Skip to main content

Home/ OARS funding Environmental Sustainability/ Group items tagged behavioral

Rss Feed Group items tagged

MiamiOH OARS

nsf.gov - Funding - Doctoral Dissertation Improvement Grants in the Directorate for Bio... - 0 views

  •  
    The National Science Foundation awards Doctoral Dissertation Improvement Grants in selected areas of the biological sciences. Proposals must fall within the scope of any of the clusters in the Division of Environmental Biology (DEB) or the Behavioral Systems Cluster in the Division of Integrative Organismal Systems (IOS). These grants provide partial support of doctoral dissertation research for improvement beyond the already existing project. Allowed are costs for doctoral candidates to participate in scientific meetings, to conduct research in specialized facilities or field settings, and to expand an existing body of dissertation research.
MiamiOH OARS

RFA-HL-16-008: Short-Term Research Education Program to Increase Diversity in Health-Re... - 0 views

  •  
    The NIH Research Education Program (R25) supports research education activities in the mission areas of the NIH. The goal of this NHLBI R25 program is to support educational activities that enhance the diversity of the biomedical, behavioral, and clinical research workforce in the mission areas of importance to NHLBI. To accomplish the stated goal, this funding opportunity announcement encourages the development of creative educational activities with a primary focus on Research Experiences.
MiamiOH OARS

A--Research and Development Source Sought, FY16 Living Marine Resources (LMR) Program E... - 0 views

  •  
    The Naval Facilities Engineering and Expeditionary Warfare Center, through the Living Marine Resources (LMR) program, is soliciting pre-proposals for efforts related to any one of the two (2) need topics listed below. If invited, offerors will be asked to submit a full proposal. BEHAVIORAL RESPONSE RESEARCH TO STUDY THE EFFECTS OF SOUND ON MARINE MAMMALS ANDMARINE SPECIES HEARING RESEARCH RELATED TO THE ACOUSTIC EFFECTS CRITERIA. 
MiamiOH OARS

FY2020 Office of Weather and Air Quality Research Programs - 0 views

  •  
    NOAA's Office of Weather and Air Quality (OWAQ) is soliciting proposals for weather, air quality, and earth-system modeling research reflecting multiple science objectives spanning time scales from hours to seasons, and from weather and water observations and earth system modeling to social and behavioral science. There will be three grant competitions from this notification valued at approximately $7,000,000 as follows: 1) Joint Technology Transfer Initiative (JTTI), 2) Verification of the Origins of Rotation in Tornadoes Experiment - Southeast U.S. (VORTEX-SE), and 3) Climate Testbed (CTB). In alignment with the Weather Forecasting and Innovation Act of 2017 (Public Law 115-25), the funded projects should improve NOAA's understanding and ultimately its services of weather and water forecasting through engagement with the external scientific community on key science gaps of mutual interest. Through this funding opportunity, NOAA will support new weather, water, climate, earth system, and air quality observing and forecasting applications, including improved analysis techniques, better statistical or dynamic forecast models and techniques, and communication of that information to better inform the public.
MiamiOH OARS

Grants.gov - Find Grant Opportunities - Opportunity Synopsis - 0 views

  •  
    The Particulate and Multiphase Processes program supports fundamental and applied research on phenomena governing particulate and multiphase processes, including flows of suspensions of particles, drops or bubbles, granular and granular-fluid flows, flow behavior of micro or nano-structured fluids, aerosol science and technology, and self- and directed-assembly processes involving particulates. Innovative research is sought that contributes to improving the basic understanding, design, predictability, efficiency, and control of particulate and multiphase processes with particular emphasis on: novel manufacturing techniques, multiphase systems of relevance to energy harvesting, multiphase transport in biological systems or biotechnology, and environmental sustainability.
MiamiOH OARS

Division of Integrative Organismal Systems: Core Programs (nsf17508) | NSF - National S... - 0 views

  •  
    The Division of Integrative Organismal Systems (IOS) supports research aimed at understanding why organisms are structured the way they are and function as they do. Proposals should focus on organisms as a fundamental unit of biological organization. Principal Investigators (PIs) are encouraged to apply systems approaches that will lead to conceptual and theoretical insights and predictions about emergent organismal properties. Areas of inquiry include, but are not limited to, developmental biology and the evolution of developmental processes, nervous system development, structure, and function, physiological processes, functional morphology, symbioses, interactions of organisms with biotic and abiotic environments, and animal behavior.
MiamiOH OARS

Division of Integrative Organismal Systems: Core Programs | NSF - National Science Foun... - 0 views

  •  
    The Division of Integrative Organismal Systems (IOS) supports research aimed at understanding why organisms are structured the way they are and function as they do. Proposals should focus on organisms as a fundamental unit of biological organization. Principal Investigators (PIs) are encouraged to apply systems approaches that will lead to conceptual and theoretical insights and predictions about emergent organismal properties. Areas of inquiry include, but are not limited to, developmental biology and the evolution of developmental processes, nervous system development, structure, and function, physiological processes, functional morphology, symbioses, interactions of organisms with biotic and abiotic environments, and animal behavior.
MiamiOH OARS

Condensed Matter and Materials Theory - 0 views

  •  
    The broad spectrum of research supported in CMMT includes first-principles, quantum many-body, statistical mechanics, classical and quantum Monte Carlo, and molecular dynamics methods. Computational efforts span from workstations to advanced and high-performance scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior, to predict new materials and states of matter, and to reveal new materials-related phenomena. Approaches that span multiple scales of length and time may be required to advance fundamental understanding of materials properties and phenomena, particularly for polymeric materials and soft matter. Examples of areas of recent interest appear in the program description. CMMT encourages potentially transformative theoretical and computational materials research, which includes but is not limited to: i) developing materials-specific prediction and advancing understanding of properties, phenomena, and emergent states of matter associated with either hard or soft materials, ii) developing and exploring new paradigms including cyber- and data-enabled approaches to advance fundamental understanding of materials and materials related phenomena, oriii) fostering research at interfaces among subdisciplines represented in the Division of Materials Research
MiamiOH OARS

Ecology and Evolution of Infectious Diseases - 0 views

  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to develop the appropriate multidisciplinary team, including for example, modelers, bioinformaticians, genomics researchers, social scientists, economists, epidemiologists, entomologists, parasitologists, microbiologists, bacteriologists, virologists, pathologists or veterinarians, with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
MiamiOH OARS

Geophysics (PH) | NSF - National Science Foundation - 0 views

  •  
    The Geophysics Program supports basic research in the physics of the solid earth to explore its composition, structure, and processes from the Earth's surface to its' deepest interior. Laboratory, field, theoretical, and computational studies are supported. Topics include (but are not limited to) seismicity, seismic wave propagation, and the nature and occurrence of geophysical hazards; the Earth's magnetic, gravity, and electrical fields; the Earth's thermal structure; and geodynamics. Supported research also includes geophysical studies of active deformation, including geodesy, and theoretical and experimental studies of the properties and behavior of Earth materials.
MiamiOH OARS

Energy, Power, Control, and Networks - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control andNetworks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills. Proposals for the EPCN program may involve collaborative research to capture the breadth of
MiamiOH OARS

Fluid Dynamics | NSF - National Science Foundation - 0 views

  •  
    The Fluid Dynamics program supports fundamental research on mechanisms and phenomena governing fluid flow from the molecular to the macroscopic scale.  Proposed research should contribute to basic understanding, thus enabling the better design, predictability, efficiency, and control of systems that involve fluids.  Encouraged are proposals that address behavior of new fluid materials and innovative uses of fluids in manufacturing, energy and the environment, materials development, biotechnology, nanotechnology, sensor development, clinical diagnostics and drug delivery. While the research should focus on fundamentals, a clear connection to potential applications with significant societal/technological impact should be outlined.
MiamiOH OARS

Biological and Environmental Interactions of Nanoscale Materials | NSF - National Scien... - 0 views

  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles.  Such nanomaterials and systems frequently exhibit novel physical, chemical and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.    
MiamiOH OARS

Innovations at the Nexus of Food, Energy and Water Systems (INFEWS) | NSF - National Sc... - 0 views

  •  
    The overarching goal of INFEWS is to catalyze well-integrated interdisciplinary and convergent research to transform scientific understanding of the FEW nexus (integrating all three components rather than addressing them separately), in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. The NSF INFEWS initiative is designed specifically to attain the following goals: 1. Significantly advance our understanding of the food-energy-water system through quantitative, predictive and computational modeling, including support for relevant cyberinfrastructure; 2. Develop real-time, cyber-enabled interfaces that improve understanding of the behavior of FEW systems and increase decision support capability; 3. Enable research that will lead to innovative solutions to critical FEW systems problems; and 4. Grow the scientific workforce capable of studying and managing the FEW system, through education and other professional development opportunities.
MiamiOH OARS

FY 2017 Verification of the Origins of Rotation in Tornadoes Experiment in the Southeas... - 0 views

  •  
    This research funding opportunity is being jointly issued by the NOAA OAR Office and Weather and Air Quality (OWAQ) and the National Severe Storms Laboratory (NSSL). It seeks to obtain new knowledge of the meteorological and infrasound aspects of tornadoes in the southeastern United States (U.S.) and the social and behavioral aspects of the public response to tornado forecasts and tornado events. This new knowledge will improve our ability to understand, forecast and warn the public of tornadoes and elicit appropriate responses to mitigate damage, injuries, and loss of life.
MiamiOH OARS

Biological and Environmental Interactions of Nanoscale Materials | NSF - National Scien... - 0 views

  •  
    The goal of the Biological and Environmental Interactions of Nanoscale Materials program is to support research to advance fundamental and quantitative understanding of the interactions of biological and environmental media with nanomaterials and nanosystems. Materials of interest include one- to three-dimensional nanostructures, heterogeneous nano-bio hybrid assemblies, and other nanoparticles. Such nanomaterials and systems frequently exhibit novel physical, chemical, and biological behavior in living systems and environmental matrices as compared to the bulk scale. This program supports research that explores the interaction of nanomaterials in biological and environmental media.    
MiamiOH OARS

nsf.gov - Funding - Particulate and Multiphase Processes - US National Science Foundati... - 0 views

  •  
    The Particulate and Multiphase Processes program supports fundamental and applied research on phenomena governing particulate and multiphase processes, including flows of suspensions of particles, drops or bubbles, granular and granular-fluid flows, flow behavior of micro or nano-structured fluids, aerosol science and technology, and self- and directed-assembly processes involving particulates.  Innovative research is sought that contributes to improving the basic understanding, design, predictability, efficiency, and control of particulate and multiphase processes with particular emphasis on: novel manufacturing techniques, multiphase systems of relevance to energy harvesting, multiphase transport in biological systems or biotechnology, and environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged; proposals that include a combination of experimental and theoretical approaches are more likely to receive funding than solely experimentally oriented work.  Highly reviewed projects generally demonstrate a strong scientific basis together with clear practical applications.
MiamiOH OARS

Agriculture and Food Research Initiative: Water for Agriculture Challenge Area - 0 views

  •  
    NIFA initiates a new challenge area to address critical water resources issues such as drought, excess soil moisture, flooding, quality and others in an agricultural context. Funding will be used to develop management practices, technologies, and tools for farmers, ranchers, forest owners and managers, public decision makers, public and private managers, and citizens to improve water resource quantity and quality. NIFA's approach will link social, economic, and behavioral sciences with traditional biophysical sciences and engineering to address regional-scale issues with shared hydrological processes and meteorological and basin characteristics.
MiamiOH OARS

nsf.gov - Funding - Chemical and Biological Separations - US National Science Foundatio... - 0 views

  •  
    The Chemical and Biological Separations (CBS) program supports fundamental research on novel methods and materials for separation processes.  These processes are central to the chemical, biochemical, materials, energy, and pharmaceutical industries.  A fundamental understanding of the interfacial, transport, and thermodynamic behavior of multiphase chemical systems as well as quantitative descriptions of processing characteristics in the process-oriented industries is critical for efficient resource management and effective environmental protection.  The program encourages proposals that address emerging research areas and technologies, have a high degree of interdisciplinary thought coupled with knowledge creation, and integrate education and research. Research topics OF PARTICULAR INTEREST in CBS include fundamental molecular-level work on: Nanostructured materials for separations Biorenewable resource separation processes Purification of drinking water Field (flow, magnetic, electrical) induced separations Separation of molecular constituents from blood The duration of unsolicited awards is generally one to three years.  The average annual award size for the program is $80,000.  Proposals requesting a substantially higher amount than this, without prior consultation with the Program Director, may be returned without review.  Small equipment proposals of less than $100,000 will also be considered and may be submitted during the annual submission window. 
MiamiOH OARS

nsf.gov - Funding - Ecology and Evolution of Infectious Diseases - US National Science ... - 0 views

  •  
    The Ecology and Evolution of Infectious Diseases program supports research on the ecological, evolutionary, and socio-ecological principles and processes that influence the transmission dynamics of infectious diseases. The central theme of submitted projects must be quantitative or computational understanding of pathogen transmission dynamics. The intent is discovery of principles of infectious disease transmission and testing mathematical or computational models that elucidate infectious disease systems. Projects should be broad, interdisciplinary efforts that go beyond the scope of typical studies. They should focus on the determinants and interactions of transmission among humans, non-human animals, and/or plants. This includes, for example, the spread of pathogens; the influence of environmental factors such as climate; the population dynamics and genetics of reservoir species or hosts; or the cultural, social, behavioral, and economic dimensions of disease transmission. Research may be on zoonotic, environmentally-borne, vector-borne, or enteric diseases of either terrestrial or freshwater systems and organisms, including diseases of animals and plants, at any scale from specific pathogens to inclusive environmental systems. Proposals for research on disease systems of public health concern to developing countries are strongly encouraged, as are disease systems of concern in agricultural systems. Investigators are encouraged to involve the public health research community, including for example, epidemiologists, physicians, veterinarians, food scientists, social scientists, entomologists, pathologists, virologists, or parasitologists with the goal of integrating knowledge across disciplines to enhance our ability to predict and control infectious diseases.
‹ Previous 21 - 40 of 74 Next › Last »
Showing 20 items per page