing are: the availability and cost of uranium, costs associated with interim storage and long-term disposal in a geologic repository, reprocessing plant construction and operating costs, and costs associated with transmutation, the process by which certain parts of the spent fuel are actively reduced in toxicity to address long-term waste management.
  • Costs associated with reducing greenhouse gas emissions from fossil fuel-powered plants could help make nuclear power, including reprocessing, economically competitive with other sources of electricity in a free market.
  •  It is not clear who would pay for reprocessing in the U.S.
  • Three recent studies have examined the economics of nuclear power. In a study completed at the Massachusetts Institute of Technology in 2003, The Future of Nuclear Power, an interdisciplinary panel, including Professor Richard Lester, looked at all aspects of nuclear power from waste management to economics to public perception. In a study requested by the Department of Energy and conducted at the University of Chicago in 2004, The Economic Future of Nuclear Power, economist Dr. Donald Jones and his colleague compared costs of future nuclear power to other sources, and briefly looked at the incremental costs of an advanced fuel cycle. In a 2003 study conducted by a panel including Matthew Bunn (a witness at the June 16 hearing) and Professor Steve Fetter, The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel, the authors took a detailed look at the costs associated with an advanced fuel cycle. All three studies seem more or less to agree on cost estimates: the incremental cost of nuclear electricity to the consumer, with reprocessing, could be modest—on the order of 1–2 mills/kWh (0.1–0.2 cents per kilowatt-hour); on the other hand, this increase represents an approximate doubling (at least) of the costs attributable to spent fuel management, compared to the current fuel cycle (no reprocessing). Where they strongly disagree is on how large an impact this incremental cost will have on the competitiveness of nuclear power. The University of Chicago authors conclude that the cost of reprocessing is negligible in the big picture, where capital costs of new plants dominate all economic analyses. The other two studies take a more skeptical view—because new nuclear power would already be facing tough competition in the current market, any additional cost would further hinder the nuclear power industry, or become an unacceptable and unnecessary financial burden on the government.
  • 6. Background
  •  
    Report from the Subcommitte on Energy, Committee on Science for House of Representatives. Didn't highlight the entire article, see site for the rest.
D'coda Dcoda

Secret US-Israeli Nuke Weapons Transfers Led To Fukushima Blasts [03Oct11] - 0 views

  • Sixteen tons and what you get is a nuclear catastrophe. The explosions that rocked the Fukushima No.1 nuclear plant were more powerful than the combustion of hydrogen gas, as claimed by the Tokyo Electric Power Company. The actual cause of the blasts, according to intelligence sources in Washington, was nuclear fission of. warhead cores illegally taken from America's sole nuclear-weapons assembly facility. Evaporation in the cooling pools used for spent fuel rods led to the detonation of stored weapons-grade plutonium and uranium.   The facts about clandestine American and Israeli support for Japan's nuclear armament are being suppressed in the biggest official cover-up in recent history. The timeline of events indicates the theft from America's strategic arsenal was authorized at the highest level under a three-way deal between the Bush-Cheney team, Prime Minister Shinzo Abe and Elhud Olmert's government in Tel Aviv.
  • Tokyo's Strangelove   In early 2007, Vice President Dick Cheney flew to Tokyo with his closest aides. Newspaper editorials noted the secrecy surrounding his visit - no press conferences, no handshakes with ordinary folks and, as diplomatic cables suggest, no briefing for U.S. Embassy staffers in Tokyo.   Cheney snubbed Defense Minister Fumio Kyuma, who was shut out of confidential talks. The pretext was his criticism of President George Bush for claiming Iraq possessed weapons of mass destruction. The more immediate concern was that the defense minister might disclose bilateral secrets to the Pentagon. The Joint Chiefs of Staff were sure to oppose White House approval of Japan's nuclear program.
  • Abe has wide knowledge of esoteric technologies. His first job in the early 1980s was as a manager at Kobe Steel. One of the researchers there was astrophysicist Hideo Murai, who adapted Soviet electromagnetic technology to "cold mold" steel. Murai later became chief scientist for the Aum Shinrikyo sect, which recruited Soviet weapons technicians under the program initiated by Abe's father. After entering government service, Abe was posted to the U.S. branch of JETRO (Japan External Trade Organization). Its New York offices hosted computers used to crack databases at the Pentagon and major defense contractors to pilfer advanced technology. The hacker team was led by Tokyo University's top gamer, who had been recruited into Aum.   After the Tokyo subway gassing in 1995, Abe distanced himself from his father's Frankenstein cult with a publics-relations campaign. Fast forward a dozen years and Abe is at Camp David. After the successful talks with Bush, Abe flew to India to sell Cheney's quadrilateral pact to a Delhi skeptical about a new Cold War. Presumably, Cheney fulfilled his end of the deal. Soon thereafter Hurricane Katrina struck, wiping away the Abe visit from the public memory.
  • ...9 more annotations...
  • Since the Liberal Democratic Party selected him as prime minister in September 2006, the hawkish Abe repeatedly called for Japan to move beyond the postwar formula of a strictly defensive posture and non-nuclear principles. Advocacy of a nuclear-armed Japan arose from his family tradition. His grandfather Nobusuke Kishi nurtured the wartime atomic bomb project and, as postwar prime minister, enacted the civilian nuclear program. His father Shintaro Abe, a former foreign minister, had played the Russian card in the 1980s, sponsoring the Russo-Japan College, run by the Aum Shinrikyo sect (a front for foreign intelligence), to recruit weapons scientists from a collapsing Soviet Union.   The chief obstacle to American acceptance of a nuclear-armed Japan was the Pentagon, where Pearl Harbor and Hiroshima remain as iconic symbols justifying American military supremacy.The only feasible channel for bilateral transfers then was through the civilian-run Department of Energy (DoE), which supervises the production of nuclear weapons.
  • Camp David Go-Ahead   The deal was sealed on Abe's subsequent visit to Washington. Wary of the eavesdropping that led to Richard Nixon's fall from grace, Bush preferred the privacy afforded at Camp David. There, in a rustic lodge on April 27, Bush and Abe huddled for 45 minutes. What transpired has never been revealed, not even in vague outline.   As his Russian card suggested, Abe was shopping for enriched uranium. At 99.9 percent purity, American-made uranium and plutonium is the world's finest nuclear material. The lack of mineral contaminants means that it cannot be traced back to its origin. In contrast, material from Chinese and Russian labs can be identified by impurities introduced during the enrichment process.
  • The flow of coolant water into the storage pools ceased, quickening evaporation. Fission of the overheated cores led to blasts and mushroom-clouds. Residents in mountaintop Iitate village overlooking the seaside plant saw plumes of smoke and could "taste the metal" in their throats.   Guilty as Charged   The Tohoku earthquake and tsunami were powerful enough to damage Fukushima No.1. The natural disaster, however, was vastly amplified by two external factors: release of the Stuxnet virus, which shut down control systems in the critical 20 minutes prior to the tsunami; and presence of weapons-grade nuclear materials that devastated the nuclear facility and contaminated the entire region.   Of the three parties involved, which bears the greatest guilt? All three are guilty of mass murder, injury and destruction of property on a regional scale, and as such are liable for criminal prosecution and damages under international law and in each respective jurisdiction.
  • An unannounced reason for Cheney's visit was to promote a quadrilateral alliance in the Asia-Pacific region. The four cornerstones - the US, Japan, Australia and India - were being called on to contain and confront China and its allies North Korea and Russia.. From a Japanese perspective, this grand alliance was flawed by asymmetry: The three adversaries were nuclear powers, while the U.S. was the only one in the Quad group.   To further his own nuclear ambitions, Abe was playing the Russian card. As mentioned in a U.S. Embassy cable (dated 9/22), the Yomiuri Shimbun gave top play to this challenge to the White House : "It was learned yesterday that the government and domestic utility companies have entered final talks with Russia in order to relegate uranium enrichment for use at nuclear power facilities to Atomprom, the state-owned nuclear monopoly." If Washington refused to accept a nuclear-armed Japan, Tokyo would turn to Moscow.
  • Throughout the Pantex caper, from the data theft to smuggling operation, Bush and Cheney's point man for nuclear issues was DoE Deputy Director Clay Sell, a lawyer born in Amarillo and former aide to Panhandle district Congressman Mac Thornberry. Sell served on the Bush-Cheney transition team and became the top adviser to the President on nuclear issues. At DoE, Sell was directly in charge of the U.S. nuclear weapons complex, which includes 17 national laboratories and the Pantex plant. (Another alarm bell: Sell was also staff director for the Senate Energy subcommittee under the late Sen. Ted Stevens of Alaska, who died in a 2010 plane crash.)   An Israeli Double-Cross   The nuclear shipments to Japan required a third-party cutout for plausible deniability by the White House. Israel acted less like an agent and more like a broker in demanding additional payment from Tokyo, according to intelligence sources. Adding injury to insult, the Israelis skimmed off the newer warhead cores for their own arsenal and delivered older ones. Since deteriorated cores require enrichment, the Japanese were furious and demanded a refund, which the Israelis refused. Tokyo had no recourse since by late 2008 principals Abe had resigned the previous autumn and Bush was a lame duck.
  • The Japanese nuclear developers, under the Ministry of Economy, Trade and Industry, had no choice but to enrich the uranium cores at Fukushima No.1, a location remote enough to evade detection by nonproliferation inspectors. Hitachi and GE had developed a laser extraction process for plutonium, which requires vast amounts of electrical power. This meant one reactor had to make unscheduled runs, as was the case when the March earthquake struck.   Tokyo dealt a slap on the wrist to Tel Aviv by backing Palestinian rights at the UN. Not to be bullied, the Israeli secret service launched the Stuxnet virus against Japan's nuclear facilities.   Firewalls kept Stuxnet at bay until the Tohoku earthquake. The seismic activity felled an electricity tower behind Reactor 6. The power cut disrupted the control system, momentarily taking down the firewall. As the computer came online again, Stuxnet infiltrated to shut down the back-up generators. During the 20-minute interval between quake and tsunami, the pumps and valves at Fukushima No.1 were immobilized, exposing the turbine rooms to flood damage.
  • The Texas Job   BWXT Pantex, America's nuclear warhead facility, sprawls over 16,000 acres of the Texas Panhandle outside Amarillo. Run by the DoE and Babcock & Wilson, the site also serves as a storage facility for warheads past their expiration date. The 1989 shutdown of Rocky Flats, under community pressure in Colorado, forced the removal of those nuclear stockpiles to Pantex. Security clearances are required to enter since it is an obvious target for would-be nuclear thieves.   In June 2004, a server at the Albuquerque office of the National Nuclear Security System was hacked. Personal information and security-clearance data for 11 federal employees and 177 contractors at Pantex were lifted. NNSA did not inform Energy Secretary Samuel Bodman or his deputy Clay Sell until three months after the security breach, indicating investigators suspected an inside job.
  • The White House, specifically Bush, Cheney and their co-conspirators in the DoE, hold responsibility for ordering the illegal removal and shipment of warheads without safeguards.   The state of Israel is implicated in theft from U.S. strategic stockpiles, fraud and extortion against the Japanese government, and a computer attack against critical infrastructure with deadly consequences, tantamount to an act of war.   Prime Minister Abe and his Economy Ministry sourced weapons-grade nuclear material in violation of constitutional law and in reckless disregard of the risks of unregulated storage, enrichment and extraction. Had Abe not requested enriched uranium and plutonium in the first place, the other parties would not now be implicated. Japan, thus, bears the onus of the crime.
  • The International Criminal Court has sufficient grounds for taking up a case that involves the health of millions of people in Japan, Canada, the United States, Russia, the Koreas, Mongolia, China and possibly the entire Northern Hemisphere. The Fukushima disaster is more than an human-rights charge against a petty dictator, it is a crime against humanity on par with the indictments at the Nuremberg and Tokyo tribunals. Failure to prosecute is complicity.   If there is a silver lining to every dark cloud, it's that the Tohoku earthquake and tsunami saved the world from even greater folly by halting the drive to World War III.
  •  
    A very important report from ex-Japanese Times reporter, Yoichi Shimatsu
D'coda Dcoda

How I spent my Sunday in Fukushima » Safecast [08Aug11] - 0 views

  • This morning Pieter, Xeni and I (pictured above) set out with Miles, along with father/son superteam Joe and Bryan Moross. The plan was to drop off a few Geiger counters with volunteers and try to cover some some new ground, perhaps near the exclusion zone. But it ended up being so much more.
  • The day began in Shinjuku around close to 7:30am when we picked up a rental car, this was a large group with a lot of gear so we had a need for two vehicles and the usual Safecast car on it’s own wasn’t quite enough. We wasted no time and started driving north. Depending on where you are in the city, background radiation levels in Tokyo hover right around 50 CPM which is only slightly higher than what we believe they were prior to 3/11 though we weren’t measuring things then so can’t be positive. For our purposes we are assuming the average around the country was 35 CPM which is worth noting before I start mentioning numbers going forward. It wasn’t too long in our trip before we hit our first hotspot in Nasu.
  • Our first stop was Nihonmatsu which is not too far from Koriyama to meet up with some volunteers in the area and hand out a few new sensors for them to take measurements with. We met at restaurant and of course started measuring things the moment we set foot in the parking lot. Levels were noticeably higher than we’d seen just a few hours prior in Tokyo.
  • ...14 more annotations...
  • Another bit worth noting here in case you haven’t been following along with the work Safecast has been doing so far, surface contamination is much higher than air contamination. There are two main reasons for this – “Fallout” literally means this radioactive crap fell out of the sky and found it’s new home on the ground, and much of contents of said crap are beta emitters. Beta radiation is lower energy than gamma so you need to get close to it to measure it – which in this case is the ground. If you only measure the air you miss the betas all together. Anyway. Surface is higher than air, and around 3000 CPM on the ground in the parking lot here is 10X the air levels. As occasionally happens when we are measuring out in public, people approach us to find out what we’re doing.
  • People are curious, and often they are concerned. Hiroko Ouchi was both. On top of that she was upset. She said that she hasn’t been able to get any information about the levels around them, the levels they are living in from the government or TEPCO. She said at first she wasn’t concerned because residents were told everything was fine and not to worry, but over time people started taking readings on their own and hearing about readings taken by others that suggested things weren’t all fine and this really stressed her out. This area is far enough away from the plant that no one is being officially evacuated, which means anyone who wants to leave has to do it on their own and pay for it themselves. This has caused a lot of trauma in the community as some people leave and some people stay. Ouchi-san said it is very upsetting for people to be in this position and have their questions go unanswered.
  • Once back in the car we decided to head east and see how close we could get to the exclusion zone. We watched the readings rise and fall, though generally increase on the whole the further we went. We have a device outside of the car, and several inside taking readings. At many points we would see a 25% increase depending on which side of the car we pointed a device towards. Very quick changes in very small areas here. At one point things seemed to be increasing very rapidly and at much higher jumps than we’d seen previously. We were so distracted by the drastic readings that we almost ran right into a roadblock staffed by several police officers who were standing around in the street. We turned past them and drove down the road a short ways and then stopped to look at our devices which were completely blowing up.
  • On my last transatlantic flight I measured over 800 CPM on the flight. Seeing over 1000 CPM in the car was a bit shocking, opening the door and putting the device on the ground in the middle of the street and seeing it climb, in a matter of seconds, to almost 16,000 CPM was, well, I still don’t even know how to describe it. I was completely taken aback by this. We were maybe one city block from where the officers were standing – outside and unprotected and decided we needed to go back and talk to them.
  • The officers were very polite and happy to talk to us. We asked them if they were concerned that they were standing outside all day with no protective gear and they told us their bosses have assured them it is perfectly safe and so they have to trust them. We told them about the readings we’d taken just steps from where they were and offered to show them personally that the levels were incredibly high – they declined saying they needed to trust the authorities. Which was weird, because to most people – they are the authorities
  • We measure radiation all the time, and were noticeably shaken after seeing the readings we just had, and these guys were being told there was nothing to worry about. Suddenly some sort of commanding officer arrived and told us we had to leave and everyone stopped talking to us. Like turning off a switch.
  • We got back in the car and drove about 1km away the other direction away from the roadblock.
  • There was a small restaurant that was closed up and seemed like a good place to stop, take some measurements and talk about what had just happened
  • This restaurant had signs taped in the window saying basically “Sorry we are closed for an undetermined period of time. Will try to reopen in the spring.”
  • It was here that we took our highest and most concerning readings of the day. The parking lot of the restaurant was active, but less than we’d just seen. But when we walked across the street – maybe 10 feet away, we measured over 20,000 CPM and 9 µSv/hr. We pulled out our SAM 940 to try and identify the isotopes and found things we weren’t expecting at all. So we grabbed some samples to send to a lab for professional analysis and got out of there quick.
  • As we were starting to wrap up a car drove by and came to a quick stop. Two gentlemen got out, one of them was a reporter for Asahi TV and the other was Tadao Mumakata, a resident of Koroyama who is working on a way to produce geiger counters locally. They knew about Safecast and were excited to run into us. We talked for a while and then decided to go get some food before heading back to Tokyo. We stopped at a smallish family restaurant and talked about our plans and goals, geiger counts and what we’d learned – hoping to pass some of this on and hopefully help someone skip over some of the early mistakes we’d made ourselves. They were happy for the info and we exchanged contacts for further discussion.
  • around 2:30 am we made it back and started dropping people off at their respective houses/hotels. But no spare moment could be wasted. At the final stop we uploaded the log files from the bGeigie – the geiger counter we had mounted outside of the car all day logging radiation and mapping it against GPS points. This produces a map of the whole drive, and dumps the data into our full database, filling in a few more pieces of the big picture.
  • And it really is a big picture. These places have never had the kinds of detailed measurements we’re taking, and the measurements that have happened haven’t been shared openly with the residents – who without question are the ones who need to have that info the most. I’ve known this since we started the project but seeing it first hand today and hearing people thank us for trying and for caring was heavy. This project is important and I’m so honored to be a part of it, and so glad to have others involved who have done the impossible to get us this far already.
  • Please contact Japan cat network (www.japancatnet.com)( my friends David/Susan) and /or JEARS (Japan earthquake animal rescue) on FB as they are doing great work in that evacuated area and perhaps would be interested in a collaborative effort to get data and ensure animal safety.
  •  
    These reports are coming from a volunteer group that's independently mapping radiation levels in Japan.
D'coda Dcoda

Fukushima: Towards the Formation of a Radioactive Graveyard in the Pacific Ocean? [22Oc... - 0 views

  • No one wants to think about the massive aqueous deposition of radioactive materials into the Pacific Ocean, that much is now clear. By September estimates of released contamination had risen to over  3,500 terabecquerels of cesium-137 released into the sea directly from the plant between March 11 and the end of May. Another 10,000 terabecquerels of cesium fell into the ocean after escaping from the reactors in the form of steam.
  • "The question is, what is a reasonable interval to give people information?" said Dr. Robert Peter Gale, an American physician and expert on radiation who consulted on the 1986 nuclear disaster in Chernobyl and is now advising Japan's government. "Instead of just releasing each data point you get, sometimes it's better to base things on an average of readings over a period of time." Source: LA Times
  • Experts Don't Fear A Radiation Graveyard Water was constantly required for the workers to be able to get any cooling into Reactors 1-4, when water went in, steam came out.  The ocean quickly became the radiation dumping ground, as untold tonnes of contaminated water has been confirmed to have directly flowed into the ocean, and TEPCO continually assured Japanese citizens that the majority of dispersal would occur over the Pacific.
  • ...11 more annotations...
  • TEPCO intentionally dumped radioactive materials into the ocean, as they had no additional room for storage, the levels showed no signs of decreasing, and all desalination hopes were falling woefully short.  It would also be found that many leaks around, and inside of the reactors were also finding their way into the Pacific, but the public was told that there would not be any risk to them, or the living creatures in the sea. After 7 months however, impact can be found all over the island nation, and spreading throughout the ocean, despite the expectations it would merely be diluted exponentially. In September, scientists from the government's Meteorological Research Institute and the Central Research Institute of the Electric Power Industry announced their findings at a meeting of the Geochemical Society of Japan, adding that some of the cesium will also flow into the Indian Ocean and, eventually, reach the Atlantic.
  • Floating Radioactive Debris Reaching Hawaii Sooner Than Expected The researchers believed that the cesium had initially dispersed into the Pacific from the coast of Fukushima Prefecture but would be taken to the southwest by the prevailing currents at a depth of around 1,300 feet. Researchers thought it would take years to reach the islands. But now, according to a University of Hawaii researchers, the debris will arrive sooner than expected.  ....Since the March 11th earthquake and tsunami, researchers have been predicting it would take about two years for the debris from Japan to hit Hawaii's west-facing beaches. “We have a rough estimate of 5 to 20 million tons of debris coming from Japan,” said UH computer programming researcher Jan Hafner.
  • ..Their path back to Russia crossed exactly across the projected field of the debris.  Soon after passing the Midway Islands on Sept. 22, they hit the edge of the tsunami debris.   “They saw some pieces of furniture, some appliances, anything that can float, and they picked up a fishing boat,” said Hafner.  It was a 20-foot fishing boat with the word "Fukushima" on it.  “That's actually our first confirmed report of tsunami debris,” said Hafner...  Source: kitv.com 
  • The Public Concern Was Never Really An 'Official' concern In the first few days after the March 11 earthquake and tsunami that damaged the Fukushima Daiichi power plant, government authorities and the company were criticized for not providing information in a timely fashion. A Kyodo News survey released Sunday found that 58% of respondents did not approve of the government's handling of the crisis at the nuclear plant. More than two weeks later, updates provided via news conferences, press releases, data charts and Twitter feeds have become very frequent and very technical. To a lay person, the onslaught of numbers and unfamiliar terms can feel indecipherable.
  • Initially reports had quieted concerns by stating that the materials would be diluted so vastly that the radioactivity would not be able to accumulate, and would not affect the environment.  The experts claimed they would track the deposition and floating radioactive debris field making its way on a trans-Pacific trip to the United States. Apparently, the experts in Japan didn't get the message.  The Japanese regularly tested the seawater only for 'popular' Iodine and Cesium isotopes instead of all known fission-produced radioactive materials, for the first 3 months after the disaster.  By March 31st, radioactive contamination concentration was 4,385 times the legal limit, up from 3,355 times on Tuesday, according to Kyodo. In response, the government had pledged to increase radiation monitoring on land and by sea and to consider increasing the evacuation zone — however time has shown little action would follow these vows.
  • This ruse would only work, if the officials could hold off on monitoring and tracking the deposition as long as possible, until the plume had finally moved away from the coastline. TEPCO had intentionally dumped over 11 tons of water in the first few weeks, all of which contained high concentrations of radioactive materials. There would be further reports that would be difficult to quantify, including unknown amount of contaminated water leaked into the ocean from a damaged reservoir, and a plethora of uncharted and un-monitored leaks from the reactors. After dealing with the spring, the tsunami season arrived and even more contamination entered the sea through fallout from the air, and through precipitation runoff.
  • By March 26th, the news broke that levels near the reactor were 1,250 times the legal limits, as the levels of I-131 reported just a few hundred meters offshore boomed to ten times the already increased levels in a matter of days.  Tepco also reported levels of caesium-137 - which has a longer half life of about 30 years - almost 80 times the legal maximum. Findings throughout the summer challenged experts and officials however, as radiation levels found contamination in some parts had risen over 3,000 times the normal levels. "This is a relatively high level," nuclear safety agency official Hidehiko Nishiyama said in a televised news conference. Drinking 500ml of fresh water with the same concentration would expose a person to their annual safe dose, Mr Nishiyama said, but he ruled out an immediate threat to aquatic life and seafood safety.
  • "Generally speaking, radioactive material released into the sea will spread due to tides, so you need much more for seaweed and sea life to absorb it," Mr Nishiyama said. Pledges to Monitor and Track Contamination Left Unattended Japanese officials said they would check the seawater about 20 miles (30km) off the coast for radiation back in March, yet even though finding contamination, resumed testing withing 20 km, and downplayed the effects by stating they expected it to show there is no need to be concerned about any possible effect to fish.
  • By the time that current reaches the Central Pacific, there are branches heading more towards Alaska and the South—that gets harder to predict,” said Ken Buesseler, a senior scientist with the Woods Hole Oceanographic Institute told Jeff McMahon, a reporter for Forbes. “But that’s one of the things that several people hope to do by measuring these isotopes even at levels when they’re not harmful. We could actually track those ocean currents and better understand the circulation pattern in the Pacific.” Japanese Science and Fisheries Agencies Late Decision to Expand Testing On Marine Products to Weekly Testing 20-30 km Around Fukushima Daiichi
  • The science ministry and the Fisheries Agency will strengthen testing on marine products and widen the survey for seawater for radiation contamination from the damaged Fukushima No.1 nuclear power plant. The tests on marine products will be conducted once a week, in principle, depending on the size of the fish hauls, in Fukushima, Miyagi and Ibaraki prefectures. The government eased restrictions on land use outside the 20-kilometer no-entry zone around the plant in September. It will now test waters 20-30 km from the plant for radiation, and eventually survey seawater beyond 280 km from the coast using more accurate instruments, officials said.
  • Sources: ajw.asahi.com, via Nuclear News | What The Physics? Forbes.com SkyNews TEPCO IAEA
D'coda Dcoda

Scientists Radically Raise Estimates of Fukushima Fallout [25Oct11] - 0 views

  • The disaster at the Fukushima Daiichi nuclear plant in March released far more radiation than the Japanese government has claimed. So concludes a study1 that combines radioactivity data from across the globe to estimate the scale and fate of emissions from the shattered plant. The study also suggests that, contrary to government claims, pools used to store spent nuclear fuel played a significant part in the release of the long-lived environmental contaminant caesium-137, which could have been prevented by prompt action. The analysis has been posted online for open peer review by the journal Atmospheric Chemistry and Physics.
  • Andreas Stohl, an atmospheric scientist with the Norwegian Institute for Air Research in Kjeller, who led the research, believes that the analysis is the most comprehensive effort yet to understand how much radiation was released from Fukushima Daiichi. "It's a very valuable contribution," says Lars-Erik De Geer, an atmospheric modeller with the Swedish Defense Research Agency in Stockholm, who was not involved with the study. The reconstruction relies on data from dozens of radiation monitoring stations in Japan and around the world. Many are part of a global network to watch for tests of nuclear weapons that is run by the Comprehensive Nuclear-Test-Ban Treaty Organization in Vienna. The scientists added data from independent stations in Canada, Japan and Europe, and then combined those with large European and American caches of global meteorological data.
  • Stohl cautions that the resulting model is far from perfect. Measurements were scarce in the immediate aftermath of the Fukushima accident, and some monitoring posts were too contaminated by radioactivity to provide reliable data. More importantly, exactly what happened inside the reactors — a crucial part of understanding what they emitted — remains a mystery that may never be solved. "If you look at the estimates for Chernobyl, you still have a large uncertainty 25 years later," says Stohl. Nevertheless, the study provides a sweeping view of the accident. "They really took a global view and used all the data available," says De Geer.
  • ...7 more annotations...
  • Challenging numbers Japanese investigators had already developed a detailed timeline of events following the 11 March earthquake that precipitated the disaster. Hours after the quake rocked the six reactors at Fukushima Daiichi, the tsunami arrived, knocking out crucial diesel back-up generators designed to cool the reactors in an emergency. Within days, the three reactors operating at the time of the accident overheated and released hydrogen gas, leading to massive explosions. Radioactive fuel recently removed from a fourth reactor was being held in a storage pool at the time of the quake, and on 14 March the pool overheated, possibly sparking fires in the building over the next few days.
  • But accounting for the radiation that came from the plants has proved much harder than reconstructing this chain of events. The latest report from the Japanese government, published in June, says that the plant released 1.5 × 1016 bequerels of caesium-137, an isotope with a 30-year half-life that is responsible for most of the long-term contamination from the plant2. A far larger amount of xenon-133, 1.1 × 1019 Bq, was released, according to official government estimates.
  • Stohl believes that the discrepancy between the team's results and those of the Japanese government can be partly explained by the larger data set used. Japanese estimates rely primarily on data from monitoring posts inside Japan3, which never recorded the large quantities of radioactivity that blew out over the Pacific Ocean, and eventually reached North America and Europe. "Taking account of the radiation that has drifted out to the Pacific is essential for getting a real picture of the size and character of the accident," says Tomoya Yamauchi, a radiation physicist at Kobe University who has been measuring radioisotope contamination in soil around Fukushima. Click for full imageStohl adds that he is sympathetic to the Japanese teams responsible for the official estimate. "They wanted to get something out quickly," he says. The differences between the two studies may seem large, notes Yukio Hayakawa, a volcanologist at Gunma University who has also modelled the accident, but uncertainties in the models mean that the estimates are actually quite similar.
  • The new study challenges those numbers. On the basis of its reconstructions, the team claims that the accident released around 1.7 × 1019 Bq of xenon-133, greater than the estimated total radioactive release of 1.4 × 1019 Bq from Chernobyl. The fact that three reactors exploded in the Fukushima accident accounts for the huge xenon tally, says De Geer. Xenon-133 does not pose serious health risks because it is not absorbed by the body or the environment. Caesium-137 fallout, however, is a much greater concern because it will linger in the environment for decades. The new model shows that Fukushima released 3.5 × 1016 Bq caesium-137, roughly twice the official government figure, and half the release from Chernobyl. The higher number is obviously worrying, says De Geer, although ongoing ground surveys are the only way to truly establish the public-health risk.
  • The new analysis also claims that the spent fuel being stored in the unit 4 pool emitted copious quantities of caesium-137. Japanese officials have maintained that virtually no radioactivity leaked from the pool. Yet Stohl's model clearly shows that dousing the pool with water caused the plant's caesium-137 emissions to drop markedly (see 'Radiation crisis'). The finding implies that much of the fallout could have been prevented by flooding the pool earlier. The Japanese authorities continue to maintain that the spent fuel was not a significant source of contamination, because the pool itself did not seem to suffer major damage. "I think the release from unit 4 is not important," says Masamichi Chino, a scientist with the Japanese Atomic Energy Authority in Ibaraki, who helped to develop the Japanese official estimate. But De Geer says the new analysis implicating the fuel pool "looks convincing".
  • The latest analysis also presents evidence that xenon-133 began to vent from Fukushima Daiichi immediately after the quake, and before the tsunami swamped the area. This implies that even without the devastating flood, the earthquake alone was sufficient to cause damage at the plant.

    ADVERTISEMENT

    Advertisement

    The Japanese government's report has already acknowledged that the shaking at Fukushima Daiichi exceeded the plant's design specifications. Anti-nuclear activists have long been concerned that the government has failed to adequately address geological hazards when licensing nuclear plants (see Nature 448, 392–393; 2007), and the whiff of xenon could prompt a major rethink of reactor safety assessments, says Yamauchi.

  • The model also shows that the accident could easily have had a much more devastating impact on the people of Tokyo. In the first days after the accident the wind was blowing out to sea, but on the afternoon of 14 March it turned back towards shore, bringing clouds of radioactive caesium-137 over a huge swathe of the country (see 'Radioisotope reconstruction'). Where precipitation fell, along the country's central mountain ranges and to the northwest of the plant, higher levels of radioactivity were later recorded in the soil; thankfully, the capital and other densely populated areas had dry weather. "There was a period when quite a high concentration went over Tokyo, but it didn't rain," says Stohl. "It could have been much worse." 
D'coda Dcoda

Proof Of Fukushima Weapons Program Rests On A Pile Of Manure[09Sep11] - 0 views

  • Soon after Japan's triple disaster, I suggested that an official cover-up of a nuclear-weapons program hidden inside the Fukushima No.1 plant was delaying the effort to contain the reactor meltdowns. Soon after the tsunami struck, the Tokyo Electric Power Company reported that only three reactors had been generating electricity on the afternoon of March 11.. (According to the initial report, these were the older GE-built reactors 1,2 and 6.). Yet overheating at five of the plant's six reactors indicated that two additional reactors had also been operating (the newer and more advanced Nos. 3 and 4, built by Toshiba and Hitachi). The only plausible purpose of such unscheduled operation is uranium enrichment toward the production of nuclear warhead
  • On my subsequent sojourns in Japan, other suspicious activities also pointed to a high-level cover-up, including systematic undercounts of radiation levels, inexplicable damage to thousands of imported dosimeters, armed anti-terrorism police aboard trains and inside the dead zone, the jamming of international phone calls, homing devices installed in the GPS of rented cars, and warning visits to contacts by government agents discouraging cooperation with independent investigations. These aggressive infringements on civil liberties cannot be shrugged off as an overreaction to a civil disaster but must have been invoked on grounds of national security.
  • One telltale sign of high-level interference was the refusal by science equipment manufacturers to sell isotope chromatography devices to non-governmental customers, even to organizations ready to pay $170,000 in cash for a single unit. These sensitive instruments can detect the presence of specific isotopes, for example cesium-137 and strontium-90. Whether uranium was being enriched at Fukushima could be determined by the ratio of isotopes from enriched weapons-grade fissile material versus residues from less concentrated fuel rods.
  • ...14 more annotations...
  • Now six months after the disaster, the smoking gun has finally surfaced, not on a Japanese paddy field but inside a pile of steer manure from a pasture near Sacramento, California
  • The sample of cattle dung and underlying soil was sent to the nuclear engineering lab of the University of California, Berkeley, which reported on September 6:
  • We tested a topsoil sample and a dried manure sample from the Sacramento area. The manure was produced by a cow long before Fukushima and left outside to dry; it was rained on back in March and April. Both samples showed detectable levels of Cs-134 and Cs-137, with the manure showing higher levels than the soil probably because of its different chemical properties and/or lower density. One interesting feature of t the Sacramento and Sonoma soil samples is that the ratio of Cesium-137 to Cesium-134 is very large - approximately 17.6 and 5.5, respectively. All of our other soil samples until now had shown ratios of between 1 and 2. We know from our air and rainwater measurements that material from Fukushima has a cesium ratio in the range of approximately 1.0 to 1.5, meaning that there is extra Cs-137 in these two soil samples. The best explanation is that in addition to Fukushima fallout, we have also detected atmospheric nuclear weapons testing fallout in these soils. Weapons fallout contains only Cs-137 (no Cs-134) and is known to be present in older soils ..Both of these samples come from older soils, while our samples until this point had come from newer soils.
  • The last atmospheric nuclear blast at the Nevada Test Site occurred in 1962, whereas the manure was presumably dropped less than 49 years ago. Over the past year, the approximate life-span of a cow patty, the rain that fell on the plain came not from a former province of Spain. Within that short time-frame, the only possible origin of radioactive fallout was Fukushima.To think otherwise would be lame.
  • Sun-dried manure is more absorbent than the rocky ground of Northern California, which explains the higher level in Sacramento dung than in the Sonoma soil. As a rule of thumb, the accuracy of radiation readings tends to improve with higher concentration of the test material.The manure acted like a sponge for the collection of radioactive rainfall. Its ratio of Cs-137 (resulting from enriched uranium) to Cs-134 (from a civilian fuel rod) is more than 17-to-1. Larger by 1,700 percent, this figure indicates fission of large amounts of weapons-grade material at Fukushima.
  • The recent higher readings were probably based on either late releases from a fire-destroyed extraction facility or the venting of reactor No.3, a Toshiba-designed unit that used plutonium and uranium mixed oxide or MOX fuel. Unannounced nighttime airborne releases in early May caused radiation burns in many people, as happened to my forearms. Those plumes then drifted toward North America.
  • Enrichment of uranium for nuclear warheads is prohibited under constitutional law in Japan and by terms of the Non-Proliferation Treaty. Since no suspects have been charged by prosecutors, this cannot be a plot by a few individuals but stands as the crime of a national entity.
  • Yellow-Cake Factory 608   Fukushima Province has a history of involvement in atomic weapons development, according to a New York Times article by Martin Fackler titled "Fukushima's Long Link to a Dark Nuclear Past" (Sept. 6). Following the lead of Japanese news reports, the correspondent visited the town of Ishikawa, less than an hour's drive south of the Fukushima No.1 nuclear plant. There he interviewed Kiwamu Ariga who as a student during the war was forced to mine uranium ore from a local foothill to supply the military-run Factory 608, which refined the ore into yellow-cake.
  • Several research groups worked on building a super-weapon for militarist Japan. The Naval Technology Research Institute was best-positioned due to its secret cooperation with the German Navy. Submarine U-234 was captured in the Atlantic after Germany's surrender with a cargo of uranium along with two dead passengers - Japanese military officers .Soon after departing Norway, U-864 was bombed and sunk, carrying a load of two tons of processed uranium..
  • In the article for the Atlanta Constitution, dated, Oct. 2, 1946, David Snell reported that the Japanese military had successfully tested a nuclear weapon off Konan on Aug. 12, 1945. There are detractors who dispute the account by a decommissioned Japanese intelligence officer to the American journalist, stationed in occupied Korea with the 24th Criminal Investigation Detachment of the U.S. Army. A cursory check on his background shows Snell to have been a credible reporter for Life magazine, who also contributed to the Smithsonian and The New Yorker magazines. A new book is being written by American and Russian co-authors on the Soviet shoot-down of the Hog Wild, a B-29 that flew over Konan island soon after the war's end..
  • Due to its endemic paranoia about all things nuclear, the U.S. government had a strong interest in suppressing the story of Japan's atomic bomb program during the war, just as Washington now maintains the tightest secrecy over the actual situation at Fukushima.
  • The emerging picture shows that nuclear-weapons development, initiated in 1954 by Prime Minister Nobusuke Kishi and supervised by Yasuhiro Nakasone, was centered inside civilian nuclear plants, since the Self-Defense Forces were bound by strict Constitutional rules against war-making and the Defense Agency is practically under the direct supervision of the U.S. Joint Chiefs of Staff. Funding came from the near-limitless budget of the Tokyo Electric Power Company (TEPCO), which today claims financial insolvency without explanation of how its vast cash holdings disappeared. A clandestine nuclear program must be expensive, since it would include the cost of buying the silence of parliament, the bureaucracy and foreign dignitaries.
  • Following the March 11 disaster, TEPCO sent a team of 250 emergency personnel into the plant, yet only 50 men were assigned to cooling the reactors. The other 200 personnel stayed out of sight, possibly to dismantle an underground plutonium-extraction facility. No foreign nuclear engineers or Japanese journalists were ever permitted entry into the reactor structures.   Radiation leakage from Fukushima No.1 prevented local police from rescuing hundreds of tsunami survivors in South Soma, many of whom consequently went unaided and died of wounds or exposure. Tens of thousands of farmers have lost their ancestral lands, while much of Japan's agriculture and natural areas are contaminated for several generations and possibly longer, for the remaining duration of the human species wherever uranium and plutonium particles have seeped into the aquifers.
  • TEPCO executives, state bureaucrats and physicists in charge of the secret nuclear program are evading justice in contempt of the Constitution. As in World War II, the Japanese conservatives in their maniacal campaign to eliminate their imagined enemies succeeded only in perpetrating crimes against humanity and annihilating their own nation. If history does repeat itself, Tokyo once again needs a tribunal to send another generation of Class-A criminals to the gallows.
  •  
    By Yoichi ShimatsuFormer editor of The Japan Times Weekly
D'coda Dcoda

Impacts of the Fukushima Nuclear Power Plants on Marine Radioactivity - Environmental S... - 0 views

  • The impacts on the ocean of releases of radionuclides from the Fukushima Dai-ichi nuclear power plants remain unclear. However, information has been made public regarding the concentrations of radioactive isotopes of iodine and cesium in ocean water near the discharge point. These data allow us to draw some basic conclusions about the relative levels of radionuclides released which can be compared to prior ocean studies and be used to address dose consequences as discussed by Garnier-Laplace et al. in this journal.(1) The data show peak ocean discharges in early April, one month after the earthquake and a factor of 1000 decrease in the month following. Interestingly, the concentrations through the end of July remain higher than expected implying continued releases from the reactors or other contaminated sources, such as groundwater or coastal sediments. By July, levels of 137Cs are still more than 10 000 times higher than levels measured in 2010 in the coastal waters off Japan. Although some radionuclides are significantly elevated, dose calculations suggest minimal impact on marine biota or humans due to direct exposure in surrounding ocean waters, though considerations for biological uptake and consumption of seafood are discussed and further study is warranted.
  • there was no large explosive release of core reactor material, so most of the isotopes reported to have spread thus far via atmospheric fallout are primarily the radioactive gases plus fission products such as cesium, which are volatilized at the high temperatures in the reactor core, or during explosions and fires. However, some nonvolatile activation products and fuel rod materials may have been released when the corrosive brines and acidic waters used to cool the reactors interacted with the ruptured fuel rods, carrying radioactive materials into the ground and ocean. The full magnitude of the release has not been well documented, nor is there data on many of the possible isotopes released, but we do have significant information on the concentration of several isotopes of Cs and I in the ocean near the release point which have been publically available since shortly after the accident started.
  • We present a comparison of selected data made publicly available from a Japanese company and agencies and compare these to prior published radionuclide concentrations in the oceans. The primary sources included TEPCO (Tokyo Electric Power Company), which reported data in regular press releases(3) and are compiled here (Supporting Information Table S1). These TEPCO data were obtained by initially sampling 500 mL surface ocean water from shore and direct counting on high-purity germanium gamma detectors for 15 min at laboratories at the Fukushima Dai-ni NPPs. They reported initially results for 131I (t1/2 = 8.02 days), 134Cs (t1/2 = 2.065 years) and 137Cs (t1/2 = 30.07 years). Data from MEXT (Ministry of Education, Culture, Sports, Science and Technology—Japan) were also released on a public Web site(4) and are based on similar direct counting methods. In general MEXT data were obtained by sampling 2000 mL seawater and direct counting on high-purity germanium gamma detectors for 1 h in a 2 L Marinelli beaker at laboratories in the Japan Atomic Energy Agency. The detection limit of 137Cs measurements are about 20 000 Bq m–3 for TEPCO data and 10 000 Bq m–3 for MEXT data, respectively. These measurements were conducted based on a guideline described by MEXT.(5) Both sources are considered reliable given the common activity ratios and prior studies and expertise evident by several Japanese groups involved in making these measurements. The purpose of these early monitoring activities was out of concern for immediate health effects, and thus were often reported relative to statutory limits adopted by Japanese authorities, and thus not in concentration units (reported as scaling factors above “normal”). Here we convert values from both sources to radionuclide activity units common to prior ocean studies of fallout in the ocean (Bq m–3) for ease of comparison to previously published data.
  • ...5 more annotations...
  • We focus on the most complete time-series records from the north and south discharge channels at the Dai-ichi NPPs, and two sites to the south that were not considered sources, namely the north Discharge channels at the Dai-ni NPPs about 10 km to the south and Iwasawa beach which is 16 km south of the Dai-ichi NPPs (Figure 1). The levels at the discharge point are exceedingly high, with a peak 137Cs 68 million Bq m–3 on April 6 (Figure 2). What are significant are not just the elevated concentrations, but the timing of peak release approximately one month after to the earthquake. This delayed release is presumably due to the complicated pattern of discharge of seawater and fresh water used to cool the reactors and spent fuel rods, interactions with groundwater, and intentional and unintentional releases of mixed radioactive material from the reactor facility.
  • the concentrations of Cs in sediments and biota near the NPPs may be quite large, and will continue to remain so for at least 30–100 years due to the longer half-life of 137Cs which is still detected in marine and lake sediments from 1960s fallout sources.
  • If the source at Fukushima had stopped abruptly and ocean mixing processes continued at the same rates, one would have expected that the 137Cs activities would have decreased an additional factor of 1000 from May to June but that was not observed. The break in slope in early May implies that a steady, albeit lower, source of 137Cs continues to discharge to the oceans at least through the end of July at this site. With reports of highly contaminated cooling waters at the NPPs and complete melt through of at least one of the reactors, this is not surprising. As we have no reason to expect a change in mixing rates of the ocean which would also impact this dilution rate, this change in slope of 137Cs in early May is clear evidence that the Dai-ichi NPPs remain a significant source of contamination to the coastal waters off Japan. There is currently no data that allow us to distinguish between several possible sources of continued releases, but these most likely include some combination of direct releases from the reactors or storage tanks, or indirect releases from groundwater beneath the reactors or coastal sediments, both of which are likely contaminated from the period of maximum releases
  • It is prudent to point out though what is meant by “significant” to both ocean waters and marine biota. With respect to prior concentrations in the waters off Japan, all of these values are elevated many orders of magnitude. 137Cs has been tracked quite extensively off Japan since the peak weapons testing fallout years in the early 1960s.(13) Levels in the region east of Japan have decreased from a few 10s of Bq m–3 in 1960 to 1.5 Bq m–3 on average in 2010 (Figure 2; second x-axis). The decrease in 137Cs over this 50 year record reflects both radioactive decay of 137Cs with a 30 year half-life and continued mixing in the global ocean of 137Cs to depth. These data are characteristic of other global water masses.(14) Typical ocean surface 137Cs activities range from <1 Bq m–3 in surface waters in the Southern Hemisphere, which are lower due to lower weapons testing inputs south of the equator, to >10–100 Bq m–3 in the Irish Sea, North Sea, Black Sea, and Baltic Seas, which are elevated due to local sources from the intentional discharges at the nuclear fuel reprocessing facilities at Sellafield in the UK and Cape de la Hague in France, as well as residual 137Cs from Chernobyl in the Baltic and Black Seas. Clearly then on this scale of significance, levels of 137Cs 30 km off Japan were some 3–4 orders of magnitude higher than existed prior to the NPP accidents at Fukushima.
  • Finally though, while the Dai-ichi NPP releases must be considered “significant” relative to prior sources off Japan, we should not assume that dose effects on humans or marine biota are necessarily harmful or even will be measurable. Garnier-Laplace et al.(1) report a dose reconstruction signal for the most impacted areas to wildlife on land and in the ocean. Like this study, they are relying on reported activities to calculate forest biota concentrations,
  •  
    From Wood's Hole, note that calculations are based on reports from TEPCO & other Japanese agencies. Quite a bit more to read on the site.
D'coda Dcoda

#Fukushima I Nuke Plant: 450 Tonnes of Groundwater Per Day Seeping into Reactor/Turbine... - 0 views

  • Since the end of June when the contaminated water treatment system started the operation, total 50,000 tonnes of groundwater have seeped into the reactor buildings and turbine buildings at Fukushima I Nuke Plant. Now, the total amount of contaminated water (highly contaminated water plus not-so-highly contaminated, treated water) at the plant has grown from 127,000 tonnes at the end of June to 175,000 tonnes as of October 18, according to Asahi Shinbun.Does TEPCO have any plan to stop the flow of groundwater into the reactor buildings and turbine buildings, which just adds to the amount of highly contaminated water to be treated and stored? TEPCO is fast running out of storage space, even with cutting down more trees to make room for the storage tanks.Other than spraying the low-contamination, treated water on the premise, the answer is no. No plan, as TEPCO is running out of money that it is willing to spend on Fukushima I Nuke Plant.From Asahi Shinbun (10/19/2011):
  • It has been discovered that the contaminated water has increased by 40% in 4 months inside the reactor buildings and turbine buildings at Fukushima I Nuclear Power Plant, with the inflow of ground water of about 50,000 tonnes. The flow still continues. TEPCO may run out of storage space for the treated, still-contaminated, water. There is also a possibility of the highly contaminated water overflowing from the buildings if a problem at the water treatment facility and a heavy rain coincide.
  • According to the calculation done by Asahi Shinbun based on the data published by TEPCO, about 450 tonnes of ground water per day have been flowing into the buildings of Reactors 1 through 4 since the end of June when the contaminated water treatment facility started the operation. It is considered that there are damages in the walls of the buildings.
  • ...7 more annotations...
  • The amount of groundwater into the buildings fluctuates with the rainfall. At the end of September when it rained heavily because of a typhoon, the amount of ground water doubled, and about 7,700 tonnes of water seeped into the buildings in that week.
  • The groundwater would mix with the contaminated water in the basement of the buildings, and this highly contaminated water is being sent to the water treatment facility. After the density of radioactive materials in the water is lowered and salt removed, the treated water is being used for cooling the reactors.
  • When the circulatory water injection and cooling system started in late June, there were 127,000 tonnes of contaminated water (highly contaminated water plus the treated water with low contamination). However, as the result of the groundwater inflow, there are now 175,000 tonnes of contaminated water, a 40% increase, as of October 18. None of the water could be released outside the plant.
  • Concentrated, highly saline waste water after the desalination process is stored in the special tanks. As more water is processed, more tanks are needed. TEPCO is installing 20,000 tonnes storage tanks every month. To secure the space for the tanks the company has been cutting down the trees in the plant compound. There is a system to evaporate water to reduce the amount of waste water, but it is not currently used.
  • The water level in the turbine buildings where the highly contaminated water after the reactor cooling accumulates is 1 meter below the level at which there is a danger of overflowing. It is not the level that would cause immediate overflow after a heavy rain. However, if the heavy rain is coupled with a trouble at the water treatment system that hampers the water circulation, the water level could rise very rapidly.
  • The treatment capacity of the water treatment facility is 1,400 tonnes per day. TEPCO emphasizes that the facility is running smoothly and the circulatory water injection system is stable. However, if the current situation continues where groundwater keeps coming into the buildings that needs to be treated, the water treatment facility will be taxed with excess load, which may cause a problem.
  • It is difficult to stop the inflow of groundwater completely, and TEPCO is not planning any countermeasure construction. Regarding the continued inflow of groundwater into the buildings, TEPCO's Junichi Matsumoto says, "We have to come up with a more compact water treatment system in which we can circulate water without using the basements of the buildings. Otherwise we would be stuck in a situation where we have to treat the groundwater coming into the basements." However, there is no prospect of fundamentally solving the problem.And there will be no such prospect, as TEPCO is now proven to be very good at looking the other way. Over 10 sieverts/hour ultra-hot spot? Not a problem, we will just cordon off the area. What is causing 10 sieverts/hour radiation? Why it's not our problem. How much over 10 sieverts/hour? We don't know because we don't measure such things. High hydrogen concentration in the pipe? Not a problem, we will just blow nitrogen gas. What is causing the high hydrogen concentration? It's not our problem. A worker died after 1 week of work at the plant. Why? It's not our problem, it's the subcontractor's problem...
D'coda Dcoda

Argonne team helps map Fukushima radiation release [12Oct11] - 0 views

  • Part of the Radiological Assistance Program (RAP) team, region five, their normal operating ground covers 10 Midwestern states—but this time their expertise was needed abroad. Trained in radiation detection and monitoring, RAP teams are on call twenty-four hours a day to respond to any release of radiological materials in the U.S. When the reactors at Fukushima Daiichi began to emit radioactive material, the Department of Energy’s national emergency response assets, including several RAP teams, responded to calls from both the U.S. Department of State and the U.S. military. They wanted guidelines on protecting U.S. citizens and military personnel stationed in Japan from radiation hazards; but this raised the enormous task of finding out how much radiation had been dispersed.
  • In late March, several Argonne members flew to Japan to take over shifts from the initial response team members, who had been working around the clock to take measurements at U.S. military bases, other U.S. interests, and elsewhere in the 50-mile radius around the reactors. On the ground, small teams set out to comb the earthquake-stricken countryside, radiation detectors in tow. They took hundreds of readings and collected soil samples, mostly between the 20-80 kilometer zone from the plant. They ran into challenges right away.
  • "One of the problems we ran into was accessibility," said Dave Chamberlain, an Argonne chemical engineer with RAP. "When you practice going out to get samples, the classic technique is to divide the area into a grid and take samples say, every 10 meters. But many of the areas we were sampling in Japan were mountainous, forested and damaged by earthquakes, so you can't stick to the grid plan. We were often limited to roadside sampling." "The other difficulty was that we wanted samples from ground that hadn't been disturbed since the accident," explained Chamberlain. "If someone had plowed or watered the ground, it changes the dynamics of the distribution—and that time of year is rice planting season in Japan."
  • ...4 more annotations...
  • The team measured both the dose rate and the gamma ray spectrum in each area. Gamma ray spectroscopy is a measure of the gamma rays emitted by radioactive particles, and it can be analyzed to determine how much of each different radiological isotope is present. Dose rate is a measure of the dose a human would receive in a particular location over a given amount of time. The data and samples collected by the teams will be analyzed in labs around the country, providing both information for Japan's recovery and a more detailed understanding of what happens to radioactive material after it's released.
  • A map of the radiation release data collected from both aerial and ground measurements near the Fukushima Daiichi reactors in Japan. Courtesy NNSA."When radiation disperses from a source, you get a plume that travels, and it changes according to wind, moisture and particulates in the air," explained Argonne RAP scientist Frank Moore. "But once it's laid on the ground, it moves much less."
  • "To get an accurate picture, you have to measure the same location several times over a period," he said. "Radiological material doesn't just sit there; it migrates into the environment. It can soak into the soil, or can run off in rivers and streams and collect in low areas. Near roadways, it might collect in the ditches. And it can be taken up into plants."
  • The U.S. Department of State coordinated sharing the data with Japanese authorities, Moore said. They also left several detectors behind and trained both U.S. military and Japanese personnel how to use them. When the RAP team isn't responding to threats, they provide radiation training to law enforcement—including police, FBI, firefighters and Border Control guards—around the country. Though airports, shipping ports and border crossings are often equipped with radiation detectors, interpreting results from the sensitive instruments can be tricky.
D'coda Dcoda

Lifetime Cumulative Limit of Internal Radiation from Food to Be 100 Millisieverts in Ja... - 0 views

  • External radiation is not counted in this number, as opposed to their draft plan in July which did include external radiation, and it is in addition to the natural radiation exposure (by which is meant pre-Fukushima natural).The experts on the Commission didn't rule on the radiation limit for children, leaving the decision to the Ministry of Health and Labor as if the top-school career bureaucrats in the Ministry would know better.Yomiuri and other MSMs are spinning it as "tightening" the existing provisional safety limits on food.From Yomiuri Shinbun (10/27/2011):
  • The Food Safety Commission under the Cabinet Office has been deliberating on the health effect of internal radiation exposure from the radioactive materials in food. On October 27, it submitted its recommendation to set the upper limit on lifetime cumulative radiation from food at 100 millisieverts.
  • On receiving the recommendation, the Ministry of Health and Labor will start setting the detailed guidelines for each food items. They are expected to be stricter than the provisional safety limits set right after the Fukushima I Nuclear Plant accident. The Radiation Commission under the Ministry of Education will review the guidelines to be set by the Ministry of Health and Labor, and the new safety limits will be formally decided.
  • ...7 more annotations...
  • According to the draft of the recommendation in July, the Food Safety Commission was aiming at setting "100 millisieverts lifetime limit" that would include the external radiation exposure from the nuclides in the air. However, based on the opinions from the general public, the Commission decided that the effect of external radiation exposure was small and focused only on internal radiation exposure from food.
  • If we suppose one's lifetime is 100 years, then 1 millisievert per year would be the maximum. The current provisional safety limit assumes the upper limit of 5 millisievert per year with radioactive cesium alone. So the new regulations will inevitably be stricter than the current provisional safety limits.
  • In addition, the Commission pointed out that children "are more susceptible to the effect of radiation", but it didn't cite any specific number for children. The Commission explained that it would be up to the Ministry of Health and Labor and other agencies to discuss" whether the effect on children should be reflected in the new safety limits.Oh boy. So many holes in the article.First, I suspect it is a rude awakening for many Japanese to know that the current provisional safety limits for radioactive materials in food presuppose very high internal radiation level already. The Yomiuri article correctly says 5 millisieverts per year from radioactive cesium alone. The provisional safety limit for radioactive iodine, though now it's almost irrelevant, is 2,000 becquerels/kg, and that presupposes 2 millisieverts per year internal radiation. From cesium and iodine alone, the provisional safety limits on food assume 7 millisievert per year internal radiation.
  • (The reason why the radioactive iodine limit is set lower than that for radioactive cesium is because radioactive iodine all goes to thyroid gland and gets accumulated in the organ.)I am surprised that Yomiuri even mentioned the 5 millisieverts per year limit from cesium exposure alone. I suspect it is the first time ever for the paper.Second, the article says the Commission decided to exclude external radiation from the "100 millisieverts" number because of the public opinion. Which "public" opinion are they talking about? Mothers and fathers with children? I doubt it. If anything, the general public (at least those who doesn't believe radiation is good for them) would want to include external radiation so that the overall radiation limit is set, rather than just for food.
  • Third, and most importantly, if the proposed lifetime limit of 100 millisieverts is only for internal radiation from FOOD, then the overall internal radiation could be much higher. Why? Because, pre-Fukushima, the natural internal radiation from food in Japan was only 0.41 millisievert per year (mostly from K-40), or 28% of total natural radiation exposure per year of 1.45 millisievert (average). Of internal radiation exposure, inhaling radon is 0.45 millisievert per year in Japan, as opposed to the world average of 1.2 millisievert per year.Now, these so-called experts in the government commission are saying the internal radiation from food can be 1 millisievert per year (assuming the life of 100 years), in addition to the natural internal radiation from food (K-40) which is 0.41 millisievert per year. Then, you will have to add internal exposure from inhaling the radioactive materials IN ADDITION TO radon which is 0.45 millisievert per year.
  • Winter in the Pacific Ocean side of east Japan is dry, particularly in Kanto. North wind kicks up dust, and radioactive materials in the dust will be kicked up. The Tokyo metropolitan government will be burning away the radioactive debris from Iwate Prefecture (Miyagi's to follow) into the wintry sky. So-called "decontamination" efforts all over east Japan will add more radioactive particles in the air for people to breathe in.
  • For your information, the comparison of natural radiation exposure levels (the world vs Japan), from the Nuclear Safety Research Association Handbook on treating acute radiation injury (original in Japanese; my translation of labels). Japan has (or had) markedly lower radon inhalation than the world average, and much lower external radiation from the ground and from cosmic ray. It makes it all up by overusing the medical X-rays and CT scans, and even the Nuclear Safety Research Association who issued the following table says Japan tends to use too many X-rays and scans and that the medical professionals should make effort not to overuse them.
D'coda Dcoda

Experts split on how to decommission Fukushima nuclear plant [29Aug11] - 0 views

  • What is actually going to take place at the Fukushima No. 1 Nuclear Power Plant, where word is that the four reactors that were crippled in the Great East Japan Earthquake and tsunami will eventually be decommissioned? The Ministry of Economy, Trade and Industry's Nuclear and Industrial Safety Agency (NISA) defines "decommissioning" as the process of removing spent fuel from reactors and dismantling all facilities. Ultimately, the site of a decommissioned reactor is meant to be reverted into a vacant lot.
  • In 1996, the then Japan Atomic Energy Research Institute (JAERI) -- now the Japan Atomic Energy Agency (JAEA) -- finished decommissioning its Japan Power Demonstration Reactor. The decommissioning process of the Tokai Nuclear Power Plant in the Ibaraki Prefecture village of Tokai began in 1998 and is set to end in fiscal 2020, while the No. 1 and No. 2 nuclear reactors at the Hamaoka Nuclear Power Plant in the Shizuoka Prefecture city of Omaezaki are slated for decommissioning by fiscal 2036. Around the world, only around 15 nuclear reactors have thus far been dismantled.
  • The standard decommissioning process entails six major steps: 1. Remove spent fuel rods, 2. Remove radioactive materials that have become affixed to reactor pipes and containers, 3. Wait for radiation levels to go down with time, 4. Dismantle reactors and other internal vessels and pipes, 5. Dismantle the reactor buildings, and 6. Make the site into a vacant lot.
  • ...17 more annotations...
  • "Cleaning," "waiting," and "dismantling" are the three key actions in this process. Needless to say, this all needs to be done while simultaneously containing radioactive materials.
  • In the case of the Tokai Nuclear Power Plant, the first commercial plant to undergo decommissioning, spent fuel was removed over a span of three years beginning in 1998, and was transported to Britain for reprocessing. Dismantling of the facilities began in 2001, with current efforts being made toward the dismantling of heat exchangers; workers have not yet begun to take the reactor itself apart. The entire process is expected to be an 88.5-billion-yen project involving 563,000 people.
  • Hitachi Ltd., which manufactures nuclear reactors, says that it "generally takes about 30 years" to decommission a reactor. The Hamaoka Nuclear Power Plant's No. 1 and No. 2 reactors operated by Chubu Electric Power Co. are also expected to take about 30 years before they are decommissioned.
  • In the case of the Fukushima No. 1 Nuclear Power Plant, meanwhile, the biggest challenge lies in how to remove the fuel, says Tadashi Inoue, a research advisor at the Central Research Institute of Electric Power Industry (CRIEPI), a foundation that conducts research on energy and environmental issues in relation to the electrical power industry.
  • "we must deal with rubble contaminated with radioactive materials that were scattered in the hydrogen blasts and treat the radiation-tainted water being used to cool nuclear fuel before we can go on to fuel removal."
  • Currently, the Fukushima plant's operator, Tokyo Electric Power Co. (TEPCO), is desperately trying to treat the contaminated water. Huge challenges remain with regards to the contaminated rubble, as radiation levels of over 10 sieverts per hour were found near outdoor pipes on the plant grounds just the other day. Exposure to such high levels would mean death for most people.
  • Each step in the process toward decommissioning is complicated and requires great numbers of people. It's a race against time because the maximum amount of radiation that workers can be exposed to is 250 millisieverts.
  • The breached reactor core is a bigger problem. It is believed that raising water levels inside the reactor has been difficult because of a hole in the bottom of the vessel. It will be necessary to plug the hole, and continue filling the vessel with water while extracting the melted fuel. How to fill the vessel with water is still being debated. If the reactor can be filled with water, steps taken after the 1979 Three Mile Island nuclear accident can serve as a guide because in that case, in which approximately 50 percent of the core had melted, workers were able to fill the reactor with water and remove the fuel within.
  • Two types of fuel removal must take place. One is to take out the spent fuel in the containment pools, and the other is to remove the melted fuel from the reactor cores. Because the radiation levels of the water in the spent fuel pools have not shown any significant changes from before the crisis, it is believed that the spent fuel has not suffered much damage. However, removing it will require repairing and reinstalling cranes to hoist the fuel rods out.
  • Prefacing the following as "a personal opinion," Inoue says: "Building a car that can protect the people inside as much as possible from radioactive materials, and attaching an industrial robotic arm to the car that can be manipulated by those people could be one way to go about it."
  • Inoue predicts that removal of spent fuel from the containment pools will begin about five years after the crisis, and about 10 years in the case of melted fuel from the reactor core. Work on the four reactors at the Fukushima plant will probably take several years.
  • "Unless we look at the actual reactors and take and analyze fuel samples, we can't know for sure," Inoue adds. Plus, even if workers succeed in removing the fuel, reprocessing it is an even more difficult task. A review of processing methods and storage sites, moreover, has yet to take place.
  • Meanwhile, at least one expert says he doesn't believe that workers will be able to remove the melted fuel from the crippled plant.
  • "If there's 10 sieverts per hour of radiation outside, then the levels must be much higher closer to the reactor core," says Tadahiro Katsuta, an associate professor at Meiji University and an expert in reactor engineering and reactor policy who was once a member of an anti-nuclear non-profit organization called Citizens' Nuclear Information Center (CNIC). "The fuel has melted, and we haven't been able to cool it consistently. If work is begun five or 10 years from now when radiation levels have not yet sufficiently gone down, workers' health could be at serious risk."
  • Katsuta predicts that it will probably take at least 10 years just to determine whether it is possible to remove the fuel. He adds that it could very well take 50 years before the task of dismantling the reactor and other facilities is completed.
  • What Katsuta has in mind is a Chernobyl-style concrete sarcophagus, which would entail cloaking the melted tomb with massive amounts of concrete. "How could we simultaneously dismantle four reactors that have been contaminated to the extent that they have by radioactive materials?" asks Katsuta. "Japan has little experience in decommissioning reactors, and this case is quite different from standard decommissioning processes. It's not realistic to think we can revert the site back to a vacant lot. I think we should be considering options such as entombing the site with concrete or setting up a protective dome over the damaged reactor buildings
  • what we face is a great unknown to all of mankind.
D'coda Dcoda

We may be too late to evacuate [15Oct11] - 0 views

  • In Chernobyl, 0.09 uSv/h → Children started having symptoms. (near radiation level as westen Tokyo) 0.16 uSv/h → Adults got leukemia within 5 years. (near radiation level as Adachiku) 0.232 uSv/h → Mandatory evacuation area in Cheronobyl. (near radiation level as Asakusa or Tokyo Disneyland) I received a lot of queries. I would like to add some more explanation to this. This is a lecture of Ms. Noro Mika, who runs the NPO “Bridge to Chernobyl”
  • Annotator’s comment: Because I believe that breast-feeding has a tremendous influence not only on nutrition, but also on the mental aspect; that’s why I hope that the mothers who are breast-feeding their children pay strict attention also to the their level of internal exposure and evacuate as soon as possible. Because the danger of the radioactive substances is known well enough, the world is watching the way Japan is dealing with the situation. A country which abandons its children and doesn’t value their lives is not a country worthy of trust.
  • In Chernobyl, an area 30 km from the nuclear plant, where the radiation level was 0.232 μSv/hour, was declared “no-entry zone”. In Chernobyl, in area where radiation levels were daily even 0.16 μSv/hour have been admitted as being dangerous, and in fact, adults got leukemia and died. Annotator: In case, in Kamakura, were I live, the level is 0.16 μSv/hour. Concerning the gamma dose rate in a certain spots one meter above the ground level, the radiation levels declared officially for Kamakura city are generally between 0.11〜0.14 μSv/hour. Radioactivity, in case of of iron, concrete, etc causes the oxidation and corrosion, but in humans accelerates the aging process and cause them sickness.
  • ...8 more annotations...
  • And the effects start appearing in 2~3 years. We didn’t understand from the beginning where the hot spots were. But after checking later the areas where a lot of children got sick, in Belarus probably the radioactive substances were easily carried by the wind because the flat level ground, but it became clear that in areas 20~30 km from the plant there were places contaminated about just as much as Chernobyl. Kamakura is about 300 kilos away from Fukushima in a straight line. Based on the results of the investigations made after the nuclear accident in Chernobyl, in Europe the fact of assuming that 800km from the nuclear plant might be contaminated has been made taken into consideration as a basic rule for safety.
  • In Chernobyl, because contaminated farm products were made served in school lunches, about 70% of the children suffered from various kinds of health damages. Those (health problems) were not limited to their generation, and when those children became parents their problems passed to their children too. Because radioactive substances have similarities with nutrients like calcium, the mammals will feed a lot of them to their babies. Radioactive substances get easily out of their bodies by milk – hence, there were many cases when after giving birth to their first baby, a large quantity of radioactive substances were passed to the (first born) child and the mother’s health improved, but those children had serious congenital disorders (became people with serious disabilities).
  • She has been visiting Chernobyl for 25 years and help children to accept in Hokkaido for one month etc.. Currently, the radiation levels in some parts of Kanto area are 3 mSv/year. Annotator’s comment: According to the Ministry of Education, Culture, Sports, Science and Technology, the numerical values announced by the local government prove only the emission of gamma rays. The iodine and the cesium decay while emitting beta rays. If we have to deal strictly with gamma rays emissions, the degree of contamination can be understood, but we can’t measure the level of individual external exposure. Besides, the numerical values detected at the monitoring posts are measured at 10m above the ground level or even more.
  • Besides, there is no country who would buy things from a country that loosens it’s standards. The gov and Tepco spread misinformation (misinform the population). They should think about requesting the farmers give up growing farming products which are contaminated, give them compensation, and provide them new and safe farmlands.
  • n case of Chernobyl, party members, doctors and a nurses, teachers could afford to evacuate, because they could keep sustaining themselves even if they moved, but the poor people could not afford to evacuate. The symptoms which appeared at children who remained were the following: Headache nosebleed diarrhea thyroid problems not growing taller hard to recover after catching a cold swelling of the lymphatic glands, easily get sick with pneumonia kidney pain renal cancer
  • [that I have a] (because while radioactivity leaves the body, the urinary tract is affected) pain in the back side of the knee arthralgia wounds that take a long time to cure asthma hair loss problems with their hair growing alteration in visual acuity poor appetite poor concentration fatigability/easily getting tired cardiac pain (cardialgia) low resistance to diseases. The school lessons were shortened to 25 minutes, and because their kidneys became week, there are primary school children who wet their beds.
  • Even after becoming adults, the following cases were recorded: increase of myocardial infarcts an increase in the nr of sudden deaths death of young people in their 30th Accumulation of cesium in heart – even if eliminate from their bodies it (cesium) enters the body again after eating being exempted from the military service for having small holes in their hearts Regarding their children, the following medical cases were recorded - Brain damage, proved by the fact that they were slow in eating their meals.
  • Mothers of many children who were different from the other normal children give them to adoption, even if they didn’t have renal surgery or health problems, or a handicap. This kind of things are happening. (Source) German Translation
D'coda Dcoda

#Fukushima I Nuke Plant Worker: No Steam Gushing From Cracks, But There Are Many 10-Plu... - 0 views

  • The anonymous Fukushima I Nuke Plant worker whom I featured before several times tweets on the information, yet to be substantiated, related by an independent journalist Kota Kinoshita on his blog on August 15. Mr. Kinoshita related the information only because he had heard the similar information from his government source. What is that information? That there is steam gushing out of cracks on the ground, and that there are 6 locations that exceed 10 sieverts/hr radiation. 1. About "steam gushing out from cracks on the ground": In Mr. Kinoshita's blog:
  • It was early August, around 9PM. A worker at Fukushima I Nuke Plant sent an email to his local contact, saying "Steam gushing out of cracks on the ground. The area is foggy with steam, and the workers evacuated temporarily. Some kind of reaction may be occurring underground. Watch out for radiation level depending on the wind direction".
  • From the information source within the government, "I've heard about the steam coming out from the ground, and I am concerned". Fukushima worker's tweet:
  • ...5 more annotations...
  • I think that is true. But those are the locations that have been measured. I think there are many more.Mr. Kinoshita's blog has this bit of "rumor" from his worker at the plant:
  • As I have said before, I have never seen, or heard about, such steam.It's possible that he doesn't know but someone else may know. 2. About locations that exceed 10 sieverts/hr: In Mr. Kinoshita's blog:
  • The same worker] also told [his contact] that there are 6 locations that exceed 10,000 millisievert/hr [10 sieverts/hr], unlike what TEPCO has announced. Fukushima worker's tweet:
  • There are several cracks on the ground near the Containment Vessel, and the steam is coming out from them, not on a regular basis but sporadically. Wait, does that mean the floor of the reactor building is cracked? He doesn't say which reactor. And Fukushima worker has another tweet that says:
  • In the reactor buildings of Reactors 1, 2 and 3, there are many spots that measure even higher [than 10 sieverts/hr] and we can't go near them.So much for the plant being stable. But so far, the information is unsubstantiated (i.e. not admitted, or denied, by officials at TEPCO or the government). Speaking of the government, it will allow the residents in Okuma-machi and Futaba-machi, where the plant is located, to temporarily return to their homes later this month now that the plant is stable.
D'coda Dcoda

Fukushima's Contamination Produces Some Surprises at Sea [29Sep11] - 0 views

  • Six months after the accident at Fukushima Daiichi, the news flow from the stricken nuclear power plant has slowed, but scientific studies of radioactive material in the ocean are just beginning to bear fruit.The word from the land is bad enough. As my colleague Hiroko Tabuchi reported on Saturday, Japanese officials have detected elevated radiation levels in rice near the crippled reactors. Worrying radiation levels had already been detected in beef, milk, spinach and tea leaves, leading to recalls and bans on shipments.
  • Off the coast, the early results indicate that very large amounts of radioactive materials were released, and may still be leaking, and that rather than being spread through the whole ocean, currents are keeping a lot of the material concentrated. Most of that contamination came from attempts to cool the reactors and spent fuel pools, which flushed material from the plant into the ocean, and from direct leaks from the damaged facilities.
  • Japanese government and utility industry scientists estimated this month that 3,500 terabecquerels of cesium 137 was released directly into the sea from March 11, the date of the earthquake and tsunami, to late May. Another 10,000 terabecquerels of cesium 137 made it into the ocean after escaping from the plant as steam.
  • ...7 more annotations...
  • The leakage very likely isn’t over, either. The Tokyo Electric Power Company, the operator of the plant, said Sept. 20 that it believed that something on the order of 200 to 500 tons a day of groundwater might still be pouring into the damaged reactor and turbine buildings.Ken Buesseler, a scientist at the Woods Hole Oceanographic Institution, who in 1986 studied the effects of the Chernobyl disaster on the Black Sea, said the Fukushima disaster appeared to be by far the largest accidental release of radioactive material into the sea.
  • Chernobyl-induced radiation in the Black Sea peaked in 1986 at about 1,000 becquerels per cubic meter, he said in an interview at his office in Woods Hole, Mass. By contrast, the radiation level off the coast near the Fukushima Daiichi plant peaked at more than 100,000 becquerels per cubic meter in early April.
  • Working with a team of scientists from other institutions, including the University of Tokyo and Columbia University, Mr. Buesseler’s Woods Hole group in June spent 15 days in the waters off northeast Japan, studying the levels and dispersion of radioactive substances there and the effect on marine life.The project, financed primarily by the Moore Foundation after governments declined to participate, continued to receive samples from Japanese cruises into July.
  • While Mr. Buesseler declined to provide details of the findings before analysis is complete and published, he said the broad results were sobering.“When we saw the numbers — hundreds of millions of becquerels — we knew this was the largest delivery of radiation into the ocean ever seen,’’ he said. ‘‘We still don’t know how much was released.’’Mr. Buesseler took samples of about five gallons, filtered out the naturally occurring materials and the materials from nuclear weapon explosions, and measured what was left.
  • The scientists had expected to find ocean radiation levels falling off sharply after a few months, as radioactive substances were dispersed by the currents, because, he said, “The ocean’s solution to pollution is dilution.’’The good news is that researchers found the entire region 20 to 400 miles offshore had radiation levels too low to be an immediate threat to humans.But there was also an unpleasant surprise. “Rather than leveling off toward zero, it remained elevated in late July,’’ he said, up to about 10,000 becquerel per cubic meter. ‘‘That suggests the release problem has not been solved yet.”
  • The working hypothesis is that contaminated sediments and groundwater near the coast are continuing to contaminate the seas, he said.The international team also collected plankton samples and small fish for study. Mr. Buesseler said there were grounds for concern about bioaccumulation of radioactive isotopes in the food chain, particularly in seaweed and some shellfish close to the plants. A fuller understanding of the effect on fish that are commercially harvested will probably take several years of data following several feeding cycles, he said.
  • ‘We also don’t know concentrations in sediments, so benthic biota may be getting higher doses and if consumed (shellfish), could be of concern,’’ he wrote later in an e-mail, referring to organisms that dwell on the sea floor.The study also found that the highest cesium values were not necessarily from the samples collected closest to Fukushima, he said, because eddies in the ocean currents keep the material from being diluted in some spots farther offshore.The overall results were consistent with those previously found by Japanese scientists, Mr. Buesseler said.He said more research was urgently needed to answer several questions, including why the level of contamination offshore near the plant was so high.“Japan is leading the studies, but more work is needed than any one country, or any one lab, can possibly carry out,” he said.
D'coda Dcoda

Simulation Map of Cesium-137 Deposition Across the Pacific by CEREA Shows Contamination... - 0 views

  • France's CEREA has the simulation map of ground deposition of cesium-137 from the Fukushima I Nuclear Power Plant accident on its "Fukushima" page. It not only shows Japan but also the entire northern Pacific Rim, from Russian Siberia to Alaska to the West Coast of the US to the entire US. According to the map, the US, particularly the West Coast and particularly California, may be more contaminated with radioactive cesium than the western half of Japan or Hokkaido. It looks more contaminated than South Korea or China. Canada doesn't look too well either, particularly along the border with US on the western half.
  • From CEREA's Fukushima page: Atmospheric dispersion of radionuclides from the Fukushima-Daichii nuclear power plant CEREA, joint laboratory École des Ponts ParisTech and EdF R&D Victor Winiarek, Marc Bocquet, Yelva Roustan, Camille Birman, Pierre Tran Map of ground deposition of caesium-137 for the Fukushima-Daichii accident. The simulation was performed with a specific version of the numerical atmospheric chemistry and transport model Polyphemus/Polair3D. The parametrisations used for the transport and physical removal of the radionuclides are described in [1,2,3,4]. The magnitude of the deposition field is uncertain and the simulated values of deposited radionuclides could be significantly different from the actual deposition. In particular, the source term remains uncertain. Therefore, these results should be seen as preliminary and they are likely to be revised as new information become available to better constrain the source term and when radionuclides data can be used to evaluate the model simulation results.
  • The page also has the animated simulation of cesium-137 dispersion from March 11 to April 6, 2011. If the Japanese think they are the only ones who have the radiation and radioactive fallout from the accident, they are very much mistaken, if the simulation is accurate. (Meteorological institutes and bureaus in Austria, Germany, and Norway all had similar simulation maps.) Radioactive materials spewed out of Fukushima I Nuke Plant went up and away on the jet stream, reaching the other side of the Pacific. When the fallout from explosions (March 14, 15) reached the US West Coast, it came with an unusually heavy rainfall in California.
  • ...2 more annotations...
  • CEREA's description of the animation (if the animation doesn't work, or if you want to see the bigger one, go to CEREA's page):
  • Movie of the Fukushima-Daichii activity in the air (caesium-137, ground level)The simulation was performed with a specific version of the numerical atmospheric chemistry and transport model Polyphemus/Polair3D. The parametrisations used for the transport and physical removal of the radionuclides are described in [1,2,3,4]. The magnitude of activity concentration field is uncertain and could be significantly different from the actual one. In particular, the source term remains uncertain. Therefore, these results should be seen as preliminary and they are likely to be revised as new information become available to better constrain the source term and when radionuclides data can be used to evaluate the model simulation results.
D'coda Dcoda

Ministry of Education's Quick Learning Curve on Kashiwa's Radioactive Dirt [23Oct11] - 0 views

  • First it was "it cannot be from Fukushima I Nuke Plant" when the radiation measured was 57.5 microsieverts/hour.Then it was "it may be from Fukushima I Nuke Plant, and it may not be" when the density turned out to be 276,000 becquerels/kg of radioactive cesium. But since the density was very high, the suspicion was voiced all around (including me) that someone secretly dumped the radioactive sludge or dirt, possibly from cleaning out his yard, onto that location.The Ministry's current position: "It is highly likely that radioactive cesium is from Fukushima I Nuke Plant, and radioactive cesium has been condensed at that particular location because the storm drain nearby was broken."So radioactive cesium from Fukushima I Nuke Plant has been naturally concentrated by elements, 200 kilometers away from the plant, to the density level on par with those found in Fukushima. The Kashiwa City's dirt contains almost as much radioactive cesium in the dirt in the location in Watari District (link is in Japanese) in Fukushima City where 300,000 becquerels/kg of radioactive cesium was found (also near the drain).
  • Points from the Ministry's announcement on October 23, 2011 "Result of the investigation of Kashiwa City's location with high air radiation" (my translation, not the Ministry's):On receiving the result of the soil analysis on October 22 where maximum 276,000 becquerels/kg of radioactive cesium was detected, the Ministry sent two officials, along with three experts from Japan Atomic Energy Agency on October 23 to Kashiwa City to consult with the local officials in charge of radiation countermeasures.The Ministry's survey of the location included measuring air radiation levels at the location and nearby, and investigating the surroundings to figure out what caused the high radiation level.Survey result:Maximum 2.0 microsieverts/hour 1 meter off the groundMaximum 4.5 microsieverts/hour 50 centimeter off the groundMaximum 15 microsieverts/hour on the ground
  • Typical air radiation levels in the surrounding area at 1 meter off the ground was 0.3 microsievert/hour.A 50-centimeter wide breach was found in the side drain (30-centimeter deep) next to the location with the high air radiation. This breach was close to the spot where cesium-134 (half life 2 years) was detected. We therefore presume that the rainwater containing radioactive cesium that came from the Fukushima I Nuclear Power Plant accident flowed in from the breach in the side drain, and radioactive cesium was condensed and accumulated in the soil at that particular location.Asahi Shinbun (10/23/2011) has the picture of the broken side drain.
1 - 20 of 122 Next › Last »
Showing 20 items per page