Skip to main content

Home/ OARS funding Materials Science/ Group items tagged materials

Rss Feed Group items tagged

MiamiOH OARS

US NSF - Dear Colleague Letter: Designing Materials to Revolutionize and Engineer our F... - 0 views

  •  
    NSF is interested in activities that accelerate materials discovery and development by building the fundamental knowledge base needed to progress towards designing and making a material with a specific and desired function or property from first principles. Also of interest to NSF is research that seeks to advance fundamental understanding of materials across length and time scales to elucidate the effects of microstructure, surfaces, and coatings on the properties and performance of materials and devices. The DMREF goal is to control material properties through design: this is to be accomplished by understanding the interrelationships of composition, processing, structure, properties, performance, and process control. The approach envisioned to achieve this goal involves modeling, analysis and computational simulations, validated and verified through measurement, experimentation or device demonstration. This requires new data analytic tools and statistical algorithms; advances in predictive modeling that leverage machine learning, data mining, and sparse approximation; data infrastructure that is accessible, extensible, scalable, and sustainable; and new collaborative capabilities for managing large, complex, heterogeneous, distributed data supporting materials design, synthesis, and longitudinal study.
MiamiOH OARS

US NSF - Dear Colleague Letter - FY 2014 Sustainable Chemistry, Engineering, and Materi... - 0 views

  •  
    Fundamental research topics of interest in SusChEM include the replacement of rare, expensive, and/or toxic chemicals/materials with earth-abundant, inexpensive, and benign chemicals/materials; recycling of chemicals/materials that cannot be replaced; development of non-petroleum based sources of important raw materials; the elimination of waste products and enhancement in efficiencies of chemical reactions and processes; discovery of new separation science that will facilitate recycling and production of valuable chemicals/materials; and development and characterization of low cost, sustainable and scalable-manufactured materials with improved properties.
MiamiOH OARS

Materials Research and Survivability Studies - Federal Business Opportunities: Opportun... - 0 views

  •  
    The objective of this program is to conduct research and advance the current state-of-the-art in photonic materials technologies, interactions, and applications using unique and innovative solutions for improved hardened materials and increased survivability of sensors, structures, systems, and aircrew members. Separate Task Orders will contain specific requirements relative to a particular program's technical objectives. Some of the key technical areas of interest include Optical Materials and Processing, Hardening Materials and Processing, Electro-Optic/Infrared (EO/IR) Sensor Protection, Warfighter Protection, Structural Protection, Optical Technology, Computational and Theoretical Studies on Functional Materials, Proactive Threat Defeat, and High Energy Laser Source Materials. The following initial Task Orders are anticipated:
MiamiOH OARS

Materials Research Science and Engineering Centers (MRSEC) (nsf19517) | NSF - National ... - 0 views

  •  
    The Materials Research Science and Engineering Centers (MRSECs) program provides sustained support of interdisciplinary materials research and education of the highest quality while addressing fundamental problems in science and engineering. Each MRSEC addresses research of a scope and complexity requiring the scale, synergy, and multidisciplinarity provided by a campus-based research center. The MRSECs support materials research infrastructure in the United States, promote active collaboration between universities and other sectors, including industry and international organizations, and contribute to the development of a national network of university-based centers in materials research, education, and facilities. A MRSEC may be located at a single institution, or may involve multiple institutions in partnership, and is composed of up to three Interdisciplinary Research Groups, IRGs, each addressing a fundamental materials science topic aligned with the Division of Materials Research, DMR.
MiamiOH OARS

Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials... - 0 views

  •  
    The Division of Materials Research (DMR), the Division of Mathematical Sciences (DMS), the Division of Electrical, Communications and Cyber Systems (ECCS), and the Office of Advanced Cyberinfrastructure (OAC) seek to rapidly accelerate quantum materials design, synthesis, characterization, and translation of fundamental materials engineering and information research for quantum devices, systems, and networks. The new program of Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering, and Information (Q-AMASE-i) aims to support these goals by establishing Foundries with mid-scale infrastructure for rapid prototyping and development of quantum materials and devices. The new materials, devices, tools and methods developed by Q-AMASE-i will be shared with the science and engineering communities through a Foundry-operated network. Technology transfer of Foundry activities will be enabled by close cooperation with industrial partners.
MiamiOH OARS

Materials Research Science and Engineering Centers - 0 views

  •  
    The Materials Research Science and Engineering Centers (MRSECs) program provides sustained support of interdisciplinary materials research and education of the highest quality while addressing fundamental problems in science and engineering. Each MRSEC addresses research of a scope and complexity requiring the scale, synergy, and multidisciplinarity provided by a campus-based research center. The MRSECs support materials research infrastructure in the United States, promote active collaboration between universities and other sectors, including industry and international organizations, and contribute to the development of a national network of university-based centers in materials research, education, and facilities. A MRSEC may be located at a single institution, or may involve multiple institutions in partnership, and is composedof up to three Interdisciplinary Research Groups, IRGs, each addressing a fundamental materials science topic aligned with the Division of Materials Research, DMR.
MiamiOH OARS

Mechanics of Materials and Structures - 0 views

  •  
    he Mechanics of Materials and Structures program supports fundamental research in mechanics as related to the behavior of deformable solid materials and structures under internal and external actions. The program supports a diverse spectrum of research with emphasis on transformative advances in experimental, theoretical, and computational methods. Submitted proposals should clearly emphasize the contributions to the field of mechanics. Proposals related to material response are welcome, including, but not limited to, advances in fundamental understanding of deformation, fracture, and fatigue as well as contact and friction. Proposals that relate to structural response are also welcome, including, but not limited to, advances in the understanding of nonlinear deformation, instability and collapse, and wave propagation. Proposals addressing mechanics at the intersection of materials and structures, such as, but not limited to, meta-materials, hierarchical, micro-architectured and low-dimensional materials are also encouraged
MiamiOH OARS

Materials Research Science and Engineering Centers (MRSEC) (nsf19517) | NSF - National ... - 0 views

  •  
    The Materials Research Science and Engineering Centers (MRSECs) program provides sustained support of interdisciplinary materials research and education of the highest quality while addressing fundamental problems in science and engineering. Each MRSEC addresses research of a scope and complexity requiring the scale, synergy, and multidisciplinarity provided by a campus-based research center. The MRSECs support materials research infrastructure in the United States, promote active collaboration between universities and other sectors, including industry and international organizations, and contribute to the development of a national network of university-based centers in materials research, education, and facilities. A MRSEC may be located at a single institution, or may involve multiple institutions in partnership, and is composed of up to three Interdisciplinary Research Groups, IRGs, each addressing a fundamental materials science topic aligned with the Division of Materials Research, DMR.
MiamiOH OARS

nsf.gov - Funding - Biomaterials - US National Science Foundation (NSF) - 0 views

  •  
    The Biomaterials program supports fundamental materials research related to (1) biological materials, (2) biomimetic, bioinspired, and bioenabled materials, (3) synthetic materials intended for applications in contact with biological systems, and (4) the processes through which nature produces biological materials.  Projects are typically interdisciplinary and may encompass scales from the nanoscopic to the bulk.  They may involve characterization, design, preparation, and modification; studies of structure-property relationships and interfacial behavior; and combinations of experiment, theory, and/or simulation.  The emphasis is on novel materials design and development and discovery of new phenomena.
MiamiOH OARS

nsf.gov - Funding - Metals and Metallic Nanostructures - US National Science Foundation... - 0 views

  •  
    he Metals and Metallic Nanostructures (MMN) Program supports fundamental research and education on the relationships between processing, structure and properties of metals and their alloys. The program focuses on experimental research while strongly encouraging the synergistic use of theory and computational materials science. Structure spanning atomic, nanometer, micrometer and larger length scales controls properties and connects these with processing.   The program emphasizes the role of structure across all these length scales, including structural imperfections such as vacancies, solutes, dislocations, boundaries and interfaces. Research should advance fundamental materials science that will enable the design and synthesis of metallic materials to optimize superior behaviors and enable the prediction of properties and performance. The program aims to advance the materials science of metals and alloys through transformative research on a diverse array of topics, including, but not limited to, phase transformations; equilibrium, non-equilibrium and far-from equilibrium structures; thermodynamics; kinetics; diffusion; interfaces; oxidation; performance in extreme environments; recyclability; magnetic behavior; thermal transport; plastic flow; and similar phenomena. Yield strength, flow stress, creep, fatigue and fracture are structural-materials examples. Magnetic energy density, shape-memory strain and thermoelectric efficiency are examples for functional materials.  Broader impacts are expected in education and other areas, such as workforce development, sustainability, environmental impact or critical infrastructure needs.  High-quality proposals that integrate research, education, and other broader impacts are invited.
MiamiOH OARS

nsf.gov - Funding - Mechanics of Materials - US National Science Foundation (NSF) - 0 views

  •  
    The MoM program supports fundamental research in interdisciplinary solid mechanics.  Emphasis is placed on fundamental understanding that i) advances theory, experimental, and/or computational methods in MoM, and/or ii) uses contemporary MoM methods to address modern challenges in material and device mechanics and physics. Proposed research can focus on existing or emerging material systems across time and length scales; especially of interest are contemporary materials including complex solids, phononic/elastic metamaterials, soft materials, and active materials.  Research is welcome in emerging areas of multiscale methods, nanomechanics, manufacturing mechanics, and areas that incorporate fundamental understanding of physics and chemistry into the continuum-level understanding of solids.
MiamiOH OARS

nsf.gov - Funding - Materials Engineering and Processing - US National Science Foundati... - 0 views

  •  
    The Materials Engineering and Processing (MEP) program supports fundamental research addressing the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Research proposals should be driven by the performance or output of the material system relative to the targeted application(s). Research plans driven by scientific hypotheses are encouraged when suitable. Materials in bulk form or focus on special zones such as surfaces or interfaces that are to be used in structural and/or functional applications are appropriate. All material systems are of interest including polymers, metals, ceramics, semiconductors, composites and hybrids thereof. Analytical, experimental, and numerical studies are supported and collaborative proposals with industry (GOALI) are encouraged.
MiamiOH OARS

nsf.gov - Funding - Electronic and Photonic Materials - US National Science Foundation ... - 0 views

  •  
    The goal of this program is to advance the field of electronics and photonics through basic, potentially transformative materials science research. The scope of the program encompasses the discovery and understanding of materials and material combinations with potential for major technological advantages. Program focus is on identification and understanding of fundamental atomic and molecular level mechanisms and phenomena associated with synthesis and processing of electronic and photonic materials. High risk, high payoff research is encouraged. For example, novel materials are sought that may offer new paradigms in critical computing and communications components, or enable low cost, highly efficient, and stable photovoltaics, solid state lighting, and displays. Research topics include, but are not limited to, nucleation and growth of thin films and nanostructures; self-assembly; nanostructure definition and etching processes; interface bonding and structure; crystal and interface defects; doping; bulk crystal growth; and interrelationships between synthesis/processing, structure, and properties.
MiamiOH OARS

nsf.gov - Funding - Electronic and Photonic Materials - US National Science Foundation ... - 0 views

  •  
    The goal of this program is to advance the field of electronics and photonics through basic, potentially transformative materials science research. The scope of the program encompasses the discovery and understanding of materials and material combinations with potential for major technological advantages. Program focus is on identification and understanding of fundamental atomic and molecular level mechanisms and phenomena associated with synthesis and processing of electronic and photonic materials. High risk, high payoff research is encouraged. For example, novel materials are sought that may offer new paradigms in critical computing and communications components, or enable low cost, highly efficient, and stable photovoltaics, solid state lighting, and displays. Research topics include, but are not limited to, nucleation and growth of thin films and nanostructures; self-assembly; nanostructure definition and etching processes; interface bonding and structure; crystal and interface defects; doping; bulk crystal growth; and interrelationships between synthesis/processing, structure, and properties.
MiamiOH OARS

nsf.gov - Funding - Materials Engineering and Processing - US National Science Foundati... - 0 views

  •  
    The Materials Engineering and Processing (MEP) program supports fundamental research addressing the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Research proposals should be driven by the performance or output of the material system relative to the targeted application(s). Research plans driven by scientific hypotheses are encouraged when suitable. Materials in bulk form or focus on special zones such as surfaces or interfaces that are to be used in structural and/or functional applications are appropriate. All material systems are of interest including polymers, metals, ceramics, semiconductors, composites and hybrids thereof. Analytical, experimental, and numerical studies are supported and collaborative proposals with industry (GOALI) are encouraged.
MiamiOH OARS

Designing Materials to Revolutionize and Engineer our Future - 0 views

  •  
    MGI recognizes the importance of materials science to the well-being and advancement of society and aims to "deploy advanced materials at least twice as fast as possible today, at a fraction of the cost." DMREF integrates materials discovery, development, property optimization, and systems design and optimization, with each employing a toolset to be developed within a materials innovation infrastructure. The toolset will synergistically integrate advanced computational methods and visual analytics with data-enabled scientific discovery and innovative experimental techniques to revolutionize our approach to materials science and engineering.
MiamiOH OARS

Materials Engineering and Processing - 0 views

  •  
    The Materials Engineering and Processing (MEP) program supports fundamental research addressing the processing and mechanical performance of engineering materials by investigating the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Materials processing proposals should focus on manufacturing processes that convert material into useful form as either intermediate or final composition. These include processes such as extrusion, molding, casting, deposition, sintering and printing.
MiamiOH OARS

Designing Materials to Revolutionize and Engineer our Future - 0 views

  •  
    MGI recognizes the importance of materials science to the well-being and advancement of society and aims to "deploy advanced materials at least twice as fast as possible today, at a fraction of the cost." DMREF integrates materials discovery, development, property optimization, and systems design and optimization, with each employing a toolset to be developed within a materials innovation infrastructure. The toolset will synergistically integrate advanced computational methods and visual analytics with data-enabled scientific discovery and innovative experimental techniques to revolutionize our approach to materials science and engineering.
MiamiOH OARS

Biomaterials | NSF - National Science Foundation - 0 views

  •  
    The Biomaterials program supports fundamental materials research related to biological materials, biomimetic, bioinspired, and bio-enabled materials, synthetic materials intended for applications in contact with biological systems, and the processes through which nature produces biological materials
MiamiOH OARS

Initiative Strategy Detail - 0 views

  •  
    NOTE: $95 million is being added to this program over the next six years. We established the Emergent Phenomena in Quantum Systems (EPiQS) Initiative as an integrated research program in quantum materials that includes materials synthesis, experiment and theory, and that crosses the boundaries among physics, chemistry and materials science. The initiative supports exploratory research with the aim of accelerating progress in the field and propelling it into a state in which new, deeper questions can be asked about organizing principles of complex quantum matter and the materials can be interrogated in superior new ways. While we support basic research, we also expect some of these materials will find applications in new technologies that improve human life or change the way science is done.
‹ Previous 21 - 40 of 231 Next › Last »
Showing 20 items per page