Skip to main content

Home/ Larvata/ Contents contributed and discussions participated by 張 旭

Contents contributed and discussions participated by 張 旭

張 旭

Introduction To The Queue System - Diving Laravel - 0 views

  • Laravel is shipped with a built-in queue system that helps you run tasks in the background
  • The QueueManager is registered into the container and it knows how to connect to the different built-in queue drivers
  • for example when we called the Queue::push() method, what happened is that the manager selected the desired queue driver, connected to it, and called the push method on that driver.
  • ...2 more annotations...
  • All calls to methods that don't exist in the QueueManager class will be sent to the loaded driver
  • when you do Queue::push() you're actually calling the push method on the queue driver you're using
  •  
    "Laravel is shipped with a built-in queue system that helps you run tasks in the background "
張 旭

DevOps - 0 views

  • 对于运维来说,知识的传承非常重要,非常有必要建立运维的知识库。一方面 有利于对事件的复盘回顾,另一方面也有助于日后参加运维的人员尽快熟悉与掌握系统的运维技能
  • 云平台主要从以下3个方面对DevOps提供支撑(括号内为承载此能力的软件工具): 1. 基于IaaS的自服务与环境编排能力(VMWare) 2. 基于PaaS的弹性伸缩能力(K8s) 3. 基于SaaS的软件服务能力
  • 考虑自建私有云,至少是混合云。
  • ...11 more annotations...
  • 内网建立所谓的私库,作为代理与外网的公共库同步。
  • 很难做到真正意义上的DevOps to Production
  • 可视化是为了实时展现持续交付流水线执行情况与单元测试的执行报告
  • 通过持续交付流水线串联自动化测试,在测试环境部署成功后触发自动化测试。
  • 测试阶段也需要测试报告的可视化与结果通知
  • 企业的持续交付流水线往往都打不通到生产环境
  • Service Desk不是某一款软件的名字,而是ITIL(信息技术基础架构库,可认为是ITSM的落地实现)里面承载变更管理与事件管理的工具统称。
  • 构建底层的云平台,是整个DevOps基础架构的基石
  • 架构不是一成不变的,而是应该随着实际需求变化而持续演化,能力也要跟着持续提升。
  • 并行测试的执行环境通过PaaS平台按需自动生成,测试执行完毕后自动销毁。
  • 即使是雷同的项目,在对编译构建上的一些细枝末节的差别也很可能导致它们的持续交付流水线设计非常不一样。
  •  
    "对于运维来说,知识的传承非常重要,非常有必要建立运维的知识库。一方面 有利于对事件的复盘回顾,另一方面也有助于日后参加运维的人员尽快熟悉与掌握系统的运维技能。"
張 旭

Scalable architecture without magic (and how to build it if you're not Google) - DEV Co... - 0 views

  • Don’t mess up write-first and read-first databases.
  • keep them stateless.
  • you should know how to make a scalable setup on bare metal.
  • ...29 more annotations...
  • Different programming languages are for different tasks.
  • Go or C which are compiled to run on bare metal.
  • To run NodeJS on multiple cores, you have to use something like PM2, but since this you have to keep your code stateless.
  • Python have very rich and sugary syntax that’s great for working with data while keeping your code small and expressive.
  • SQL is almost always slower than NoSQL
  • databases are often read-first or write-first
  • write-first, just like Cassandra.
  • store all of your data to your databases and leave nothing at backend
  • Functional code is stateless by default
  • It’s better to go for stateless right from the very beginning.
  • deliver exactly the same responses for same requests.
  • Sessions? Store them at Redis and allow all of your servers to access it.
  • Only the first user will trigger a data query, and all others will be receiving exactly the same data straight from the RAM
  • never, never cache user input
  • Only the server output should be cached
  • Varnish is a great cache option that works with HTTP responses, so it may work with any backend.
  • a rate limiter – if there’s not enough time have passed since last request, the ongoing request will be denied.
  • different requests blasting every 10ms can bring your server down
  • Just set up entry relations and allow your database to calculate external keys for you
  • the query planner will always be faster than your backend.
  • Backend should have different responsibilities: hashing, building web pages from data and templates, managing sessions and so on.
  • For anything related to data management or data models, move it to your database as procedures or queries.
  • a distributed database.
  • your code has to be stateless
  • Move anything related to the data to the database.
  • For load-balancing a database, go for cluster.
  • DB is balancing requests, as well as your backend.
  • Users from different continents are separated with DNS.
  • Keep is scalable, keep is stateless.
  •  
    "Don't mess up write-first and read-first databases."
張 旭

The Twelve-Factor App - 0 views

  • The process formation is the array of processes that are used to do the app’s regular business
  • one-off administrative or maintenance tasks for the app
  • One-off admin processes should be run in an identical environment as the regular long-running processes of the app.
  • ...2 more annotations...
  • Admin code must ship with application code to avoid synchronization issues.
  • Twelve-factor strongly favors languages which provide a REPL shell out of the box, and which make it easy to run one-off scripts.
張 旭

The Twelve-Factor App - 0 views

  • Logs are the stream of aggregated, time-ordered events collected from the output streams of all running processes and backing services.
  • Logs have no fixed beginning or end, but flow continuously as long as the app is operating.
  • each running process writes its event stream, unbuffered, to stdout.
  • ...2 more annotations...
  • long-term archival. These archival destinations are not visible to or configurable by the app, and instead are completely managed by the execution environment.
  • Most significantly, the stream can be sent to a log indexing and analysis system such as Splunk, or a general-purpose data warehousing system such as Hadoop/Hive.
張 旭

The Twelve-Factor App - 0 views

  • Keep development, staging, and production as similar as possible
  • Developers write code, ops engineers deploy it.
  • The twelve-factor app is designed for continuous deployment by keeping the gap between development and production small
  • ...4 more annotations...
  • Backing services, such as the app’s database, queueing system, or cache, is one area where dev/prod parity is important
  • The twelve-factor developer resists the urge to use different backing services between development and production, even when adapters theoretically abstract away any differences in backing services.
  • declarative provisioning tools such as Chef and Puppet combined with light-weight virtual environments such as Docker and Vagrant allow developers to run local environments which closely approximate production environments.
  • all deploys of the app (developer environments, staging, production) should be using the same type and version of each of the backing services.
  •  
    "as similar as possible "
張 旭

The Twelve-Factor App - 0 views

  • they can be started or stopped at a moment’s notice.
  • Processes should strive to minimize startup time
  • Processes shut down gracefully when they receive a SIGTERM signal from the process manager.
  • ...4 more annotations...
  • returning the current job to the work queue
  • all jobs are reentrant, which typically is achieved by wrapping the results in a transaction, or making the operation idempotent
  • Processes should also be robust against sudden death, in the case of a failure in the underlying hardware.
  • a twelve-factor app is architected to handle unexpected, non-graceful terminations
張 旭

The Twelve-Factor App - 0 views

  • PHP processes run as child processes of Apache, started on demand as needed by request volume.
  • Java processes take the opposite approach, with the JVM providing one massive uberprocess that reserves a large block of system resources (CPU and memory) on startup, with concurrency managed internally via threads
  • Processes in the twelve-factor app take strong cues from the unix process model for running service daemons.
  • ...3 more annotations...
  • application must also be able to span multiple processes running on multiple physical machines.
  • The array of process types and number of processes of each type is known as the process formation.
  • Twelve-factor app processes should never daemonize or write PID files.
張 旭

The Twelve-Factor App - 0 views

  • The twelve-factor app is completely self-contained
  • using dependency declaration to add a webserver library to the app, such as Tornado for Python, Thin for Ruby, or Jetty for Java and other JVM-based languages.
  • the port-binding approach means that one app can become the backing service for another app
張 旭

The Twelve-Factor App - 0 views

  • stateless processes
  • a production deploy of a sophisticated app may use many process types, instantiated into zero or more running processes.
  • Twelve-factor processes are stateless and share-nothing.
  • ...6 more annotations...
  • Any data that needs to persist must be stored in a stateful backing service, typically a database.
  • The memory space or filesystem of the process can be used as a brief, single-transaction cache.
  • wipe out all local (e.g., memory and filesystem) state
  • compiling during the build stage
  • “sticky sessions” – that is, caching user session data in memory of the app’s process and expecting future requests from the same visitor to be routed to the same process.
  • Sticky sessions are a violation of twelve-factor and should never be used or relied upon
張 旭

The Twelve-Factor App - 1 views

  • separate build and run
  • The build stage is a transform which converts a code repo into an executable bundle known as a build.
  • the build stage fetches vendors dependencies and compiles binaries and assets.
  • ...7 more annotations...
  • The release stage takes the build produced by the build stage and combines it with the deploy’s current config.
  • is ready for immediate execution in the execution environment.
  • The run stage (also known as “runtime”) runs the app in the execution environment
  • strict separation between the build, release, and run stages.
  • the Capistrano deployment tool stores releases in a subdirectory named releases, where the current release is a symlink to the current release directory.
  • Every release should always have a unique release ID
  • Releases are an append-only ledger and a release cannot be mutated once it is created.
張 旭

Template Designer Documentation - Jinja2 Documentation (2.10) - 0 views

  • A Jinja template doesn’t need to have a specific extension
  • A Jinja template is simply a text file
  • tags, which control the logic of the template
  • ...106 more annotations...
  • {% ... %} for Statements
  • {{ ... }} for Expressions to print to the template output
  • use a dot (.) to access attributes of a variable
  • the outer double-curly braces are not part of the variable, but the print statement.
  • If you access variables inside tags don’t put the braces around them.
  • If a variable or attribute does not exist, you will get back an undefined value.
  • the default behavior is to evaluate to an empty string if printed or iterated over, and to fail for every other operation.
  • if an object has an item and attribute with the same name. Additionally, the attr() filter only looks up attributes.
  • Variables can be modified by filters. Filters are separated from the variable by a pipe symbol (|) and may have optional arguments in parentheses.
  • Multiple filters can be chained
  • Tests can be used to test a variable against a common expression.
  • add is plus the name of the test after the variable.
  • to find out if a variable is defined, you can do name is defined, which will then return true or false depending on whether name is defined in the current template context.
  • strip whitespace in templates by hand. If you add a minus sign (-) to the start or end of a block (e.g. a For tag), a comment, or a variable expression, the whitespaces before or after that block will be removed
  • not add whitespace between the tag and the minus sign
  • mark a block raw
  • Template inheritance allows you to build a base “skeleton” template that contains all the common elements of your site and defines blocks that child templates can override.
  • The {% extends %} tag is the key here. It tells the template engine that this template “extends” another template.
  • access templates in subdirectories with a slash
  • can’t define multiple {% block %} tags with the same name in the same template
  • use the special self variable and call the block with that name
  • self.title()
  • super()
  • put the name of the block after the end tag for better readability
  • if the block is replaced by a child template, a variable would appear that was not defined in the block or passed to the context.
  • setting the block to “scoped” by adding the scoped modifier to a block declaration
  • If you have a variable that may include any of the following chars (>, <, &, or ") you SHOULD escape it unless the variable contains well-formed and trusted HTML.
  • Jinja2 functions (macros, super, self.BLOCKNAME) always return template data that is marked as safe.
  • With the default syntax, control structures appear inside {% ... %} blocks.
  • the dictsort filter
  • loop.cycle
  • Unlike in Python, it’s not possible to break or continue in a loop
  • use loops recursively
  • add the recursive modifier to the loop definition and call the loop variable with the new iterable where you want to recurse.
  • The loop variable always refers to the closest (innermost) loop.
  • whether the value changed at all,
  • use it to test if a variable is defined, not empty and not false
  • Macros are comparable with functions in regular programming languages.
  • If a macro name starts with an underscore, it’s not exported and can’t be imported.
  • pass a macro to another macro
  • caller()
  • a single trailing newline is stripped if present
  • other whitespace (spaces, tabs, newlines etc.) is returned unchanged
  • a block tag works in “both” directions. That is, a block tag doesn’t just provide a placeholder to fill - it also defines the content that fills the placeholder in the parent.
  • Python dicts are not ordered
  • caller(user)
  • call(user)
  • This is a simple dialog rendered by using a macro and a call block.
  • Filter sections allow you to apply regular Jinja2 filters on a block of template data.
  • Assignments at top level (outside of blocks, macros or loops) are exported from the template like top level macros and can be imported by other templates.
  • using namespace objects which allow propagating of changes across scopes
  • use block assignments to capture the contents of a block into a variable name.
  • The extends tag can be used to extend one template from another.
  • Blocks are used for inheritance and act as both placeholders and replacements at the same time.
  • The include statement is useful to include a template and return the rendered contents of that file into the current namespace
  • Included templates have access to the variables of the active context by default.
  • putting often used code into macros
  • imports are cached and imported templates don’t have access to the current template variables, just the globals by default.
  • Macros and variables starting with one or more underscores are private and cannot be imported.
  • By default, included templates are passed the current context and imported templates are not.
  • imports are often used just as a module that holds macros.
  • Integers and floating point numbers are created by just writing the number down
  • Everything between two brackets is a list.
  • Tuples are like lists that cannot be modified (“immutable”).
  • A dict in Python is a structure that combines keys and values.
  • // Divide two numbers and return the truncated integer result
  • The special constants true, false, and none are indeed lowercase
  • all Jinja identifiers are lowercase
  • (expr) group an expression.
  • The is and in operators support negation using an infix notation
  • in Perform a sequence / mapping containment test.
  • | Applies a filter.
  • ~ Converts all operands into strings and concatenates them.
  • use inline if expressions.
  • always an attribute is returned and items are not looked up.
  • default(value, default_value=u'', boolean=False)¶ If the value is undefined it will return the passed default value, otherwise the value of the variable
  • dictsort(value, case_sensitive=False, by='key', reverse=False)¶ Sort a dict and yield (key, value) pairs.
  • format(value, *args, **kwargs)¶ Apply python string formatting on an object
  • groupby(value, attribute)¶ Group a sequence of objects by a common attribute.
  • grouping by is stored in the grouper attribute and the list contains all the objects that have this grouper in common.
  • indent(s, width=4, first=False, blank=False, indentfirst=None)¶ Return a copy of the string with each line indented by 4 spaces. The first line and blank lines are not indented by default.
  • join(value, d=u'', attribute=None)¶ Return a string which is the concatenation of the strings in the sequence.
  • map()¶ Applies a filter on a sequence of objects or looks up an attribute.
  • pprint(value, verbose=False)¶ Pretty print a variable. Useful for debugging.
  • reject()¶ Filters a sequence of objects by applying a test to each object, and rejecting the objects with the test succeeding.
  • replace(s, old, new, count=None)¶ Return a copy of the value with all occurrences of a substring replaced with a new one.
  • round(value, precision=0, method='common')¶ Round the number to a given precision
  • even if rounded to 0 precision, a float is returned.
  • select()¶ Filters a sequence of objects by applying a test to each object, and only selecting the objects with the test succeeding.
  • sort(value, reverse=False, case_sensitive=False, attribute=None)¶ Sort an iterable. Per default it sorts ascending, if you pass it true as first argument it will reverse the sorting.
  • striptags(value)¶ Strip SGML/XML tags and replace adjacent whitespace by one space.
  • tojson(value, indent=None)¶ Dumps a structure to JSON so that it’s safe to use in <script> tags.
  • trim(value)¶ Strip leading and trailing whitespace.
  • unique(value, case_sensitive=False, attribute=None)¶ Returns a list of unique items from the the given iterable
  • urlize(value, trim_url_limit=None, nofollow=False, target=None, rel=None)¶ Converts URLs in plain text into clickable links.
  • defined(value)¶ Return true if the variable is defined
  • in(value, seq)¶ Check if value is in seq.
  • mapping(value)¶ Return true if the object is a mapping (dict etc.).
  • number(value)¶ Return true if the variable is a number.
  • sameas(value, other)¶ Check if an object points to the same memory address than another object
  • undefined(value)¶ Like defined() but the other way round.
  • A joiner is passed a string and will return that string every time it’s called, except the first time (in which case it returns an empty string).
  • namespace(...)¶ Creates a new container that allows attribute assignment using the {% set %} tag
  • The with statement makes it possible to create a new inner scope. Variables set within this scope are not visible outside of the scope.
  • activate and deactivate the autoescaping from within the templates
  • With both trim_blocks and lstrip_blocks enabled, you can put block tags on their own lines, and the entire block line will be removed when rendered, preserving the whitespace of the contents
張 旭

Configuration - docker-sync 0.5.10 documentation - 0 views

  • Be sure to use a sync-name which is unique, since it will be a container name.
    • 張 旭
       
      慣例是 docker-sync 的 container name 後綴都是 -sync
  • split your docker-compose configuration for production and development (as usual)
  • ...9 more annotations...
  • production stack (docker-compose.yml) does not need any changes and would look like this (and is portable, no docker-sync adjustments).
  • docker-compose-dev.yml ( it needs to be called that way, look like this ) will override
    • 張 旭
       
      開發版的 docker-compose-dev.yml 僅會覆寫 production docker-compose.yml 的 volumes 設定,也就接上 docker-sync.yml 的 volumes,其它都維持不變
  • nocopy # nocopy is important
  • nocopy # nocopy is important
  • docker-compose -f docker-compose.yml -f docker-compose-dev.yml up
  • add the external volume and the mount here
  • In case the folder we mount to has been declared as a VOLUME during image build, its content will be merged with the name volume we mount from the host
    • 張 旭
       
      如果在 Dockerfile 裡面有宣告一個 volume,那麼在 docker build 的時候這個 volume mount point 會被記錄起來,在 container 跑起來的時候,會將 host (server) 上的同名的 volume 內容合併進來 (取代)。也就是說 container 跑起來的時候,會去接上已經存在的既有的 host (server) 上的 volume。
  • enforce the content from our host on the initial wiring
  • set your environment variables by creating a .env file at the root of your project
  •  
    "Be sure to use a sync-name which is unique, since it will be a container name."
張 旭

你到底知不知道什麼是 Kubernetes? | Hwchiu Learning Note - 0 views

  • Storage(儲存) 實際上一直都不是一個簡單處理的問題,從軟體面來看實際上牽扯到非常多的層級,譬如 Linux Kernel, FileSystem, Block/File-Level, Cache, Snapshot, Object Storage 等各式各樣的議題可以討論。
  • DRBD
  • 異地備援,容錯機制,快照,重複資料刪除等超多相關的議題基本上從來沒有一個完美的解法能夠滿足所有使用情境。
  • ...20 more annotations...
  • 管理者可能會直接在 NFS Server 上進行 MDADM 來設定相關的 Block Device 並且基於上面提供 Export 供 NFS 使用,甚至底層套用不同的檔案系統 (EXT4/BTF4) 來獲取不同的功能與效能。
  • Kubernetes 就只是 NFS Client 的角色
  • CSI(Container Storage Interface)。CSI 本身作為 Kubernetes 與 Storage Solution 的中介層。
  • 基本上 Pod 裡面每個 Container 會使用 Volume 這個物件來代表容器內的掛載點,而在外部實際上會透過 PVC 以及 PV 的方式來描述這個 Volume 背後的儲存方案伺服器的資訊。
  • 整體會透過 CSI 的元件們與最外面實際上的儲存設備連接,所有儲存相關的功能是否有實現,有支援全部都要仰賴最後面的實際提供者, kubernetes 只透過 CSI 的標準去執行。
  • 在網路部分也有與之對應的 CNI(Container Network Interface). kubernetes 透過 CNI 這個介面來與後方的 網路解決方案 溝通
  • CNI 最基本的要求就是在在對應的階段為對應的容器提供網路能力
  • 目前最常見也是 IPv4 + TCP/UDP 的傳輸方式,因此才會看到大部分的 CNI 都在講這些。
  • 希望所有容器彼此之間可以透過 IPv4 來互相存取彼此,不論是同節點或是跨節點的容器們都要可以滿足這個需求。
  • 容器間到底怎麼傳輸的,需不需要封裝,透過什麼網卡,要不要透過 NAT 處理? 這一切都是 CNI 介面背後的實現
  • 外部網路存取容器服務 (Service/Ingress)
  • kubernetes 在 Service/Ingress 中間自行實現了一個模組,大抵上稱為 kube-proxy, 其底層可以使用 iptables, IPVS, user-space software 等不同的實現方法,這部分是跟 CNI 完全無關。
  • CNI 跟 Service/Ingress 是會衝突的,也有可能彼此沒有配合,這中間沒有絕對的穩定整合。
  • CNI 一般會處理的部份,包含了容器內的 網卡數量,網卡名稱,網卡IP, 以及容器與外部節點的連接能力等
  • CRI (Container Runtime Interface) 或是 Device Plugin
  • 對於 kubernetes 來說,其實本身並不在意到底底下的容器化技術實際上是怎麼實現的,你要用 Docker, rkt, CRI-O 都無所謂,甚至背後是一個偽裝成 Container 的 Virtaul Machine virtlet 都可以。
  • 去思考到底為什麼自己本身的服務需要容器化,容器化可以帶來什麼優點
  • 太多太多的人都認為只要寫一個 Dockerfile 將原先的應用程式們全部包裝起來放在一起就是一個很好的容器 來使用了。
  • 最後就會發現根本把 Container 當作 Virtual Machine 來使用,然後再補一句 Contaienr 根本不好用啊
  • 容器化 不是把直接 Virtual Machine 的使用習慣換個環境使用就叫做 容器化,而是要從概念上去暸解與使用
張 旭

How To Benchmark HTTP Latency with wrk on Ubuntu 14.04 | DigitalOcean - 0 views

  • wrk, which measures the latency of your HTTP services at high loads.
  • Latency refers to the time interval between the moment the request was made (by wrk) and the moment the response was received (from the service).
  • Tests can't be compared to real users, but they should give you a good estimate of expected latency
張 旭

The Twelve-Factor App - 0 views

  • A backing service is any service the app consumes over the network as part of its normal operation.
  • A deploy of the twelve-factor app should be able to swap out a local MySQL database with one managed by a third party (such as Amazon RDS) without any changes to the app’s code.
  • only the resource handle in the config needs to change
  • ...2 more annotations...
  • Each distinct backing service is a resource.
  • Resources can be attached to and detached from deploys at will.
張 旭

SSL Certificate Features - 0 views

  • A certificate authority issues certificates in the form of a tree structure.
  • All certificates below the root certificate inherit the trustworthiness of the root certificate.
  • Any certificate signed by a trusted root certificate will also be trusted.
  • ...9 more annotations...
  • the browser has all of the certificates in the chain to link it up to a trusted root certificate.
  • Any certificate in between your certificate and the root certificate is called a chain or intermediate certificate.
  • These must be installed to the web server with the primary certificate for your web site so that user's browers can link your certificate to a trusted authority.
  • Chain Certificate
  • Intermediate Certificate
  • Root Certificate
  • EV (Extended Validation) certificate
  • wildcard certificate
  • domain-validated certificate
  •  
    "A certificate authority issues certificates in the form of a tree structure."
張 旭

Public Key Infrastructure (PKI) Overview - 0 views

  • A PKI allows you to bind public keys (contained in SSL certificates) with a person in a way that allows you to trust the certificate.
  • Public Key Infrastructures, like the one used to secure the Internet, most commonly use a Certificate Authority (also called a Registration Authority) to verify the identity of an entity and create unforgeable certificates.
  • An SSL Certificate Authority (also called a trusted third party or CA) is an organization that issues digital certificates to organizations or individuals after verifying their identity.
  • ...9 more annotations...
  • An SSL Certificate provides assurances that we are talking to the right server, but the assurances are limited.
  • In PKI, trust simply means that a certificate can be validated by a CA that is in our trust store.
  • An SSL Certificate in a PKI is a digital document containing a public key, entity information, and a digital signature from the certificate issuer.
  • it is much more practical and secure to establish a chain of trust to the Root certificate by signing an Intermediate certificate
  • A trust store is a collection of Root certificates that are trusted by default.
  • there are four primary trust stores that are relied upon for the majority of software: Apple, Microsoft, Chrome, and Mozilla.
  • a revocation system that allows a certificate to be listed as invalid if it was improperly issued or if the private key has been compromised.
  • Online Certificate Status Protocol (OCSP)
  • Certificate Revocation List (CRL)
張 旭

What is a CSR (Certificate Signing Request)? - 0 views

  • usually generated on the server where the certificate will be installed and contains information that will be included in the certificate such as the organization name, common name (domain name), locality, and country.
  • A private key is usually created at the same time that you create the CSR, making a key pair.
  • CSR or Certificate Signing request is a block of encoded text that is given to a Certificate Authority when applying for an SSL Certificate
  • ...6 more annotations...
  • A certificate authority will use a CSR to create your SSL certificate, but it does not need your private key.
  • The certificate created with a particular CSR will only work with the private key that was generated with it.
  • Most CSRs are created in the Base-64 encoded PEM format.
  • generate a CSR and private key on the server that the certificate will be used on.
  • openssl req -in server.csr -noout -text
  • The bit-length of a CSR and private key pair determine how easily the key can be cracked using brute force methods.
« First ‹ Previous 261 - 280 of 596 Next › Last »
Showing 20 items per page