"Graphene, a one-atom-thick layer of graphitic carbon, has great potential to make electronic devices such as radios, computers and phones faster and smaller. But its unique properties have also led to difficulties in integrating the material into such devices."
"A collaborative research project has brought the world a step closer to producing a new material on which future nanotechnology could be based. Researchers across Europe, including the UK's National Physical Laboratory (NPL), have demonstrated how an incredible material, graphene, could hold the key to the future of high-speed electronics, such as micro-chips and touchscreen technology."
"While studying graphene's electronic properties, professor Chris Regan and graduate student Matthew Mecklenburg found that a particle can acquire spin by living in a space with two types of positions -- dark tiles and light tiles. The particle seems to spin if the tiles are so close together that their separation cannot be detected.
"An electron's spin might arise because space at very small distances is not smooth, but rather segmented, like a chessboard," Regan said."