Skip to main content

Home/ OARS funding Materials Science/ Group items tagged mechanical

Rss Feed Group items tagged

MiamiOH OARS

Mechanics of Materials and Structures - 0 views

  •  
    The Mechanics of Materials and Structures program supports fundamental research in mechanics as related to the behavior of deformable solid materials and respective structures under internal and external actions. A diverse and interdisciplinary spectrum of research is supported with emphasis on research that leads to advances in i) theory, experimental, and/or computational methods in mechanics, and/or ii) uses contemporary mechanics methods to address modern challenges in materials and structures. Proposed research can focus on existing or emerging materials and structural systems, across time and length scales. Proposals related to material response are welcome, and would propose, but not limited to, advances in fundamental understanding of deformation, fracture, fatigue, as well as on contact and friction through constitutive modeling, multi-scale (spatial or temporal) and multi-physics analysis, computational methods, or experimental techniques. Proposals that relate to structural response are welcome and would propose, but not limited to, advances in the understanding of nonlinear deformation, instability and collapse in the context of large deformation, wave propagation, multi-scale (spatial or temporal) and multi-physics analysis, computational methods, or experimental techniques. Proposals at the intersection or considerate of the integration of material and structure (such as, but not limited to, metamaterials, hierarchical, microarchitectured and low-dimensional materials) are especially welcome. Of particular interest are research questions that address the integration and combination of geometry, topology of material distributions, lengthscales and deformation/failure mechanics. Within this context, the challenge of the notion of what constitutes a ??material?? or a ??structure?? is expected to lead to unique opportunities in terms of analysis and experimentation of novel response characteristics. While the research results should contribute to ultimatel
MiamiOH OARS

NSF Mechanics of Materials - 0 views

  •  
    The Mechanics of Materials program supports fundamental research on the behavior of solid materials and respective devices under external actions.?? A diverse and interdisciplinary spectrum of research is supported with emphasis placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in Mechanics of Materials, and/or ii) uses contemporary Mechanics of Materials methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales. Intellectual merit typically includes advances in fundamental understanding of deformation, fracture, fatigue, and contact through constitutive modeling, multiscale and multiphysics analysis, computational methods, or experimental techniques.??Recent interests comprise, but are not limited to:?? contemporary materials including multiphase materials and material systems, soft materials, active materials, low-dimensional materials, phononic/elastic metamaterials, friction, wear;??multiphysics methods, mechanics at the nano, meso and microscale and multiscale integration thereof, as well as approaches incorporating fundamental understanding of physics and chemistry into the continuum-level understanding of the response characteristics of materials and material systems.
MiamiOH OARS

Mechanics of Materials and Structures - 0 views

  •  
    he Mechanics of Materials and Structures program supports fundamental research in mechanics as related to the behavior of deformable solid materials and structures under internal and external actions. The program supports a diverse spectrum of research with emphasis on transformative advances in experimental, theoretical, and computational methods. Submitted proposals should clearly emphasize the contributions to the field of mechanics. Proposals related to material response are welcome, including, but not limited to, advances in fundamental understanding of deformation, fracture, and fatigue as well as contact and friction. Proposals that relate to structural response are also welcome, including, but not limited to, advances in the understanding of nonlinear deformation, instability and collapse, and wave propagation. Proposals addressing mechanics at the intersection of materials and structures, such as, but not limited to, meta-materials, hierarchical, micro-architectured and low-dimensional materials are also encouraged
MiamiOH OARS

nsf.gov - Funding - Mechanics of Materials - US National Science Foundation (NSF) - 0 views

  •  
    The MoM program supports fundamental research in interdisciplinary solid mechanics.  Emphasis is placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in MoM, and/or ii) uses contemporary MoM methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales; especially of interest are contemporary materials including complex solids, phononic/elastic metamaterials, soft materials, and active materials.  Research is welcome in emerging areas of multiscale methods, nanomechanics, manufacturing mechanics, and areas that incorporate fundamental understanding of physics and chemistry into the continuum-level understanding of solids.
MiamiOH OARS

nsf.gov - Funding - Structural Materials and Mechanics - US National Science Foundation... - 0 views

  •  
    The SMM program supports fundamental research on the behavior of civil infrastructure materials and the mechanics of structural components in the built environment.  Of particular interest is research on structural components consisting of natural and synthetic materials, their response to mechanical, hydrothermal, and time-dependent loads, and their impact on life-cycle performance and sustainable development of the civil infrastructure.
MiamiOH OARS

nsf.gov - Funding - Geomechanics & Geomaterials - US National Science Foundation (NSF) - 0 views

  •  
    The GEOMM program supports fundamental research on the mechanical and engineering properties of geologic materials including natural, mechanically stabilized, and biologically or chemically modified soil and rock.  The program also addresses hydraulic, biological, chemical and thermal processes that affect the behavior of geologic materials.  Research at the micro-scale on soil-structure interaction and liquefaction are included in the scope of this program.  Support is provided for theoretical studies, constitutive and numerical modeling, laboratory, centrifuge, and field testing.  Cross-disciplinary and international collaborations are encouraged.
MiamiOH OARS

Geotechnical Engineering and Materials | NSF - National Science Foundation - 0 views

  •  
    The Geotechnical Engineering and Materials Program (GEM) supports fundamental research in soil and rock mechanics and dynamics in support of physical civil infrastructure systems. Also supported is research on improvement of the engineering properties of geologic materials for infrastructure use by mechanical, biological, thermal, chemical, and electrical processes. The Program supports the traditional areas of foundation engineering, earth structures, underground construction, tunneling, geoenvironmental engineering, and site characterization, as well as the emerging area of bio-geo engineering, for civil engineering applications, with emphasis on sustainable geosystems. Research related to the geotechnical engineering aspects of geothermal energy and geothermal heat pump systems is also supported. The GEM program encourages knowledge dissemination and technology transfer activities that can lead to broader societal benefit and implementation for provision of physical civil infrastructure. The Program also encourages research that explores and builds upon advanced computing techniques and tools to enable major advances in Geotechnical Engineering.
MiamiOH OARS

US NSF - Dear Colleague Letter: Information on the Materials Engineering & Processing P... - 0 views

  •  
    Effective September 1, 2013, the Materials Engineering and Processing Program (MEP) (PD 13-8092) will be accepting proposals that address engineering principles as they relate to material processing and performance. This program replaces the Materials Processing and Manufacturing (MPM), Materials and Surface Engineering (MSE), and Structural Mechanics and Materials (SMM) programs. This new MEP program is effectively a merger and evolutionary advance of these three programs. The MPM, MSE and SMM programs will no longer be accepting new proposals1. The Division of Civil, Mechanical, and Manufacturing Innovation (CMM) in Directorate for Engineering (ENG) of the National Science Foundation (NSF) created the Materials Engineering and Processing (MEP) program to support fundamental research addressing the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Processing and performance of all material systems are of interest. These include polymers, metals, ceramics, semiconductors, composites, and hybrids thereof. Research driven by scientific hypotheses are encouraged when suitable, and materials in bulk form or focus on special zones such as surfaces or interfaces that are to be used in structural and/or functional applications are appropriate for this program. Analytical, experimental, and numerical studies are supported and collaborative proposals with industry (i.e. Grant Opportunities for Academic Liaison with Industry (GOALI)) are encouraged.
MiamiOH OARS

NineSights Community - Request for Proposal: 2aHigh-sensitivity, High-speed Sensor for... - 0 views

  •  
    The Client is engaged in the development of high-throughput inspection systems for hazardous materials (explosives and/or illegal drugs), to be used at airports, etc. These inspection systems consist of a mechanism to collect particulate matters of explosives or drugs that are attached to inspection targets such as pieces of luggage or clothing, and a sensor to inspect the collected particulate matters. The development of a particulate matter collecting system has been completed, as has been the development of a high-speed, high-accuracy sensor for the detection mechanism. However, lower-cost sensors are needed for the development of less expensive versions of the system with priority given to the cost over the accuracy, intended for use in developing countries.
MiamiOH OARS

Geotechnical Engineering and Materials | NSF - National Science Foundation - 0 views

  •  
    The Geotechnical Engineering and Materials Program (GEM) supports fundamental research in soil and rock mechanics and dynamics in support of physical civil infrastructure systems. Also supported is research on improvement of the engineering properties of geologic materials for infrastructure use by mechanical, biological, thermal, chemical, and electrical processes. The Program supports the traditional areas of foundation engineering, earth structures, underground construction, tunneling, geoenvironmental engineering, and site characterization, as well as the emerging area of bio-geo engineering, for civil engineering applications, with emphasis on sustainable geosystems. Research related to the geotechnical engineering aspects of geothermal energy and geothermal heat pump systems is also supported. The GEM program encourages knowledge dissemination and technology transfer activities that can lead to broader societal benefit and implementation for provision of physical civil infrastructure. The Program also encourages research that explores and builds upon advanced computing techniques and tools to enable major advances in Geotechnical Engineering.
MiamiOH OARS

Optimizing Natural Systems for Remediation: Utilizing Innovative Materials Science Appr... - 0 views

  •  
    The National Institute of Environmental Health Sciences (NIEHS) invites qualified investigators from domestic institutions of higher education to submit an application for Superfund Research Program (SRP) R01 Individual Research Project grant program. This Funding Opportunity Announcement (FOA) focuses on research that will advance effectiveness of bioremediation through incorporation of advanced, novel materials science approaches. Bioremediation refers to the use of biota (bacteria, algae, fungi, plants, etc.) to reduce or detoxify hazardous substances in the environment. Bioremediation is a cost-effective, low-energy-intensive remedy that has contributed to the cleanup and closure of sites impacted by hazardous substances. In recent decades, bioremediation has advanced from reliance upon culturing and biogeochemical processing to a technology-enabled field enhanced by high throughput molecular approaches (e.g. omics and gene editing techniques). These new approaches have elucidated molecular mechanisms responsible for contaminant cleanup and provided insight for potential solutions to naturally degrade emerging contaminants. Concurrent advances in materials science approaches present an opportunity to integrate new approaches to further refine the mechanisms of bioremediation and optimize conditions to accelerate natural degradation and/or stabilization processes. This Funding Opportunity Announcement calls for teams including bioremediation materials science (nanotechnology, microenvironmental engineering) to submit proposals to advance the knowledge and practice of bioremediation to address current and emerging recalcitrant hazardous substances and complex mixtures.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Research Experiences for Undergraduates (REU) program supports active research participation by undergraduate students in any of the areas of research funded by the National Science Foundation. REU projects involve students in meaningful ways in ongoing research programs or in research projects specifically designed for the REU program. This solicitation features two mechanisms for support of student research: (1) REU Sites are based on independent proposals to initiate and conduct projects that engage a number of students in research. REU Sites may be based in a single discipline or academic department or may offer interdisciplinary or multi-department research opportunities with a coherent intellectual theme. Proposals with an international dimension are welcome. (2) REU Supplements may be included as a component of proposals for new or renewal NSF grants or cooperative agreements or may be requested for ongoing NSF-funded research projects.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Fluid Dynamics program supports fundamental research and education on mechanisms and phenomena governing fluid flow. Proposed research should contribute to basic understanding; thus enabling the better design; predictability; efficiency; and control of systems that involve fluids. Encouraged are proposals that address innovative uses of fluids in materials development; manufacturing; biotechnology; nanotechnology; clinical diagnostics and drug delivery; sensor development and integration; energy and the environment. While the research should focus on fundamentals, a clear connection to potential application should be outlined.
MiamiOH OARS

nsf.gov - Funding - Research Experiences for Undergraduates - US National Science Found... - 0 views

  •  
    The Research Experiences for Undergraduates (REU) program supports active research participation by undergraduate students in any of the areas of research funded by the National Science Foundation. REU projects involve students in meaningful ways in ongoing research programs or in research projects specifically designed for the REU program. This solicitation features two mechanisms for support of student research: (1) REU Sites are based on independent proposals to initiate and conduct projects that engage a number of students in research. REU Sites may be based in a single discipline or academic department or may offer interdisciplinary or multi-department research opportunities with a coherent intellectual theme. Proposals with an international dimension are welcome. (2) REU Supplements may be included as a component of proposals for new or renewal NSF grants or cooperative agreements or may be requested for ongoing NSF-funded research projects.
MiamiOH OARS

nsf.gov - Funding - Integrated NSF Support Promoting Interdisciplinary Research and Edu... - 0 views

  •  
    The INSPIRE awards program was established to address some of the most complicated and pressing scientific problems that lie at the intersection of traditional disciplines.  It is intended to encourage investigators to submit bold, exceptional proposals that some may consider to be at a disadvantage in a standard NSF review process; it is not intended for proposals that are more appropriate for existing award mechanisms.
MiamiOH OARS

nsf.gov - Funding - Fluid Dynamics - US National Science Foundation (NSF) - 0 views

  •  
    The Fluid Dynamics program supports fundamental research and education on mechanisms and phenomena governing fluid flow.  Proposed research should contribute to basic understanding; thus enabling the better design; predictability; efficiency; and control of systems that involve fluids.  Encouraged are proposals that address innovative uses of fluids in materials development; manufacturing; biotechnology; nanotechnology; clinical diagnostics and drug delivery; sensor development and integration; energy and the environment. While the research should focus on fundamentals, a clear connection to potential application should be outlined.
MiamiOH OARS

NIST Consortium for Semiconductor and Future Computing Research Grant Program - 0 views

  •  
    NIST is soliciting proposals for financial assistance from eligible applicants to support basic research, in a consortium-based setting, focused on the long-term research needs of industry in the area of future computing and information processing. There is a critical need for scientific and engineering advances in novel computing paradigms with long-term impact on the semiconductor, electronics, computing, and defense industries. The proposed activities should advance the physical and materials aspects of future computing technologies with a focus on alternatives that provide low latency, low energy per operation, improved data/communication bandwidth, and higher clock speed. Activities should include innovative research in devices, circuits, architectures, metrology or characterization to enable future computing paradigms. Applicants should create mechanisms for extended collaboration with NIST researchers.
MiamiOH OARS

NIST Consortium for Semiconductor and Future Computing Research Grant Program - 0 views

  •  
    NIST is soliciting proposals for financial assistance from eligible applicants to support basic research, in a consortium-based setting, focused on the long-term research needs of industry in the area of future computing and information processing. There is a critical need for scientific and engineering advances in novel computing paradigms with long-term impact on the semiconductor, electronics, computing, and defense industries. The proposed activities should advance the physical and materials aspects of future computing technologies with a focus on alternatives that provide low latency, low energy per operation, improved data/communication bandwidth, and higher clock speed. Activities should include innovative research in devices, circuits, architectures, metrology or characterization to enable future computing paradigms. Applicants should create mechanisms for extended collaboration with NIST researchers.
MiamiOH OARS

Thermal Transport Processes | NSF - National Science Foundation - 0 views

  •  
    The Thermal Transport Processes (TTP) program supports engineering research projects that lay the foundation for new discoveries in thermal transport phenomena. These projects should either develop new fundamental knowledge or combine existing knowledge in thermodynamics, fluid mechanics, and heat and mass transfer to probe new areas of innovation. The program seeks transformative projects with the potential for improving our basic understanding, predictability and application of thermal transport processes. Projects should articulate the contribution(s) to the fundamental knowledge supporting thermal transport processes and state clearly the potential application(s) impact when appropriate. Projects that combine analytical, experimental and numerical efforts, geared toward understanding, modeling and predicting thermal phenomena, are of great interest. Collaborative and interdisciplinary proposals for which the main contribution is in thermal transport processes fundamentals are also encouraged.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Materials Engineering and Processing (MEP) program supports fundamental research addressing the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Research proposals should be driven by the performance or output of the material system relative to the targeted application(s). Research plans driven by scientific hypotheses are encouraged when suitable. Materials in bulk form or focus on special zones such as surfaces or interfaces that are to be used in structural and/or functional applications are appropriate. All material systems are of interest including polymers, metals, ceramics, semiconductors, composites and hybrids thereof. Analytical, experimental, and numerical studies are supported and collaborative proposals with industry (GOALI) are encouraged.Areas of interest include: Functional Materials - materials that possess native properties and functions that can be controlled by external forces such as temperature, light, electric field, pH, etc. These include materials that exhibit properties such as electronic, magnetic, piezoelectric, ferroelectric, photovoltaic, chromogenic, shape memory, thermoelectric or self-healing, etc. Structural Materials - materials that, in service, bear mechanical load. Length scales from nano to meso to macro are of interest as are materials in the bulk or in special configuration such as thin film. These include materials such as metals, polymers, composites, biomaterials, ceramics, hybrids, cement, etc. Materials Processing - processes that convert material into useful form as either intermediate or final composition. These include processes such as extrusion, molding, casting, deposition, sintering, printing, etc. Research that addresses multi-scale and/or multi-functional materials systems is encouraged as is research in support of environmentally-benign manufacturing.
1 - 20 of 35 Next ›
Showing 20 items per page