Skip to main content

Home/ OARS funding Math & Statistics/ Group items tagged electric

Rss Feed Group items tagged

MiamiOH OARS

BRAIN Initiative: Optimization of Transformative Technologies for Large Scale Recording... - 0 views

  •  
    Although invention and proof-of-concept testing of new technologies are a key component of the BRAIN Initiative, to achieve their potential these technologies must also be optimized through feedback from end-users in the context of the intended experimental use. This seeks applications for the optimization of existing and emerging technologies and approaches that have potential to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and temporal scales, in any region and throughout the entire depth of the brain. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated development of hardware and software while scaling manufacturing techniques towards sustainable, broad dissemination and user-friendly incorporation into regular neuroscience practice. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Applications are expected to integrate appropriate domains of expertise, including where appropriate biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
MiamiOH OARS

BRAIN Initiative: New Technologies and Novel Approaches for Large-Scale Recording and M... - 0 views

  •  
    Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. This FOA seeks applications for proof-of-concept testing and development of new technologies and novel approaches for largescale recording and manipulation of neural activity to enable transformative understanding of dynamic signaling in the nervous system. In particular, we seek exceptionally creative approaches to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. It is expected that the proposed research may be high-risk, but if successful could profoundly change the course of neuroscience research. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Where appropriate, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
MiamiOH OARS

Nanomanufacturing | NSF - National Science Foundation - 0 views

  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
MiamiOH OARS

Sensor and Modeling Approaches for Enhanced Observability and Controllability of Power ... - 0 views

  •  
    Funding Opportunity Announcement DE-FOA-0001616 The Department of Energy (DOE), National Energy Technology Laboratory (NETL), on behalf of the Office of Electricity Delivery and Energy Reliability (OE), is seeking applications under this Funding Opportunity Announcement (FOA), herein referred to as Announcement, to conduct research, development and demonstrations (RD&D). This RD&D, in the areas of low cost sensors and improved modeling using sensor data input, will lead to enhanced observability and controllability of power systems to support increased hosting capacity for distributed energy resources (DERs), including energy storage. Capturing the benefits commonly attributed to DERs and/or microgrids, as well as establishing new value propositions that could be enabled by these RD&D efforts is the focus of this FOA. New value propositions could include, but are not limited to, mitigating ancillary resource requirements and meeting the growing demand for reliable and resilient grid operations against outages under all-hazards conditions.
  •  
    Funding Opportunity Announcement DE-FOA-0001616 The Department of Energy (DOE), National Energy Technology Laboratory (NETL), on behalf of the Office of Electricity Delivery and Energy Reliability (OE), is seeking applications under this Funding Opportunity Announcement (FOA), herein referred to as Announcement, to conduct research, development and demonstrations (RD&D). This RD&D, in the areas of low cost sensors and improved modeling using sensor data input, will lead to enhanced observability and controllability of power systems to support increased hosting capacity for distributed energy resources (DERs), including energy storage. Capturing the benefits commonly attributed to DERs and/or microgrids, as well as establishing new value propositions that could be enabled by these RD&D efforts is the focus of this FOA. New value propositions could include, but are not limited to, mitigating ancillary resource requirements and meeting the growing demand for reliable and resilient grid operations against outages under all-hazards conditions.
MiamiOH OARS

Algorithms for Modern Power Systems (AMPS) - 0 views

  •  
    The Algorithms for Modern Power Systems (AMPS) program will support research projects to develop the next generation of mathematical and statistical algorithms for improvement of the security, reliability, and efficiency of the modern power grid. The program is a partnership between the Division of Mathematical Sciences (DMS) at the National Science Foundation (NSF) and the Office of Electricity Delivery & Energy Reliability (OE) at the U.S. Department of Energy (DOE).
MiamiOH OARS

Faculty Development in the Space Sciences - 0 views

  •  
    The Geospace Section of the Division of Atmospheric and Geospace Sciences, to ensure the health and vitality of solar and space sciences on university teaching faculties, is pleased to offer awards for the creation of new tenure-track faculty positions within the intellectual disciplines which comprise the space sciences. The aim of these awards is to integrate research topics in solar and space physics into basic physics, astronomy, electrical engineering, geoscience, meteorology, computer science, and applied mathematics programs, and to develop space physics graduate programs capable of training the next generation of leaders in this field. Space Science is interdisciplinary in nature and the Faculty Development in the Space Sciences awardees will be expected to establish partnerships within the university community.
MiamiOH OARS

Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials... - 0 views

  •  
    The Division of Materials Research (DMR), the Division of Mathematical Sciences (DMS), the Division of Electrical, Communications and Cyber Systems (ECCS), and the Office of Advanced Cyberinfrastructure (OAC) seek to rapidly accelerate quantum materials design, synthesis, characterization, and translation of fundamental materials engineering and information research for quantum devices, systems, and networks. The new program of Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering, and Information (Q-AMASE-i) aims to support these goals by establishing Foundries with mid-scale infrastructure for rapid prototyping and development of quantum materials and devices. The new materials, devices, tools and methods developed by Q-AMASE-i will be shared with the science and engineering communities through a Foundry-operated network. Technology transfer of Foundry activities will be enabled by close cooperation with industrial partners.
MiamiOH OARS

NSF-Simons Research Collaborations on the Mathematical and Scientific Foundations of De... - 0 views

  •  
    The National Science Foundation Directorates for Mathematical and Physical Sciences (MPS), Computer and Information Science and Engineering (CISE), Engineering (ENG), and the Simons Foundation Division of Mathematics and Physical Sciences will jointly sponsor up to two new research collaborations consisting of mathematicians, statisticians, electrical engineers, and theoretical computer scientists. Research activities will be focused on explicit topics involving some of the most challenging questions in the general area of Mathematical and Scientific Foundations of Deep Learning. Each collaboration will conduct training through research involvement of recent doctoral degree recipients, graduate students, and/or undergraduate students from across this multi-disciplinary spectrum. Annual meetings of the Principal Investigators ("PIs") and other principal researchers involved in the collaborations will be held at the Simons Foundation in New York City. This program complements NSF's National Artificial Intelligence Research Institutes program by supporting collaborative research focused on the mathematical and scientific foundations of Deep Learning through a different modality and at a different scale.
MiamiOH OARS

Multimodal Sensor Systems for Precision Health Enabled by Data Harnessing, Artificial I... - 0 views

  •  
    The National Science Foundation (NSF) through its Divisions of Electrical, Communications and Cyber Systems (ECCS); Chemical, Bioengineering, Environmental and Transport Systems (CBET); Civil, Mechanical and Manufacturing Innovation (CMMI); Information and Intelligent Systems (IIS); and Mathematical Sciences (DMS) announces a solicitation on Multimodal Sensor Systems for Precision Health enabled by Data Harnessing, Artificial Intelligence (AI), and Learning. Next-generation multimodal sensor systems for precision health integrated with AI, machine learning (ML), and mathematical and statistical (MS) methods for learning can be envisioned for harnessing a large volume of diverse data in real time with high accuracy, sensitivity and selectivity, and for building predictive models to enable more precise diagnosis and individualized treatments. It is expected that these multimodal sensor systems will have the potential to identify with high confidence combinations of biomarkers, including kinematic and kinetic indicators associated with specific disease and disability. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts, innovative methodologies, theory, algorithms, and enabling technologies that will address the fundamental scientific issues and technological challenges associated with precision health.
MiamiOH OARS

NSF-Simons Research Collaborations on the Mathematical and Scientific Foundations of De... - 0 views

  •  
    The National Science Foundation Directorates for Mathematical and Physical Sciences (MPS), Computer and Information Science and Engineering (CISE), Engineering (ENG), and the Simons Foundation Division of Mathematics and Physical Sciences will jointly sponsor up to two new research collaborations consisting of mathematicians, statisticians, electrical engineers, and theoretical computer scientists. Research activities will be focused on explicit topics involving some of the most challenging questions in the general area of Mathematical and Scientific Foundations of Deep Learning. Each collaboration will conduct training through research involvement of recent doctoral degree recipients, graduate students, and/or undergraduate students from across this multi-disciplinary spectrum. Annual meetings of the Principal Investigators ("PIs") and other principal researchers involved in the collaborations will be held at the Simons Foundation in New York City. This program complements NSF's National Artificial Intelligence Research Institutes program by supporting collaborative research focused on the mathematical and scientific foundations of Deep Learning through a different modality and at a different scale.
MiamiOH OARS

NSF-Simons Research Collaborations on the Mathematical and Scientific Foundations of De... - 0 views

  •  
    The National Science Foundation Directorates for Mathematical and Physical Sciences (MPS), Computer and Information Science and Engineering (CISE), Engineering (ENG), and the Simons Foundation Division of Mathematics and Physical Sciences will jointly sponsor up to two new research collaborations consisting of mathematicians, statisticians, electrical engineers, and theoretical computer scientists. Research activities will be focused on explicit topics involving some of the most challenging questions in the general area of Mathematical and Scientific Foundations of Deep Learning. Each collaboration will conduct training through research involvement of recent doctoral degree recipients, graduate students, and/or undergraduate students from across this multi-disciplinary spectrum. Annual meetings of the Principal Investigators ("PIs") and other principal researchers involved in the collaborations will be held at the Simons Foundation in New York City. This program complements NSF's National Artificial Intelligence Research Institutes program by supporting collaborative research focused on the mathematical and scientific foundations of Deep Learning through a different modality and at a different scale.
MiamiOH OARS

NSF-Simons Research Collaborations on the Mathematical and Scientific Foundations of De... - 0 views

  •  
    The National Science Foundation Directorates for Mathematical and Physical Sciences (MPS), Computer and Information Science and Engineering (CISE), Engineering (ENG), and the Simons Foundation Division of Mathematics and Physical Sciences will jointly sponsor up to two new research collaborations consisting of mathematicians, statisticians, electrical engineers, and theoretical computer scientists. Research activities will be focused on explicit topics involving some of the most challenging questions in the general area of Mathematical and Scientific Foundations of Deep Learning. Each collaboration will conduct training through research involvement of recent doctoral degree recipients, graduate students, and/or undergraduate students from across this multi-disciplinary spectrum. Annual meetings of the Principal Investigators ("PIs") and other principal researchers involved in the collaborations will be held at the Simons Foundation in New York City. This program complements NSF's National Artificial Intelligence Research Institutes program by supporting collaborative research focused on the mathematical and scientific foundations of Deep Learning through a different modality and at a different scale.
MiamiOH OARS

SPIE Education Outreach Grants Program - SPIE - 0 views

  •  
    SPIE is an international society that works to advance an interdisciplinary approach to the science and application of light. As part of its educational outreach mission, SPIE awards grants in support of optics- and photonics-related educational outreach activities. The society offers two kinds of grants: SPIE Education Outreach grants and Sustaining grants. 1) SPIE Education Outreach grants: Recipients of these grants are required to submit an annual outreach grant report to the society on how the grant was used within ninety days of completing the funded activity. Grant applications should include activities that have not been funded by a previous award. 2) Sustaining Grants: If a program has received an Education Outreach Grant twice in a period of five years, it can only apply for further support, up to a maximum of $2,000, through a Sustaining grant. There is no limit to the number of times a program can apply for a Sustaining grant, but it will be competing with all other proposals every time it applies. To eligible, applicants must be a nonprofit organization or education institution (e.g., university, optics center, science center, primary or secondary school, youth club, industry association, or international optical societies).
1 - 13 of 13
Showing 20 items per page