Skip to main content

Home/ OARS funding Materials Science/ Group items tagged mechanical

Rss Feed Group items tagged

MiamiOH OARS

nsf.gov - Funding - Electronic and Photonic Materials - US National Science Foundation ... - 0 views

  •  
    The goal of this program is to advance the field of electronics and photonics through basic, potentially transformative materials science research. The scope of the program encompasses the discovery and understanding of materials and material combinations with potential for major technological advantages. Program focus is on identification and understanding of fundamental atomic and molecular level mechanisms and phenomena associated with synthesis and processing of electronic and photonic materials. High risk, high payoff research is encouraged. For example, novel materials are sought that may offer new paradigms in critical computing and communications components, or enable low cost, highly efficient, and stable photovoltaics, solid state lighting, and displays. Research topics include, but are not limited to, nucleation and growth of thin films and nanostructures; self-assembly; nanostructure definition and etching processes; interface bonding and structure; crystal and interface defects; doping; bulk crystal growth; and interrelationships between synthesis/processing, structure, and properties.
MiamiOH OARS

A--ARL Core Broad Agency Announcement for Basic and Applied Scientific Research for Fis... - 0 views

  •  
    Research proposals are sought from educational institutions, nonprofit organizations, and commercial organizations for research in materials sciences; ballistics and aeromechanics sciences; information sciences; human sciences; survivability, lethality, and vulnerability analysis and assessment; chemistry; electronics; physics; environmental sciences; life sciences; mechanical sciences, mathematical sciences, computing sciences and network sciences. Proposals will be evaluated only if they are for scientific study and experimentation directed toward advancing the state of the art or increasing knowledge and understanding. ARO has primary responsibility for ARL's extramural basic research programs, with specific research interests as described in Part II.A.2. The ARL Directorates, while having primary responsibility for ARL's in-house research programs, also manage select extramural basic research programs. The research interests of the Directorates are described in Part II.A.1. Although ARL Directorates will consider funding proposals for extramural research programs, they can fund only a modest number of proposals in a single fiscal year.
MiamiOH OARS

nsf.gov - Funding - Electronic and Photonic Materials - US National Science Foundation ... - 0 views

  •  
    The goal of this program is to advance the field of electronics and photonics through basic, potentially transformative materials science research. The scope of the program encompasses the discovery and understanding of materials and material combinations with potential for major technological advantages. Program focus is on identification and understanding of fundamental atomic and molecular level mechanisms and phenomena associated with synthesis and processing of electronic and photonic materials. High risk, high payoff research is encouraged. For example, novel materials are sought that may offer new paradigms in critical computing and communications components, or enable low cost, highly efficient, and stable photovoltaics, solid state lighting, and displays. Research topics include, but are not limited to, nucleation and growth of thin films and nanostructures; self-assembly; nanostructure definition and etching processes; interface bonding and structure; crystal and interface defects; doping; bulk crystal growth; and interrelationships between synthesis/processing, structure, and properties.
MiamiOH OARS

nsf.gov - Funding - Condensed Matter and Materials Theory - US National Science Foundat... - 0 views

  •  
    This program supports theoretical and computational materials research and education in the topical areas represented in DMR programs, including condensed matter physics, polymers, solid-state and materials chemistry, metals and nanostructures, electronic and photonic materials, ceramics, and biomaterials. The program supports fundamental research that advances conceptual, analytical, and computational techniques for materials research. A broad spectrum of research is supported using electronic structure methods, many-body theory, statistical mechanics, and Monte Carlo and molecular dynamics simulations, along with other techniques, many involving advanced scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior and to reveal new materials phenomena. Areas of recent interest include, but are not limited to: strongly correlated electron systems; low-dimensional systems; nonequilibrium phenomena, including pattern formation, microstructural evolution, and fracture; high-temperature superconductivity; nanostructured materials and mesoscale phenomena; quantum coherence and its control; and soft condensed matter, including systems of biological interest.
MiamiOH OARS

Ceramics - 0 views

  •  
    This program supports fundamental research including combined experiment and theory projects in ceramics (e.g., oxides, carbides, nitrides and borides), glass-ceramics, inorganic glasses, ceramic-based composites and inorganic carbon-based materials. The objective of the program is to increase fundamental understanding and to develop predictive capabilities for relating synthesis, processing, and microstructure of these materials to their properties and ultimate performance in various environments and applications. Research to enhance or enable the discovery or creation of new ceramic materials is welcome. Development of new experimental techniques or novel approaches to carry out projects is encouraged. Topics supported include basic processes and mechanisms associated with nucleation and growth of thin films; bulk crystal growth; phase transformations and equilibria; morphology; surface modification; corrosion, interfaces and grain boundary structure; and defects. The microstructures investigated range from crystalline, polycrystalline, and amorphous to composite and nanostructured materials. 
MiamiOH OARS

nsf.gov - Funding - Ceramics - US National Science Foundation (NSF) - 0 views

  •  
    This program supports fundamental research including combined experiment and theory projects in ceramics (e.g., oxides, carbides, nitrides and borides), glasses, ceramic-based composites and inorganic carbon-based materials. The objective of the program is to increase fundamental understanding and to develop predictive capabilities for relating synthesis, processing, and microstructure of these materials to their properties and ultimate performance in various environments and applications. Development of new experimental techniques or novel approaches to carry out projects is encouraged. Topics supported include basic processes and mechanisms associated with nucleation and growth of thin films; bulk crystal growth; phase transformations and equilibria; morphology; surface modification; corrosion, interfaces and grain boundary structure; and defects. The microstructures investigated range from crystalline, polycrystalline, and amorphous to composite and nanostructured materials.  PIs uncertain about whether or not their project is suitable for submission to the Ceramics Program may submit a draft of their NSF Project Summary by e-mail to the Program Director for comment.
MiamiOH OARS

Materials Engineering and Processing - 0 views

  •  
    The Materials Engineering and Processing (MEP) program supports fundamental research addressing the processing and mechanical performance of engineering materials by investigating the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Materials processing proposals should focus on manufacturing processes that convert material into useful form as either intermediate or final composition. These include processes such as extrusion, molding, casting, deposition, sintering and printing.
MiamiOH OARS

Sustainable Ammonia Synthesis - 0 views

  •  
    The Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE), announces its interest in receiving grant applications from U.S. universities/institutions of higher education for basic research to investigate some of the outstanding scientific questions in the synthesis of ammonia (NH3) from nitrogen (N2) using processes that do not generate greenhouse gases (such as CO2, NOx, etc.). Of interest is molecular level research that will provide the scientific basis for novel catalysts and mechanisms for nitrogen activation. Ideally, this research should produce fundamental knowledge that will lead to future catalytic processes for ammonia synthesis that are energy efficient, use renewable sources of energy, and do not produce greenhouse gases. This FOA will not consider proposals on process or reactor design, optimization or plant-level intensification. Research will not be supported whose primary goal(s) or challenge(s) are hydrogen evolution, oxygen evolution, CO2 capture or conversion, or outside the specific focus on nitrogen activation. See the Summary Criteria section for more information on research areas excluded from this funding opportunity.
MiamiOH OARS

NineSights Community - Request for Proposal: 2aSelf-Stratifying Liquid Formulations 2c - 0 views

  •  
    NineSigma, representing a Global Consumer Coatings Company, invites proposals for materials and approaches that result in self-stratifying layers within a water-based liquid coating formulation. The client is interested in any approach that results in self-stratification of components, regardless of technical maturity. The proposed mechanism must ultimately be applicable to architectural coatings.
MiamiOH OARS

Division of Materials Research: Topical Materials Research Programs - 0 views

  •  
    Research supported by the Division of Materials Research (DMR) focuses on advancing fundamental understanding of materials, materials discovery, design, synthesis, characterization, properties, and materials-related phenomena. DMR awards enable understanding of the electronic, atomic, and molecular structures, mechanisms, and processes that govern nanoscale to macroscale morphology and properties; manipulation and control of these properties; discovery of emerging phenomena of matter and materials; and creation of novel design, synthesis, and processing strategies that lead to new materials with unique characteristics. These discoveries and advancements transcend traditional scientific and engineering disciplines. The Division supports research and education activities in the United States through funding of individual investigators, teams, centers, facilities, and instrumentation. Projects supported by DMR are essential for the development of future technologies and industries that meet societal needs, as well preparation of the next generation of materials researchers.
MiamiOH OARS

Division of Materials Research: Topical Materials Research Programs (DMR-TMRP) (nsf1758... - 0 views

  •  
    Research supported by the Division of Materials Research (DMR) focuses on advancing fundamental understanding of materials, materials discovery, design, synthesis, characterization, properties, and materials-related phenomena. DMR awards enable understanding of the electronic, atomic, and molecular structures, mechanisms, and processes that govern nanoscale to macroscale morphology and properties; manipulation and control of these properties; discovery of emerging phenomena of matter and materials; and creation of novel design, synthesis, and processing strategies that lead to new materials with unique characteristics. These discoveries and advancements transcend traditional scientific and engineering disciplines. The Division supports research and education activities in the United States through funding of individual investigators, teams, centers, facilities, and instrumentation. Projects supported by DMR are essential for the development of future technologies and industries that meet societal needs, as well preparation of the next generation of materials researchers.
MiamiOH OARS

Joint FY20 Bioenergy and Advanced Manufacturing FOA BOTTLE: Bio-Optimized Technologies ... - 0 views

  •  
    This FOA will support high-impact R&D for plastics by developing new plastics that are capable of efficient recyclability and improving recycling strategies that can break existing plastics into chemical building blocks that can be used to make higher-value products. DOE's Bioenergy Technologies Office (BETO) develops technologies that convert domestic biomass and waste resources into fuels, products, and power to enable affordable energy, economic growth, and innovation in renewable energy and chemicals production. DOE's Advanced Manufacturing Office (AMO) develops technologies that drive energy productivity improvements in the U.S. manufacturing sector, efficiently utilize abundant and available domestic energy resources, and support the manufacture of clean energy products with benefits extending across the economy. This Funding Opportunity Announcement (FOA) will support high-impact technology research and development (R&D) to enable the development of technologies that overcome the challenges associated with plastic waste. Topic Areas include: 1) Highly Recyclable or Biodegradable Plastics: develop new plastics that have improved performance attributes over a comparable existing plastic that can be cost-effectively recycled or biodegrade completely in the environment or in compost facilities. 2) Novel Methods for Deconstructing and Upcycling Existing Plastics: generate energy efficient recycling technologies (mechanical, chemical, or biological) that are capable of breaking plastic streams into intermediates which can be upgraded into higher value products. 3) BOTTLE Consortium Collaborations to Tackle Challenges in Plastic Waste: create collaborations with the Bio-Optimized Technologies to Keep Thermoplastics out of Landfills and the Environment (BOTTLE) Laboratory Consortium to further the long-term goals of the Consortium and the Plastics Innovation Challenge.
MiamiOH OARS

Division of Materials Research: Topical Materials Research Programs | NSF - National Sc... - 0 views

  •  
    Research supported by the Division of Materials Research (DMR) focuses on advancing fundamental understanding of materials, materials discovery, design, synthesis, characterization, properties, and materials-related phenomena. DMR awards enable understanding of the electronic, atomic, and molecular structures, mechanisms, and processes that govern nanoscale to macroscale morphology and properties; manipulation and control of these properties; discovery of emerging phenomena of matter
MiamiOH OARS

Condensed Matter and Materials Theory | NSF - National Science Foundation - 0 views

  •  
    CMMT supports theoretical and computational materials research in the topical areas represented in DMR's Topical Materials Research Programs (these are also variously known as Individual Investigator Award (IIA) Programs, or Core Programs, or Disciplinary Programs), which include: Condensed Matter Physics (CMP), Biomaterials (BMAT), Ceramics (CER), Electronic and Photonic Materials (EPM), Metals and Metallic Nanostructures (MMN), Polymers (POL), and Solid State and Materials Chemistry (SSMC). The CMMT program supports fundamental research that advances conceptual understanding of hard and soft materials, and materials-related phenomena; the development of associated analytical, computational, and data-centric techniques; and predictive materials-specific theory, simulation, and modeling for materials research. First-principles electronic structure, quantum many-body and field theories, statistical mechanics, classical and quantum Monte Carlo, and molecular dynamics, are among the methods used in the broad spectrum of research supported in CMMT. Research may encompass the advance of new paradigms in materials research, including emerging data-centric approaches utilizing data-analytics or machine learning.
MiamiOH OARS

Supporting Fundamental Research to Enable Innovation in Advanced Manufacturing at Manuf... - 0 views

  •  
    The National Science Foundation (NSF) is interested in receiving research proposals addressing critical fundamental research needs in advanced manufacturing, and particularly in projects that may enable innovations in the technical focus areas of one or more of the Manufacturing USA Institutes. Such proposals should leverage the facilities, infrastructure, expertise and member companies of one or more Institutes.
‹ Previous 21 - 35 of 35
Showing 20 items per page