Analysis Seminars 2014 - 2015 - 0 views
-
Analysis Seminars 2014 - 2015 Programme All seminars are held at 3:10pm in Room M/2.06, Senghennydd Road, Cardiff unless stated otherwise. Programme Organiser and Contact: Dr Mikhail Cherdantsev 29 September 2014 Speaker: Alexander Kiselev (Department of Mathematical Physics, St. Petersburg State University) Title: An inverse spectral problem on quantum graphs: reconstruction of matching conditions at graph vertices. Abstract: We will discuss one of the possible inverse spectral problems for quantum graphs. A quantum graph we study is a compact finite metric graph with an associated second-order differential operator defined on it. The matching conditions at graph vertices which reflect the graph connectivity are used to specify the domain of the corresponding operator. The class of matching conditions we allow is the following: at each graph vertex the coupling is assumed to be of either delta or delta-prime type. It has to be noted that the standard, or Kirchhoff, matching conditions are a particular case of delta-type coupling when all coupling constants zero out.
-
The inverse spectral problem we have in mind is this: does the spectrum of the operator on a graph (be it a Laplace or Schrodinger operator) uniquely determine matching at graph vertices? This type of inverse spectral problem is not as well-studied as, say, the inverse spectral problem of reconstructing the graph connectivity and metric properties based on the spectrum of a Laplace of Schrodinger operator on it. It turns out however that the mathematical apparatus we develop in order to study the former inverse problem can in fact be used in the study of the latter one. In the simplest case of graph Laplacians, we derive a series of trace formulae which link together matching conditions of two operators under the assumption that their spectra coincide counting multiplicities. Thus necessary conditions of isospectrality of two graph Laplacians are obtained. Under the additional restriction that graph edge lengths are rationally independent, we are able to obtain necessary and sufficient conditions of the named isospectrality. It turns out that it can only occur in simplest graphs (e.g., chains or pure cycles). The results in the case of Schrodinger operators appear less complete. We will argue however that in the case of infinitely smooth edge potentials one can advance virtually as far as in the case of graph Laplacians using more or less the same mathematical toolbox. 6 October 2014 Speaker: Michael Ruzhansky (Imperial College). Title: Quantization on Lie groups. Abstract: TBC.
-
13 October 2014 Speaker: Oleg Karpenkov (Liverpool). Title: Toric singularities of surfaces in terms of lattice trigonometry. Abstract: Continued fractions plays an important role in lattice trigonometry. From one hand this subject is a natural and therefore interesting to be considered by itself. From the other hand lattice trigonometry helps to describe singularities of toric varieties (which gives first results toward the solution of so-called "IKEA problem"). In this talk I will give a general introduction to the subject with various examples. I will try to avoid complicated technical details explaining main ideas behind them. 20 October 2014 Speaker: Charles Batty (Oxford). Title: Tauberian theorems, operator semigroups, and rates of decay. Abstract: A Tauberian theorem, due to Ingham and Karamata in 1935, says that if $f$ is a bounded function on $[0,\infty)$ and its Laplace transform extends holomorphically across the imaginary axis then the improper integral of $f$ exists. This result can be applied in the abstract theory of operator semigroups to establish decay of solutions of certain linear evolution equations of parabolic or hyperbolic type. Recently there has been interest in the rate of convergence in these results. I shall describe the abstract results and some applications to damped wave equations and dynamical systems.
- ...10 more annotations...