Skip to main content

Home/ OARS funding Chemistry/ Group items tagged electric

Rss Feed Group items tagged

MiamiOH OARS

Office of Naval Research (ONR) Navy and Marine Corps Department of Defense University R... - 0 views

  •  
    1. Lithium-ion Battery Safety. Safety concerns continue to hamper full adoption of lithium-ion batteries for defense systems, despite significant research investments by the government and the private sector. This Defense initiative will advance promising lithium-ion battery safety technologies at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: improved electrolytes; stable high-energy anodes and cathodes; cell components and structures that enhance safety and reliability (e.g. use of electrode coatings and electrolyte additives); safety optimization through battery and battery module design and packaging; and battery management and state of health techniques that prevent and/or mitigate catastrophic failure. 2. Electrical Grid Reliability, Resiliency and Security. Both the defense and commercial sectors recognize the ever-growing criticality to enhance electrical grid reliability, resiliency and security through innovation at the component and system levels. This Defense initiative will advance relevant electrical grid innovations at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: advanced electrical power generation, transmission and distribution hardware and software; physical cyber secured industrial controls hardware and software; effective control of microgrids supporting high-dynamic loads; electrical grid protocols and controls to maintain secured operations of critical infrastructure under adverse conditions; hardening of e
MiamiOH OARS

NineSights Community - Request for Proposal: 2aDurable, High-Temperature Non-conductiv... - 0 views

  •  
    NineSigma, representing a global electric motor manufacturer, invites proposals for a durable, high-temperature non-conductive coating for steel. In the manufacture of electric motors, NineSigma's client makes a rotor that consists of a stack of thin, die-stamped steel sheets with a die-cast aluminum squirrel cage.  It is important that the steel be electrically isolated from the aluminum.  NineSigma's client needs a durable non-conductive coating to apply to the steel assembly prior to die-casting the aluminum.  The coating must withstand temperatures associated with the die-casting process and with subsequent thermal cycling.
MiamiOH OARS

Reliable Electricity Based on Electrochemical Systems (REBELS) - 0 views

  •  
    U.S. Department of Energy Advanced Research Projects Agency - Energy Announcement of Teaming Partner List for Upcoming Funding Opportunity Announcement: Reliable Electricity Based on Electrochemical Systems (REBELS) The Advanced Research Projects Agency Energy (ARPA-E) intends to issue a Funding Opportunity Announcement (FOA) entitled Reliable Electricity Based on Electrochemical Systems (REBELS) to solicit applications for financial assistance to fund new intermediate temperature fuel cell (ITFC) technologies that efficiently generate stationary power from fossil fuels in the near-term, while simultaneously building a bridge to a zero carbon future. Currently, ARPA-E anticipates that there will be three specific areas of interest indentified in the REBELS FOA as follows: (1) low-cost, efficient, reliable ITFCs for small distributed generation applications, (2) ITFCs that are capable of in-situ charge storage in an electrode to enable battery-like response to transients, and (3) electrochemical devices that produce liquid fuels from methane using excess renewable resources. Fuel cell systems based on existing Department of Energy R&D programs, such as low temperature polymer exchange membrane (LT-PEM) and high temperature solid oxide fuel cells (HT-SOFCs), will not be areas of interest for the anticipated REBELS FOA. 
MiamiOH OARS

BRAIN Initiative: Optimization of Transformative Technologies for Large Scale Recording... - 0 views

  •  
    Although invention and proof-of-concept testing of new technologies are a key component of the BRAIN Initiative, to achieve their potential these technologies must also be optimized through feedback from end-users in the context of the intended experimental use. This seeks applications for the optimization of existing and emerging technologies and approaches that have potential to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and temporal scales, in any region and throughout the entire depth of the brain. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated development of hardware and software while scaling manufacturing techniques towards sustainable, broad dissemination and user-friendly incorporation into regular neuroscience practice. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Applications are expected to integrate appropriate domains of expertise, including where appropriate biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
MiamiOH OARS

BRAIN Initiative: New Technologies and Novel Approaches for Large-Scale Recording and M... - 0 views

  •  
    Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. This FOA seeks applications for proof-of-concept testing and development of new technologies and novel approaches for largescale recording and manipulation of neural activity to enable transformative understanding of dynamic signaling in the nervous system. In particular, we seek exceptionally creative approaches to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. It is expected that the proposed research may be high-risk, but if successful could profoundly change the course of neuroscience research. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Where appropriate, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    he Electrochemical Systems program is part of the Chemical Process Systems cluster, which includes also 1) Catalysis; 2) Molecular Separations; and 3) Process Systems, Reaction Engineering, and Molecular Thermodynamics. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (e.g., energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    The Electrochemical Systems program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (for example, energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion. For projects concerning energy storage materials, proposals should involve hypotheses that involve device or component performance characteristics that are tied to fundamental understanding of transport, kinetics, or thermodynamics. Advanced chemistries are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposal project descriptions should address how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state of the art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

Office of Naval Research (ONR) Navy and Marine Corps Department of Defense University R... - 0 views

  •  
    1. Lithium-ion Battery Safety. Safety concerns continue to hamper full adoption of lithium-ion batteries for defense systems, despite significant research investments by the government and the private sector. This Defense initiative will advance promising lithium-ion battery safety technologies at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: improved electrolytes; stable high-energy anodes and cathodes; cell components and structures that enhance safety and reliability (e.g. use of electrode coatings and electrolyte additives); safety optimization through battery and battery module design and packaging; and battery management and state of health techniques that prevent and/or mitigate catastrophic failure. 2. Electrical Grid Reliability, Resiliency and Security. Both the defense and commercial sectors recognize the ever-growing criticality to enhance electrical grid reliability, resiliency and security through innovation at the component and system levels.
MiamiOH OARS

Dear Colleague Letter: Collaborative Funding Opportunitites in the Division of Chemical... - 0 views

  •  
    The Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) will consider proposals for collaborative funding with the Electric Power Research Institute (EPRI), the Water Environment & Reuse Foundation (WE&RF) [formerly the Water Environment Research Foundation], and/or the Water Research Foundation (WRF). For a proposal to be considered for collaborative funding, the proposal must be submitted to the appropriate NSF-CBET program as an unsolicited proposal during the CBET unsolicited submission window, which is October 1, 2016 - October 20, 2016. The same dates will apply in future years. Proposals will be reviewed as part of the unsolicited program(s). Proposals must follow guidelines for the CBET program to which they are submitted. Proposals will be evaluated according to the NSF criteria of intellectual merit and broader impacts.
  •  
    The Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) will consider proposals for collaborative funding with the Electric Power Research Institute (EPRI), the Water Environment & Reuse Foundation (WE&RF) [formerly the Water Environment Research Foundation], and/or the Water Research Foundation (WRF). For a proposal to be considered for collaborative funding, the proposal must be submitted to the appropriate NSF-CBET program as an unsolicited proposal during the CBET unsolicited submission window, which is October 1, 2016 - October 20, 2016. The same dates will apply in future years. Proposals will be reviewed as part of the unsolicited program(s). Proposals must follow guidelines for the CBET program to which they are submitted. Proposals will be evaluated according to the NSF criteria of intellectual merit and broader impacts.
MiamiOH OARS

Energy for Sustainability | NSF - National Science Foundation - 0 views

  •  
    The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes and solutions for the sustainable production of electricity and fuels, and energy storage. Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. 
MiamiOH OARS

BRAIN Initiative: New Concepts and Early-Stage Research for Large-Scale Recording and M... - 0 views

  •  
    A central goal of the BRAIN Initiative is to understand how electrical and chemical signals code information in neural circuits and give rise to sensations, thoughts, emotions and actions. While currently available technologies can provide some understanding, they may not be sufficient to accomplish this goal. For example, non-invasive technologies are low resolution and/or provide indirect measures such as blood flow, which are imprecise; invasive technologies can provide information at the level of single neurons producing the fundamental biophysical signals, but they can only be applied to tens or hundreds of neurons, out of a total number in the human brain estimated at 85 billion. Other BRAIN FOAs seek to develop novel technology (RFA-NS-16-006) or to optimize existing technology ready for in-vivo proof-of-concept testing and collection of preliminary data (RFA-NS-16-007) for recording or manipulating neural activity on a scale that is beyond what is currently possible. This FOA seeks applications for unique and innovative technologies that are in an even earlier stage of development than that sought in other FOAs, including new and untested ideas that are in the initial stages of conceptualization.
MiamiOH OARS

Energy for Sustainability | NSF - National Science Foundation - 0 views

  •  
    The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes for the sustainable production of electricity and fuels, and for energy storage. Processes for sustainable energy production must be environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress molecular level understanding of phenomena that directly impacts key barriers to improved system level performance (e.g. energy efficiency, product yield, process intensification) are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposals should include in the project description, how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state-of-the-art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

nsf.gov - Funding - Chemical and Biological Separations - US National Science Foundatio... - 0 views

  •  
    The Chemical and Biological Separations (CBS) program supports fundamental research on novel methods and materials for separation processes.  These processes are central to the chemical, biochemical, materials, energy, and pharmaceutical industries.  A fundamental understanding of the interfacial, transport, and thermodynamic behavior of multiphase chemical systems as well as quantitative descriptions of processing characteristics in the process-oriented industries is critical for efficient resource management and effective environmental protection.  The program encourages proposals that address emerging research areas and technologies, have a high degree of interdisciplinary thought coupled with knowledge creation, and integrate education and research. Research topics OF PARTICULAR INTEREST in CBS include fundamental molecular-level work on: Nanostructured materials for separations Biorenewable resource separation processes Purification of drinking water Field (flow, magnetic, electrical) induced separations Separation of molecular constituents from blood The duration of unsolicited awards is generally one to three years.  The average annual award size for the program is $80,000.  Proposals requesting a substantially higher amount than this, without prior consultation with the Program Director, may be returned without review.  Small equipment proposals of less than $100,000 will also be considered and may be submitted during the annual submission window. 
MiamiOH OARS

Laser UV Sources for Tactical Efficient Raman (LUSTER) - 0 views

  •  
    DARPA is soliciting innovative research proposals in the field of UV laser technology that will enable enhanced detection and discrimination of specific biological and chemical compounds using Raman spectroscopy. The goal of the Laser UV Sources for Tactical Efficient Raman (LUSTER) program is to develop compact, efficient, high-power ultraviolet lasers capable of achieving output power >1 W, wall-plug efficiency >10%, linewidth < 0.01 nm and all at wavelengths between 220-240 nm. Various methods such as direct electrical injection, electron beam pumping, second harmonic generation or other alternatives will be considered as long as all of the metrics can be met or exceeded. See the full DARPA-BAA-14-20 document attached.
MiamiOH OARS

Preliminary Design and Techno-Economic Analysis of MWe-Class Solid Oxide Fuel Cell System - 0 views

  •  
    The mission of the DOE FE Solid Oxide Fuel Cell (SOFC) program is to enable the efficient generation of low-cost electricity for (a) 2nd Generation natural gas-fueled SOFC DG systems and modular, coal-fueled systems and (b) Transformational coal or natural gas-fueled utility-scale systems with carbon capture and sequestration (CCS). The program supports the overarching goals of the Clean Coal and Carbon Management Research Program (CCCMRP) through the collaboration between the R&D that addresses the technical and economic barriers to commercial viability and the development and deployment of SOFC power systems that validate those solutions.
MiamiOH OARS

RFA-EY-18-001: BRAIN Initiative: New Concepts and Early - Stage Research for Large - Sc... - 0 views

  •  
    A central goal of the BRAIN Initiative is to understand how electrical and chemical signals code information in neural circuits and give rise to sensations, thoughts, emotions and actions. While currently available technologies can provide some understanding, they may not be sufficient to accomplish this goal. For example, non-invasive technologies are low resolution and/or provide indirect measures such as blood flow, which are imprecise; invasive technologies can provide information at the level of single neurons producing the fundamental biophysical signals, but they can only be applied to tens or hundreds of neurons, out of a total number in the human brain estimated at 85 billion. Other BRAIN FOAs seek to develop novel technology (RFA-NS-17-003) or to optimize existing technology ready for in-vivo proof-of-concept testing and collection of preliminary data (RFA-NS-17-004) for recording or manipulating neural activity on a scale that is beyond what is currently possible. This FOA seeks applications for unique and innovative technologies that are in an even earlier stage of development than that sought in other FOAs, including new and untested ideas that are in the initial stages of conceptualization.
MiamiOH OARS

SuperCables - 0 views

  •  
    The U.S. Army Research Office (ARO) in partnership with the Intelligence Advanced Research Projects Activity (IARPA) seeks research and development of technology and techniques for energy-efficient, high data rate transmission of digital signals between computing systems operating at room and cryogenic temperatures. The focus in the SuperCables program is research and demonstration of components to convert from low level electrical signals in circuits operating at a temperature of approximately 4 kelvins to conventional optical signals at room temperature and to move the information therein from one environment to the other. Pending results of this program, IARPA may support a follow-on program to develop the complete system for bidirectional data transmission between room temperature and 4 kelvins.
MiamiOH OARS

Semiconductor Synthetic Biology for Information Storage and Retrieval | NSF - National ... - 0 views

  •  
    The National Science Foundation (NSF), through its Divisions of Electrical, Communications and Cyber Systems (ECCS), Computing and Communication Foundations (CCF), Molecular and Cellular Biosciences (MCB), and Materials Research (DMR) announces a follow-up solicitation on the Semiconductor Synthetic Biology for Information Storage and Retrieval Program (SemiSynBio-II).  Future ultra-low energy storage-based computing systems can be built on principles derived from organic systems that are at the intersection of physics, chemistry, biology, computer science and engineering.  Next-generation information storage technologies can be envisioned that are driven by biological principles and use biomaterials in the fabrication of devices and systems that can store data for more than 100 years with storage capacity 1,000 times more than current storage technologies.  Such a research effort can have a significant impact on the future of information storage and retrieval technologies. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts and enabling technologies that will address the fundamental scientific issues and technological challenges associated with the underpinnings of synthetic biology integrated with semiconductor technology. This research will foster interactions among various disciplines including biology, physics, chemistry, materials science, computer science and engineering that will enable in heretofore unanticipated breakthroughs.
MiamiOH OARS

Multimodal Sensor Systems for Precision Health Enabled by Data Harnessing, Artificial I... - 0 views

  •  
    The National Science Foundation (NSF) through its Divisions of Electrical, Communications and Cyber Systems (ECCS); Chemical, Bioengineering, Environmental and Transport Systems (CBET); Civil, Mechanical and Manufacturing Innovation (CMMI); Information and Intelligent Systems (IIS); and Mathematical Sciences (DMS) announces a solicitation on Multimodal Sensor Systems for Precision Health enabled by Data Harnessing, Artificial Intelligence (AI), and Learning. Next-generation multimodal sensor systems for precision health integrated with AI, machine learning (ML), and mathematical and statistical (MS) methods for learning can be envisioned for harnessing a large volume of diverse data in real time with high accuracy, sensitivity and selectivity, and for building predictive models to enable more precise diagnosis and individualized treatments. It is expected that these multimodal sensor systems will have the potential to identify with high confidence combinations of biomarkers, including kinematic and kinetic indicators associated with specific disease and disability. This focused solicitation seeks high-risk/high-return interdisciplinary research on novel concepts, innovative methodologies, theory, algorithms, and enabling technologies that will address the fundamental scientific issues and technological challenges associated with precision health.
MiamiOH OARS

NSF-Simons Research Collaborations on the Mathematical and Scientific Foundations of De... - 0 views

  •  
    The National Science Foundation Directorates for Mathematical and Physical Sciences (MPS), Computer and Information Science and Engineering (CISE), Engineering (ENG), and the Simons Foundation Division of Mathematics and Physical Sciences will jointly sponsor up to two new research collaborations consisting of mathematicians, statisticians, electrical engineers, and theoretical computer scientists. Research activities will be focused on explicit topics involving some of the most challenging questions in the general area of Mathematical and Scientific Foundations of Deep Learning. Each collaboration will conduct training through research involvement of recent doctoral degree recipients, graduate students, and/or undergraduate students from across this multi-disciplinary spectrum. Annual meetings of the Principal Investigators ("PIs") and other principal researchers involved in the collaborations will be held at the Simons Foundation in New York City. This program complements NSF's National Artificial Intelligence Research Institutes program by supporting collaborative research focused on the mathematical and scientific foundations of Deep Learning through a different modality and at a different scale.
1 - 20 of 25 Next ›
Showing 20 items per page