Skip to main content

Home/ Neuropsychology/ Group items matching "stimulate" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Tero Toivanen

Social Media's Effect on Learning - Digits - WSJ - 1 views

  •  
    Researchers are figuring out how the interaction Social Media spurs can stimulate brain activity.
David McGavock

Wired for Success - 0 views

  •  
    "The New Directions Institute's Wired for Success® program is a four-hour workshop for parents, caregivers and interested community members. This workshop is fun-filled, with hands-on experiences that show caregivers how critical their role can be in stimulating a child's development. Participants will explore brain development based on S.T.E.P.S.®, the NDI curriculum concentrating on Security, Touch, Eyes (vision), Play and Sound modules. Participants learn how to encourage a child's learning through parent-child interactions in these areas. "
Tero Toivanen

Brain Stimulant: Brain Chip to Restore Functioning from Damage - 1 views

  • The ReNaChip project is developing electronic biomimetic technology that could serve to replace damaged or missing brain tissue. This is basically neuromorphic engineering that seeks to mimic how neurons function. In the future this may be useful for people who have had injuries due to stroke or other illnesses.
  • The objective of this project is to develop a full biohybrid rehabilitation and substitution methodology; replacing the aged cerebellar brain circuit with a biomimetic chip bidirectionally interfaced to the inputs and outputs of the system. Information processing will interface with the cerebellum to actuate a normal, real-time functional behavioural recovery, providing a proof-of-concept test for the functional rehabilitation of more complex neuronal systems.
  • A sophisticated exocortex could potentially allow a two way communication between the external apparatus and the mind. The contraption could essentially scale up the amount of neurons in your brain by an artificial means. Most likely it would be used to improved the disabled first, with other applications being more speculative possibilities.
  •  
    The ReNaChip project is developing electronic biomimetic technology that could serve to replace damaged or missing brain tissue. This is basically neuromorphic engineering that seeks to mimic how neurons function. In the future this may be useful for people who have had injuries due to stroke or other illnesses.
Tero Toivanen

Music and Intelligence | Boost Your IQ - 0 views

  • Studies indicate that early exposure to musical training helps a child’s brain reach its potential by generating neural connections utilized in abstract reasoning.
  • The reasoning skills required for a test in spatial reasoning are the same ones children use when they listen to music. Children use these reasoning skills to order the notes in their brain to form the melodies. Also, some concepts of math must be understood in order to understand music. Experts speculate that listening to music exercises the same parts of the brain that handle mathematics, logic, and higher level reasoning.
  • In 1997 a study involving three groups of preschoolers was conducted to determine the effect of music versus computer training on early childhood development.
  • ...9 more annotations...
  • The group that received the piano/keyboard training scored 34% higher on tests measuring spatial-temporal ability than either of the other two groups. These results suggest that music enhances certain higher brain functions, particularly abstract reasoning skills, required in math and science.
  • The use of music in training four and five year old children yielded the highest improvement in the ability to name body parts.
  • Although the three experimental groups displayed an increase in their ability to name body parts the music group exhibited the highest degree of improvement.
  • First grade students received extensive Kodaly training for seven months.
  • At the end of seven months the experimental group had higher reading scores than the control group, which did not receive any special treatment. Not only did the seven month instruction increase reading scores, but continued musical training proved to be beneficial. The experimental group continued to show higher reading scores with continued training.
  • Students who were involved in arts education achieved higher SAT scores. The longer students were involved in arts education, the higher the increase in SAT scores. This study also correlated arts education with higher scores in standardized tests, reading, English, history, citizenship, and geography.
  • The results indicated that students with a relatively lower socioeconomic status, that were exposed to arts education, had an advantage over those students without any arts education which was proportionally equal to the students with a relatively higher socioeconomic status and exposure to arts education.
  • Music exposure affects older students as well. Three groups of college students were exposed to either Mozart’s Sonata for Two Pianos, K448, a relaxation tape, or silence. The group exposed to the Mozart piece was the only group to achieve an increase on the spatial IQ test. Further studies revealed that neither dance music nor taped short stories produced an increase in spatial IQ similar to the Mozart piece. The increase in spatial IQ appears to be related to some unique aspects of the Mozart piece rather than music in general.
  • Music may not only be related to intelligence by its stimulation of the brain, but it may also increase intelligence by the type of attitudes, interests, and discipline it fosters in children.
  •  
    Studies indicate that early exposure to musical training helps a child's brain reach its potential by generating neural connections utilized in abstract reasoning.
Tero Toivanen

Scientists capture the first image of memories being made - 0 views

  • A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation. The finding provides the first visual evidence that when a new memory is formed new proteins are made locally at the synapse - the connection between nerve cells - increasing the strength of the synaptic connection and reinforcing the memory. The study published in Science, is important for understanding how memory traces are created and the ability to monitor it in real time will allow a detailed understanding of how memories are formed.
  • research has focused on synapses which are the main site of exchange and storage in the brain.
  • They form a vast but also constantly fluctuating network of connections whose ability to change and adapt, called synaptic plasticity, may be the fundamental basis of learning and memory.
  • ...3 more annotations...
  • Using a translational reporter, a fluorescent protein that can be easily detected and tracked, we directly visualized the increased local translation, or protein synthesis, during memory formation.
  • Importantly, this translation was synapse-specific and it required activation of the post-synaptic cell, showing that this step required cooperation between the pre and post-synaptic compartments, the parts of the two neurons that meet at the synapse.
  • This study provides evidence that a mechanism that mediates this gene expression during neuronal plasticity involves regulated translation of localized mRNA at stimulated synapses.
  •  
    A new study by researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University and University of California, Los Angeles has captured an image for the first time of a mechanism, specifically protein translation, which underlies long-term memory formation.
Tero Toivanen

» Brain Plasticity: How learning changes your brain   « Brain Fitness Revolution at SharpBrains - 0 views

  • A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
  • The brain compensates for damage by reorganizing and forming new connections between intact neurons. In order to reconnect, the neurons need to be stimulated through activity.
  • Research has shown that in fact the brain never stops changing through learning. Plasticity IS the capacity of the brain to change with learning. Changes associated with learning occur mostly at the level of the connections between neurons. New connections can form and the internal structure of the existing synapses can change.
  • ...6 more annotations...
  • It looks like learning a second language is possible through functional changes in the brain: the left inferior parietal cortex is larger in bilingual brains than in monolingual brains.
  • Did you know that when you become an expert in a specific domain, the areas in your brain that deal with this type of skill will grow?
  • For instance, London taxi drivers have a larger hippocampus (in the posterior region) than London bus drivers (Maguire, Woollett, & Spiers, 2006)…. Why is that? It is because this region of the hippocampus is specialized in acquiring and using complex spatial information in order to navigate efficiently. Taxi drivers have to navigate around London whereas bus drivers follow a limited set of routes.
  • Plastic changes also occur in musicians brains compared to non-musicians.
  • They found that gray matter (cortex) volume was highest in professional musicians, intermediate in amateur musicians, and lowest in non-musicians in several brain areas involved in playing music: motor regions, anterior superior parietal areas and inferior temporal areas.
  • Medical students’ brains showed learning-induced changes in regions of the parietal cortex as well as in the posterior hippocampus. These regions of the brains are known to be involved in memory retrieval and learning.
  •  
    A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
1 - 6 of 6
Showing 20 items per page