Skip to main content

Home/ Larvata/ Group items tagged quality

Rss Feed Group items tagged

crazylion lee

Raft Consensus Algorithm - 0 views

  •  
    " Raft is a consensus algorithm that is designed to be easy to understand. It's equivalent to Paxos in fault-tolerance and performance. The difference is that it's decomposed into relatively independent subproblems, and it cleanly addresses all major pieces needed for practical systems. We hope Raft will make consensus available to a wider audience, and that this wider audience will be able to develop a variety of higher quality consensus-based systems than are available today."
張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
張 旭

Trunk-based Development | Atlassian - 0 views

  • Trunk-based development is a version control management practice where developers merge small, frequent updates to a core “trunk” or main branch.
  • Gitflow and trunk-based development. 
  • Gitflow, which was popularized first, is a stricter development model where only certain individuals can approve changes to the main code. This maintains code quality and minimizes the number of bugs.
  • ...20 more annotations...
  • Trunk-based development is a more open model since all developers have access to the main code. This enables teams to iterate quickly and implement CI/CD.
  • Developers can create short-lived branches with a few small commits compared to other long-lived feature branching strategies.
  • Gitflow is an alternative Git branching model that uses long-lived feature branches and multiple primary branches.
  • Gitflow also has separate primary branch lines for development, hotfixes, features, and releases.
  • Trunk-based development is far more simplified since it focuses on the main branch as the source of fixes and releases.
  • Trunk-based development eases the friction of code integration.
  • trunk-based development model reduces these conflicts.
  • Adding an automated test suite and code coverage monitoring for this stream of commits enables continuous integration.
  • When new code is merged into the trunk, automated integration and code coverage tests run to validate the code quality.
  • Trunk-based development strives to keep the trunk branch “green”, meaning it's ready to deploy at any commit.
  • With continuous integration, developers perform trunk-based development in conjunction with automated tests that run after each committee to a trunk.
  • If trunk-based development was like music it would be a rapid staccato -- short, succinct notes in rapid succession, with the repository commits being the notes.
  • Instead of creating a feature branch and waiting to build out the complete specification, developers can instead create a trunk commit that introduces the feature flag and pushes new trunk commits that build out the feature specification within the flag.
  • Automated testing is necessary for any modern software project intending to achieve CI/CD.
  • Short running unit and integration tests are executed during development and upon code merge.
  • Automated tests provide a layer of preemptive code review.
  • Once a branch merges, it is best practice to delete it.
  • A repository with a large amount of active branches has some unfortunate side effects
  • Merge branches to the trunk at least once a day
  • The “continuous” in CI/CD implies that updates are constantly flowing.
張 旭

Ansible Tower vs Ansible AWX for Automation - 4sysops - 0 views

  • you can run Ansible freely by downloading the module and running configurations and playbooks from the command line.
  • AWX Project from Red Hat. It provides an open-source version of Ansible Tower that may suit the needs of Tower functionality in many environments.
  • Ansible Tower may be the more familiar option for Ansible users as it is the commercial GUI Ansible tool that provides the officially supported GUI interface, API access, role-based access, scheduling, notifications, and other nice features that allow businesses to manage environments easily with Ansible.
  • ...5 more annotations...
  • Ansible AWX is the open-sourced project that was the foundation on which Ansible Tower was created. With this being said, Ansible AWX is a development branch of code that only undergoes minimal testing and quality engineering testing.
  • Ansible AWX is a powerful open-source, freely available project for testing or using Ansible AWX in a lab, development, or other POC environment.
  • to use an external PostgreSQL database, please note that the minimum version is 9.6+
  • Full enterprise features and functionality of Tower
  • Not limited to 10 nodes
張 旭

Understanding the Nginx Configuration File Structure and Configuration Contexts | Digit... - 0 views

  • discussing the basic structure of an Nginx configuration file along with some guidelines on how to design your files
  • /etc/nginx/nginx.conf
  • In Nginx parlance, the areas that these brackets define are called "contexts" because they contain configuration details that are separated according to their area of concern
  • ...50 more annotations...
  • contexts can be layered within one another
  • if a directive is valid in multiple nested scopes, a declaration in a broader context will be passed on to any child contexts as default values.
  • The children contexts can override these values at will
  • Nginx will error out on reading a configuration file with directives that are declared in the wrong context.
  • The most general context is the "main" or "global" context
  • Any directive that exist entirely outside of these blocks is said to inhabit the "main" context
  • The main context represents the broadest environment for Nginx configuration.
  • The "events" context is contained within the "main" context. It is used to set global options that affect how Nginx handles connections at a general level.
  • Nginx uses an event-based connection processing model, so the directives defined within this context determine how worker processes should handle connections.
  • the connection processing method is automatically selected based on the most efficient choice that the platform has available
  • a worker will only take a single connection at a time
  • When configuring Nginx as a web server or reverse proxy, the "http" context will hold the majority of the configuration.
  • The http context is a sibling of the events context, so they should be listed side-by-side, rather than nested
  • fine-tune the TCP keep alive settings (keepalive_disable, keepalive_requests, and keepalive_timeout)
  • The "server" context is declared within the "http" context.
  • multiple declarations
  • each instance defines a specific virtual server to handle client requests
  • Each client request will be handled according to the configuration defined in a single server context, so Nginx must decide which server context is most appropriate based on details of the request.
  • listen: The ip address / port combination that this server block is designed to respond to.
  • server_name: This directive is the other component used to select a server block for processing.
  • "Host" header
  • configure files to try to respond to requests (try_files)
  • issue redirects and rewrites (return and rewrite)
  • set arbitrary variables (set)
  • Location contexts share many relational qualities with server contexts
  • multiple location contexts can be defined, each location is used to handle a certain type of client request, and each location is selected by virtue of matching the location definition against the client request through a selection algorithm
  • Location blocks live within server contexts and, unlike server blocks, can be nested inside one another.
  • While server contexts are selected based on the requested IP address/port combination and the host name in the "Host" header, location blocks further divide up the request handling within a server block by looking at the request URI
  • The request URI is the portion of the request that comes after the domain name or IP address/port combination.
  • New directives at this level allow you to reach locations outside of the document root (alias), mark the location as only internally accessible (internal), and proxy to other servers or locations (using http, fastcgi, scgi, and uwsgi proxying).
  • These can then be used to do A/B testing by providing different content to different hosts.
  • configures Perl handlers for the location they appear in
  • set the value of a variable depending on the value of another variable
  • used to map MIME types to the file extensions that should be associated with them.
  • this context defines a named pool of servers that Nginx can then proxy requests to
  • The upstream context should be placed within the http context, outside of any specific server contexts.
  • The upstream context can then be referenced by name within server or location blocks to pass requests of a certain type to the pool of servers that have been defined.
  • function as a high performance mail proxy server
  • The mail context is defined within the "main" or "global" context (outside of the http context).
  • Nginx has the ability to redirect authentication requests to an external authentication server
  • the if directive in Nginx will execute the instructions contained if a given test returns "true".
  • Since Nginx will test conditions of a request with many other purpose-made directives, if should not be used for most forms of conditional execution.
  • The limit_except context is used to restrict the use of certain HTTP methods within a location context.
  • The result of the above example is that any client can use the GET and HEAD verbs, but only clients coming from the 192.168.1.1/24 subnet are allowed to use other methods.
  • Many directives are valid in more than one context
  • it is usually best to declare directives in the highest context to which they are applicable, and overriding them in lower contexts as necessary.
  • Declaring at higher levels provides you with a sane default
  • Nginx already engages in a well-documented selection algorithm for things like selecting server blocks and location blocks.
  • instead of relying on rewrites to get a user supplied request into the format that you would like to work with, you should try to set up two blocks for the request, one of which represents the desired method, and the other that catches messy requests and redirects (and possibly rewrites) them to your correct block.
  • incorrect requests can get by with a redirect rather than a rewrite, which should execute with lower overhead.
張 旭

Introducing Infrastructure as Code | Linode - 0 views

  • Infrastructure as Code (IaC) is a technique for deploying and managing infrastructure using software, configuration files, and automated tools.
  • With the older methods, technicians must configure a device manually, perhaps with the aid of an interactive tool. Information is added to configuration files by hand or through the use of ad-hoc scripts. Configuration wizards and similar utilities are helpful, but they still require hands-on management. A small group of experts owns the expertise, the process is typically poorly defined, and errors are common.
  • The development of the continuous integration and continuous delivery (CI/CD) pipeline made the idea of treating infrastructure as software much more attractive.
  • ...20 more annotations...
  • Infrastructure as Code takes advantage of the software development process, making use of quality assurance and test automation techniques.
  • Consistency/Standardization
  • Each node in the network becomes what is known as a snowflake, with its own unique settings. This leads to a system state that cannot easily be reproduced and is difficult to debug.
  • With standard configuration files and software-based configuration, there is greater consistency between all equipment of the same type. A key IaC concept is idempotence.
  • Idempotence makes it easy to troubleshoot, test, stabilize, and upgrade all the equipment.
  • Infrastructure as Code is central to the culture of DevOps, which is a mix of development and operations
  • edits are always made to the source configuration files, never on the target.
  • A declarative approach describes the final state of a device, but does not mandate how it should get there. The specific IaC tool makes all the procedural decisions. The end state is typically defined through a configuration file, a JSON specification, or a similar encoding.
  • An imperative approach defines specific functions or procedures that must be used to configure the device. It focuses on what must happen, but does not necessarily describe the final state. Imperative techniques typically use scripts for the implementation.
  • With a push configuration, the central server pushes the configuration to the destination device.
  • If a device is mutable, its configuration can be changed while it is active
  • Immutable devices cannot be changed. They must be decommissioned or rebooted and then completely rebuilt.
  • an immutable approach ensures consistency and avoids drift. However, it usually takes more time to remove or rebuild a configuration than it does to change it.
  • System administrators should consider security issues as part of the development process.
  • Ansible is a very popular open source IaC application from Red Hat
  • Ansible is often used in conjunction with Kubernetes and Docker.
  • Linode offers a collection of several Ansible guides for a more comprehensive overview.
  • Pulumi permits the use of a variety of programming languages to deploy and manage infrastructure within a cloud environment.
  • Terraform allows users to provision data center infrastructure using either JSON or Terraform’s own declarative language.
  • Terraform manages resources through the use of providers, which are similar to APIs.
張 旭

Production environment | Kubernetes - 0 views

  • to promote an existing cluster for production use
  • Separating the control plane from the worker nodes.
  • Having enough worker nodes available
  • ...22 more annotations...
  • You can use role-based access control (RBAC) and other security mechanisms to make sure that users and workloads can get access to the resources they need, while keeping workloads, and the cluster itself, secure. You can set limits on the resources that users and workloads can access by managing policies and container resources.
  • you need to plan how to scale to relieve increased pressure from more requests to the control plane and worker nodes or scale down to reduce unused resources.
  • Managed control plane: Let the provider manage the scale and availability of the cluster's control plane, as well as handle patches and upgrades.
  • The simplest Kubernetes cluster has the entire control plane and worker node services running on the same machine.
  • You can deploy a control plane using tools such as kubeadm, kops, and kubespray.
  • Secure communications between control plane services are implemented using certificates.
  • Certificates are automatically generated during deployment or you can generate them using your own certificate authority.
  • Separate and backup etcd service: The etcd services can either run on the same machines as other control plane services or run on separate machines
  • Create multiple control plane systems: For high availability, the control plane should not be limited to a single machine
  • Some deployment tools set up Raft consensus algorithm to do leader election of Kubernetes services. If the primary goes away, another service elects itself and take over.
  • Groups of zones are referred to as regions.
  • if you installed with kubeadm, there are instructions to help you with Certificate Management and Upgrading kubeadm clusters.
  • Production-quality workloads need to be resilient and anything they rely on needs to be resilient (such as CoreDNS).
  • Add nodes to the cluster: If you are managing your own cluster you can add nodes by setting up your own machines and either adding them manually or having them register themselves to the cluster’s apiserver.
  • Set up node health checks: For important workloads, you want to make sure that the nodes and pods running on those nodes are healthy.
  • Authentication: The apiserver can authenticate users using client certificates, bearer tokens, an authenticating proxy, or HTTP basic auth.
  • Authorization: When you set out to authorize your regular users, you will probably choose between RBAC and ABAC authorization.
  • Role-based access control (RBAC): Lets you assign access to your cluster by allowing specific sets of permissions to authenticated users. Permissions can be assigned for a specific namespace (Role) or across the entire cluster (ClusterRole).
  • Attribute-based access control (ABAC): Lets you create policies based on resource attributes in the cluster and will allow or deny access based on those attributes.
  • Set limits on workload resources
  • Set namespace limits: Set per-namespace quotas on things like memory and CPU
  • Prepare for DNS demand: If you expect workloads to massively scale up, your DNS service must be ready to scale up as well.
1 - 8 of 8
Showing 20 items per page