Skip to main content

Home/ Larvata/ Group items tagged repository

Rss Feed Group items tagged

張 旭

pre-commit - 0 views

  • a multi-language package manager for pre-commit hooks
  • pre-commit is specifically designed to not require root access
  • We copied and pasted unwieldy bash scripts from project to project and had to manually change the hooks to work for different project structures.
  • ...3 more annotations...
  • adding pre-commit plugins to your project is done with the .pre-commit-config.yaml configuration file.
  • The pre-commit config file describes what repositories and hooks are installed.
  • This configuration says to download the pre-commit-hooks project and run its trailing-whitespace hook
  •  
    "a multi-language package manager for pre-commit hooks"
張 旭

Glossary - CircleCI - 0 views

  • User authentication may use LDAP for an instance of the CircleCI application that is installed on your private server or cloud
  • The first user to log into a private installation of CircleCI
  • Contexts provide a mechanism for securing and sharing environment variables across projects.
  • ...22 more annotations...
  • The environment variables are defined as name/value pairs and are injected at runtime.
  • The CircleCI Docker Layer Caching feature allows builds to reuse Docker image layers
  • from previous builds.
  • Image layers are stored in separate volumes in the cloud and are not shared between projects.
  • Layers may only be used by builds from the same project.
  • Environment variables store customer data that is used by a project.
  • Defines the underlying technology to run a job.
  • machine to run your job inside a full virtual machine.
  • docker to run your job inside a Docker container with a specified image
  • A job is a collection of steps.
  • The first image listed in config.yml
  • A CircleCI project shares the name of the code repository for which it automates workflows, tests, and deployment.
  • must be added with the Add Project button
  • Following a project enables a user to subscribe to email notifications for the project build status and adds the project to their CircleCI dashboard.
  • A step is a collection of executable commands
  • Users must be added to a GitHub or Bitbucket org to view or follow associated CircleCI projects.
  • Users may not view project data that is stored in environment variables.  
  • A Workflow is a set of rules for defining a collection of jobs and their run order.
  • Workflows are implemented as a directed acyclic graph (DAG) of jobs for greatest flexibility.
  • referred to as Pipelines
  • A workspace is a workflows-aware storage mechanism.
  • A workspace stores data unique to the job, which may be needed in downstream jobs.
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

How to create reusable infrastructure with Terraform modules - 0 views

  • auto scaling schedule
  • The easiest way to create a versioned module is to put the code for the module in a separate Git repository and to set the source parameter to that repository’s URL.
張 旭

GitLab Auto DevOps 深入淺出,自動部署,連設定檔不用?! | 五倍紅寶石・專業程式教育 - 0 views

  • 一個 K8S 的 Cluster,Auto DevOps 將會把網站部署到這個 Cluster
  • 需要有一個 wildcard 的 DNS 讓部署在這個環境的網站有 Domain name
  • 一個可以跑 Docker 的 GitLab Runner,將會為由它來執行 CI / CD 的流程。
  • ...37 more annotations...
  • 其實 Auto DevOps 就是一份官方寫好的 gitlab-ci.yml,在啟動 Auto DevOps 的專案裡,如果找不到 gitlab-ci.yml 檔,那就會直接用官方 gitlab-ci.yml 去跑 CI / CD 流程。
  • Pod 是 K8S 中可以被部署的最小元件,一個 Pod 是由一到多個 Container 組成,同個 Pod 的不同 Container 之間彼此共享網路資源。
  • 每個 Pod 都會有它的 yaml 檔,用以描述 Pod 會使用的 Image 還有連接的 Port 等資訊。
  • Node 又分成 Worker Node 和 Master Node 兩種
  • Helm 透過參數 (parameter) 跟模板 (template) 的方式,讓我們可以在只修改參數的方式重複利用模板。
  • 為了要有 CI CD 的功能我們會把 .gitlab-ci.yml 放在專案的根目錄裡, GitLab 會依造 .gitlab-ci.yml 的設定產生 CI/CD Pipeline,每個 Pipeline 裡面可能有多個 Job,這時候就會需要有 GitLab Runner 來執行這些 Job 並把執行的結果回傳給 GitLab 讓它知道這個 Job 是否有正常執行。
  • 把專案打包成 Docker Image 這工作又或是 helm 的操作都會在 Container 內執行
  • CI/CD Pipeline 是由 stage 還有 job 組成的,stage 是有順序性的,前面的 stage 完成後才會開始下一個 stage。
  • 每個 stage 裡面包含一到多個 Job
  • Auto Devops 裡也會大量用到這種在指定 Container 內運行的工作。
  • 可以通過 health checks
  • 開 private 的話還要注意使用 Container Registry 的權限問題
  • 申請好的 wildcard 的 DNS
  • Auto Devops 也提供只要設定環境變數就能一定程度客製化的選項
  • 特別注意 namespace 有沒有設定對,不然會找不到資料喔
  • Auto Devops,如果想要進一步的客製化,而且是改 GitLab 環境變數都無法實現的客製化,這時候還是得回到 .gitlab-ci.yml 設定檔
  • 在 Docker in Docker 的環境用 Dockerfile 打包 Image
  • 用 helm upgrade 把 chart 部署到 K8S 上
  • GitLab CI 的環境變數主要有三個來源,優先度高到低依序為Settings > CI/CD 介面定義的變數gitlab_ci.yml 定義環境變數GitLab 預設環境變數
  • 把專案打包成 Docker Image 首先需要在專案下新增一份 Dockerfile
  • Auto Devops 裡面的做法,用 herokuish 提供的 Image 來打包專案
  • 在 Runner 的環境中是沒有 docker 指令可以用的,所以這邊啟動一個 Docker Container 在裡面執行就可以用 docker 指令了。
  • 其中 $CI_COMMIT_SHA $CI_COMMIT_BEFORE_SHA 這兩個都是 GitLab 預設環境變數,代表這次 commit 還有上次 commit 的 SHA 值。
  • dind 則是直接啟動 docker daemon,此外 dind 還會自動產生 TLS certificates
  • 為了在 Docker Container 內運行 Docker,會把 Host 上面的 Docker API 分享給 Container。
  • docker:stable 有執行 docker 需要的執行檔,他裡面也包含要啟動 docker 的程式(docker daemon),但啟動 Container 的 entrypoint 是 sh
  • docker:dind 繼承自 docker:stable,而且它 entrypoint 就是啟動 docker 的腳本,此外還會做完 TLS certificates
  • Container 要去連 Host 上的 Docker API 。但現在連線失敗卻是找 http://docker:2375,現在的 dind 已經不是被當做 services 來用了,而是要直接在裡面跑 Docker,所以他應該是要 unix:///var/run/docker.sock 用這種連線,於是把環境變數 DOCKER_HOST 從 tcp://docker:2375 改成空字串,讓 docker daemon 走預設連線就能成功囉!
  • auto-deploy preparationhelm init 建立 helm 專案設定 tiller 在背景執行設定 cluster 的 namespace
  • auto-deploy deploy使用 helm upgrade 部署 chart 到 K8S 上透過 --set 來設定要注入 template 的參數
  • set -x,這樣就能在執行前,顯示指令內容。
  • 用 helm repo list 看看現在有註冊哪些 Chart Repository
  • helm fetch gitlab/auto-deploy-app --untar
  • nohup 可以讓你在離線或登出系統後,還能夠讓工作繼續進行
  • 在不特別設定 CI_APPLICATION_REPOSITORY 的情況下,image_repository 的值就是預設環境變數 CI_REGISTRY_IMAGE/CI_COMMIT_REF_SLUG
  • A:-B 的意思是如果有 A 就用它,沒有就用 B
  • 研究 Auto Devops 難度最高的地方就是太多工具整合在一起,搞不清楚他們之間的關係,出錯也不知道從何查起
張 旭

Dependency Lock File (.terraform.lock.hcl) - Configuration Language | Terraform | Hashi... - 0 views

  • Version constraints within the configuration itself determine which versions of dependencies are potentially compatible, but after selecting a specific version of each dependency Terraform remembers the decisions it made in a dependency lock file
  • At present, the dependency lock file tracks only provider dependencies.
  • Terraform does not remember version selections for remote modules, and so Terraform will always select the newest available module version that meets the specified version constraints.
  • ...14 more annotations...
  • The lock file is always named .terraform.lock.hcl, and this name is intended to signify that it is a lock file for various items that Terraform caches in the .terraform
  • Terraform automatically creates or updates the dependency lock file each time you run the terraform init command.
  • You should include this file in your version control repository
  • If a particular provider has no existing recorded selection, Terraform will select the newest available version that matches the given version constraint, and then update the lock file to include that selection.
  • the "trust on first use" model
  • you can pre-populate checksums for a variety of different platforms in your lock file using the terraform providers lock command, which will then allow future calls to terraform init to verify that the packages available in your chosen mirror match the official packages from the provider's origin registry.
  • The h1: and zh: prefixes on these values represent different hashing schemes, each of which represents calculating a checksum using a different algorithm.
  • zh:: a mnemonic for "zip hash"
  • h1:: a mnemonic for "hash scheme 1", which is the current preferred hashing scheme.
  • To determine whether there still exists a dependency on a given provider, Terraform uses two sources of truth: the configuration itself, and the state.
  • Version constraints within the configuration itself determine which versions of dependencies are potentially compatible, but after selecting a specific version of each dependency Terraform remembers the decisions it made in a dependency lock file so that it can (by default) make the same decisions again in future.
  • At present, the dependency lock file tracks only provider dependencies.
  • Terraform will always select the newest available module version that meets the specified version constraints.
  • The lock file is always named .terraform.lock.hcl
  •  
    "the overriding effect is compounded, with later blocks taking precedence over earlier blocks."
張 旭

Moving away from Alpine - DEV Community - 0 views

  • it’s a lot of work to get packages that are not readily available in Alpine repository.
  • things compiled in Alpine won’t be usable on Ubuntu, for example, and vice versa.
  • the difficulty in pinning package versions in Alpine.
  • ...2 more annotations...
  • Developers rely heavily on app logs via syslog (mounted /dev/log) and Alpine uses busybox syslog by default.
  • Ubuntu officially launched minimal ubuntu images for cloud / container use
張 旭

The problem with Docker and Alpine's package pinning | by Stefan Schindler | Medium - 0 views

  • What’s one of the biggest benefits of Docker? Clearly reproducibility: It doesn’t matter where you run your images, or when you run them: The result will always be the same.
  • For example, in Alpine 3.5, the package Node.js might be 2.0, and in Alpine 3.4 it’s 1.9. By pinning down the repository to Alpine 3.4, you will alwaysget Node.js 1.9, because Alpine 3.4 is an old version and not updated anymore.
  • Unfortunately Alpine Linux does not keep old packages.
  •  
    "What's one of the biggest benefits of Docker? Clearly reproducibility: It doesn't matter where you run your images, or when you run them: The result will always be the same."
張 旭

Monorepo Explained - 0 views

shared by 張 旭 on 20 Jul 22 - No Cached
張 旭

Choose when to run jobs | GitLab - 0 views

  • Rules are evaluated in order until the first match.
  • no rules match, so the job is not added to any other pipeline.
  • define a set of rules to exclude jobs in a few cases, but run them in all other cases
  • ...32 more annotations...
  • use all rules keywords, like if, changes, and exists, in the same rule. The rule evaluates to true only when all included keywords evaluate to true.
  • use parentheses with && and || to build more complicated variable expressions.
  • Use workflow to specify which types of pipelines can run.
  • every push to an open merge request’s source branch causes duplicated pipelines.
  • avoid duplicate pipelines by changing the job rules to avoid either push (branch) pipelines or merge request pipelines.
  • do not mix only/except jobs with rules jobs in the same pipeline.
  • For behavior similar to the only/except keywords, you can check the value of the $CI_PIPELINE_SOURCE variable
  • commonly used variables for if clauses
  • rules:changes expressions to determine when to add jobs to a pipeline
  • Use !reference tags to reuse rules in different jobs.
  • Use except to define when a job does not run.
  • only or except used without refs is the same as only:refs / except/refs
  • If you change multiple files, but only one file ends in .md, the build job is still skipped.
  • If you use multiple keywords with only or except, the keywords are evaluated as a single conjoined expression.
  • only includes the job if all of the keys have at least one condition that matches.
  • except excludes the job if any of the keys have at least one condition that matches.
  • With only, individual keys are logically joined by an AND
  • With except, individual keys are logically joined by an OR
  • To specify a job as manual, add when: manual to the job in the .gitlab-ci.yml file.
  • Use protected environments to define a list of users authorized to run a manual job.
  • Use when: delayed to execute scripts after a waiting period, or if you want to avoid jobs immediately entering the pending state.
  • To split a large job into multiple smaller jobs that run in parallel, use the parallel keyword
  • run a trigger job multiple times in parallel in a single pipeline, but with different variable values for each instance of the job.
  • The @ symbol denotes the beginning of a ref’s repository path. To match a ref name that contains the @ character in a regular expression, you must use the hex character code match \x40.
  • Compare a variable to a string
  • Check if a variable is undefined
  • Check if a variable is empty
  • Check if a variable exists
  • Check if a variable is empty
  • Matches are found when using =~.
  • Matches are not found when using !~.
  • Join variable expressions together with && or ||
  •  
    "Rules are evaluated in order until the first match."
張 旭

The package-lock.json file - 0 views

  • You don't commit to Git your node_modules folder, which is generally huge, and when you try to replicate the project on another machine by using the npm install command,
  • Even if a patch or minor release should not introduce breaking changes
  • The package-lock.json sets your currently installed version of each package in stone, and npm will use those exact versions when running npm ci
  • ...1 more annotation...
  • The package-lock.json file needs to be committed to your Git repository
  •  
    "You don't commit to Git your node_modules folder, which is generally huge, and when you try to replicate the project on another machine by using the npm install command,"
‹ Previous 21 - 31 of 31
Showing 20 items per page