Skip to main content

Home/ OARS funding Nanoscience/ Group items tagged chemical

Rss Feed Group items tagged

MiamiOH OARS

nsf.gov - Funding - Small Business Innovation Research Program Phase I Solicitation FY-... - 0 views

  •  
    The Small Business Innovation Research (SBIR) Program stimulates technological innovation in the private sector by strengthening the role of small business concerns in meeting Federal research and development needs, increasing the commercial application of federally supported research results, and fostering and encouraging participation by socially and economically disadvantaged and women-owned small businesses. The topics, listed below, are detailed on the SBIR/STTR topics homepage: Educational Technologies and Applications (EA) Information and Communication Technologies (IC) Semiconductors (S) and Photonic (PH) Devices and Materials Electronic Hardware, Robotics and Wireless Technologies (EW) Advanced Manufacturing and Nanotechnology (MN) Advanced Materials and Instrumentation (MI) Chemical and Environmental Technologies (CT) Biological Technologies (BT) Smart Health (SH) and Biomedical (BM) Technologies
MiamiOH OARS

nsf.gov - Funding - Solid State and Materials Chemistry - US National Science Foundatio... - 0 views

  •  
    This multidisciplinary program supports basic research in solid state and materials chemistry comprising the elucidation of the atomic and molecular basis for material development and properties in the solid state from the nanoscale to the bulk.  General areas of interest include but are not limited to innovative approaches to design, synthesis, bulk crystal and/or film growth, and characterization of novel organic, inorganic, and hybrid materials, as well as liquid crystal materials and multi-component material systems exhibiting new phenomena and/or providing new scientific insights into structure/composition/property relationships in the solid state.  Relevant topics include original material design principles, new approaches to assembly or crystalline material growth, characterization of new material phenomena or superior behavior, investigations of surface and interfacial effects on material system structures and properties, and unraveling the relationships between structure/composition (e.g. self- or program-assembled materials, crystalline material growth, and nanostructured material systems) and properties (e.g. charge, ionic, thermal or spin transport, exciton diffusion, chemical reactivity and selectivity, etc.).  Development of new organic solid state materials, environmentally-safe and sustainable materials, and fundamental studies of novel material and material systems for efficient energy harvesting, conversion and storage are encouraged.  The SSMC program works closely with other programs within the Division of Materials Research (DMR) and in the Mathematical and Physical Sciences (MPS) and Engineering (ENG) directorates to accommodate the multidisciplinary nature of proposal submissions.
MiamiOH OARS

nsf.gov - Funding - Solid State and Materials Chemistry - US National Science Foundatio... - 0 views

  •  
    This multidisciplinary program supports basic research in solid state and materials chemistry comprising the elucidation of the atomic and molecular basis for material development and properties in the solid state from the nanoscale to the bulk.  General areas of interest include but are not limited to innovative approaches to design, synthesis, bulk crystal and/or film growth, and characterization of novel organic, inorganic, and hybrid materials, as well as liquid crystal materials and multi-component material systems exhibiting new phenomena and/or providing new scientific insights into structure/composition/property relationships in the solid state.  Relevant topics include original material design principles, new approaches to assembly or crystalline material growth, characterization of new material phenomena or superior behavior, investigations of surface and interfacial effects on material system structures and properties, and unraveling the relationships between structure/composition (e.g. self- or program-assembled materials, crystalline material growth, and nanostructured material systems) and properties (e.g. charge, ionic, thermal or spin transport, exciton diffusion, chemical reactivity and selectivity, etc.).  Development of new organic solid state materials, environmentally-safe and sustainable materials, and fundamental studies of novel material and material systems for efficient energy harvesting, conversion and storage are encouraged. 
MiamiOH OARS

Nanomanufacturing - 0 views

  •  
    The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.The Program seeks to explore transformative approaches to nanomanufacturing, including but not limited to: micro-reactor and micro-fluidics enabled nanosynthesis, bio-inspired nanomanufacturing, manufacturing by nanomachines, additive nanomanufacturing, hierarchical nanostructure assembly, continuous high-rate nanofabrication such as roll-to-roll processing or massively-parallel large-area processing, and modular manufacturing platforms for nanosystems.
MiamiOH OARS

Nanomanufacturing - US National Science Foundation (NSF) - 0 views

  •  
    The Nanomanufacturing program supports fundamental research and education on design and manufacturing at the nanoscale.  Emphasis of the program is on advancing manufacturing technology using production systems based on thermal, electrical, chemical and mechanical processes as well as biological actors (viruses, cells and bacteria) to fabricate nanostructures and to integrate these into micro-devices and meso- and macroscale systems.  Examples include carbon, polymeric and bio-molecular architectures that exploit nanoscale features for nanomotors, nanorobots, and other nanomachinery.  A goal of the program is to enable manufacturing scalability leading to commercial production, including improvements in component reliability, yield, efficiency and affordability.  The program also targets environmental health and safety in nanomanufacturing.
MiamiOH OARS

Biological and Environmental Interactions of Nanoscale Materials - 0 views

  •  
    The Biological and Environmental Interactions of Nanoscale Materials program is part of the Environmental Engineering and Sustainability cluster, which also includes: 1) Environmental Engineering; and 2) Environmental Sustainability. The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of nanomaterials and nanosystems with biological and environmental media. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, quantum dots, and other nanoparticles. Such nanomaterials and systems frequently exhibit novel physical, chemical, photonic, and biological behavior in living systems and environmental matrices as compared to the bulk scale. Research areas supported by the program include:
‹ Previous 21 - 26 of 26
Showing 20 items per page