Skip to main content

Home/ Larvata/ Group items tagged push

Rss Feed Group items tagged

張 旭

Introduction to GitLab Flow | GitLab - 0 views

  • GitLab flow as a clearly defined set of best practices. It combines feature-driven development and feature branches with issue tracking.
  • In Git, you add files from the working copy to the staging area. After that, you commit them to your local repo. The third step is pushing to a shared remote repository.
  • branching model
  • ...68 more annotations...
  • The biggest problem is that many long-running branches emerge that all contain part of the changes.
  • It is a convention to call your default branch master and to mostly branch from and merge to this.
  • Nowadays, most organizations practice continuous delivery, which means that your default branch can be deployed.
  • Continuous delivery removes the need for hotfix and release branches, including all the ceremony they introduce.
  • Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
  • GitHub flow assumes you can deploy to production every time you merge a feature branch.
  • You can deploy a new version by merging master into the production branch. If you need to know what code is in production, you can just checkout the production branch to see.
  • Production branch
  • Environment branches
  • have an environment that is automatically updated to the master branch.
  • deploy the master branch to staging.
  • To deploy to pre-production, create a merge request from the master branch to the pre-production branch.
  • Go live by merging the pre-production branch into the production branch.
  • Release branches
  • work with release branches if you need to release software to the outside world.
  • each branch contains a minor version
  • After announcing a release branch, only add serious bug fixes to the branch.
  • merge these bug fixes into master, and then cherry-pick them into the release branch.
  • Merging into master and then cherry-picking into release is called an “upstream first” policy
  • Tools such as GitHub and Bitbucket choose the name “pull request” since the first manual action is to pull the feature branch.
  • Tools such as GitLab and others choose the name “merge request” since the final action is to merge the feature branch.
  • If you work on a feature branch for more than a few hours, it is good to share the intermediate result with the rest of the team.
  • the merge request automatically updates when new commits are pushed to the branch.
  • If the assigned person does not feel comfortable, they can request more changes or close the merge request without merging.
  • In GitLab, it is common to protect the long-lived branches, e.g., the master branch, so that most developers can’t modify them.
  • if you want to merge into a protected branch, assign your merge request to someone with maintainer permissions.
  • After you merge a feature branch, you should remove it from the source control software.
  • Having a reason for every code change helps to inform the rest of the team and to keep the scope of a feature branch small.
  • If there is no issue yet, create the issue
  • The issue title should describe the desired state of the system.
  • For example, the issue title “As an administrator, I want to remove users without receiving an error” is better than “Admin can’t remove users.”
  • create a branch for the issue from the master branch
  • If you open the merge request but do not assign it to anyone, it is a “Work In Progress” merge request.
  • Start the title of the merge request with [WIP] or WIP: to prevent it from being merged before it’s ready.
  • When they press the merge button, GitLab merges the code and creates a merge commit that makes this event easily visible later on.
  • Merge requests always create a merge commit, even when the branch could be merged without one. This merge strategy is called “no fast-forward” in Git.
  • Suppose that a branch is merged but a problem occurs and the issue is reopened. In this case, it is no problem to reuse the same branch name since the first branch was deleted when it was merged.
  • At any time, there is at most one branch for every issue.
  • It is possible that one feature branch solves more than one issue.
  • GitLab closes these issues when the code is merged into the default branch.
  • If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.
  • use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
  • you should never rebase commits you have pushed to a remote server.
  • Rebasing creates new commits for all your changes, which can cause confusion because the same change would have multiple identifiers.
  • if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.
  • never rebase commits authored by other people.
  • it is a bad idea to rebase commits that you have already pushed.
  • If you revert a merge commit and then change your mind, revert the revert commit to redo the merge.
  • Often, people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch.
  • Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
  • every time you rebase, you have to resolve similar conflicts.
  • Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
  • A good way to prevent creating many merge commits is to not frequently merge master into the feature branch.
  • keep your feature branches short-lived.
  • Most feature branches should take less than one day of work.
  • If your feature branches often take more than a day of work, try to split your features into smaller units of work.
  • You could also use feature toggles to hide incomplete features so you can still merge back into master every day.
  • you should try to prevent merge commits, but not eliminate them.
  • Your codebase should be clean, but your history should represent what actually happened.
  • If you rebase code, the history is incorrect, and there is no way for tools to remedy this because they can’t deal with changing commit identifiers
  • Commit often and push frequently
  • You should push your feature branch frequently, even when it is not yet ready for review.
  • A commit message should reflect your intention, not just the contents of the commit.
  • each merge request must be tested before it is accepted.
  • test the master branch after each change.
  • If new commits in master cause merge conflicts with the feature branch, merge master back into the branch to make the CI server re-run the tests.
  • When creating a feature branch, always branch from an up-to-date master.
  • Do not merge from upstream again if your code can work and merge cleanly without doing so.
張 旭

Introduction to GitLab Flow | GitLab - 0 views

  • Git allows a wide variety of branching strategies and workflows.
  • not integrated with issue tracking systems
  • The biggest problem is that many long-running branches emerge that all contain part of the changes.
  • ...47 more annotations...
  • most organizations practice continuous delivery, which means that your default branch can be deployed.
  • Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
  • you can deploy to production every time you merge a feature branch.
  • deploy a new version by merging master into the production branch.
  • you can have your deployment script create a tag on each deployment.
  • to have an environment that is automatically updated to the master branch
  • commits only flow downstream, ensures that everything is tested in all environments.
  • first merge these bug fixes into master, and then cherry-pick them into the release branch.
  • Merging into master and then cherry-picking into release is called an “upstream first” policy
  • “merge request” since the final action is to merge the feature branch.
  • “pull request” since the first manual action is to pull the feature branch
  • it is common to protect the long-lived branches
  • After you merge a feature branch, you should remove it from the source control software
  • When you are ready to code, create a branch for the issue from the master branch. This branch is the place for any work related to this change.
  • A merge request is an online place to discuss the change and review the code.
  • If you open the merge request but do not assign it to anyone, it is a “Work In Progress” merge request.
  • Start the title of the merge request with “[WIP]” or “WIP:” to prevent it from being merged before it’s ready.
  • To automatically close linked issues, mention them with the words “fixes” or “closes,” for example, “fixes #14” or “closes #67.” GitLab closes these issues when the code is merged into the default branch.
  • If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.
  • With Git, you can use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
  • you should never rebase commits you have pushed to a remote server.
  • Rebasing creates new commits for all your changes, which can cause confusion because the same change would have multiple identifiers.
  • if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.
  • never rebase commits authored by other people.
  • it is a bad idea to rebase commits that you have already pushed.
  • always use the “no fast-forward” (--no-ff) strategy when you merge manually.
  • you should try to avoid merge commits in feature branches
  • people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch. Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
  • you should never rebase commits you have pushed to a remote server
  • Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
  • not frequently merge master into the feature branch.
  • utilizing new code,
  • resolving merge conflicts
  • updating long-running branches.
  • just cherry-picking a commit.
  • If your feature branch has a merge conflict, creating a merge commit is a standard way of solving this.
  • keep your feature branches short-lived.
  • split your features into smaller units of work
  • you should try to prevent merge commits, but not eliminate them.
  • Your codebase should be clean, but your history should represent what actually happened.
  • Splitting up work into individual commits provides context for developers looking at your code later.
  • push your feature branch frequently, even when it is not yet ready for review.
  • Commit often and push frequently
  • A commit message should reflect your intention, not just the contents of the commit.
  • Testing before merging
  • When using GitLab flow, developers create their branches from this master branch, so it is essential that it never breaks. Therefore, each merge request must be tested before it is accepted.
  • When creating a feature branch, always branch from an up-to-date master
  •  
    "Git allows a wide variety of branching strategies and workflows."
張 旭

Introduction To The Queue System - Diving Laravel - 0 views

  • Laravel is shipped with a built-in queue system that helps you run tasks in the background
  • The QueueManager is registered into the container and it knows how to connect to the different built-in queue drivers
  • for example when we called the Queue::push() method, what happened is that the manager selected the desired queue driver, connected to it, and called the push method on that driver.
  • ...2 more annotations...
  • All calls to methods that don't exist in the QueueManager class will be sent to the loaded driver
  • when you do Queue::push() you're actually calling the push method on the queue driver you're using
  •  
    "Laravel is shipped with a built-in queue system that helps you run tasks in the background "
張 旭

Queues - Laravel - The PHP Framework For Web Artisans - 0 views

  • Laravel queues provide a unified API across a variety of different queue backends, such as Beanstalk, Amazon SQS, Redis, or even a relational database.
  • The queue configuration file is stored in config/queue.php
  • a synchronous driver that will execute jobs immediately (for local use)
  • ...56 more annotations...
  • A null queue driver is also included which discards queued jobs.
  • In your config/queue.php configuration file, there is a connections configuration option.
  • any given queue connection may have multiple "queues" which may be thought of as different stacks or piles of queued jobs.
  • each connection configuration example in the queue configuration file contains a queue attribute.
  • if you dispatch a job without explicitly defining which queue it should be dispatched to, the job will be placed on the queue that is defined in the queue attribute of the connection configuration
  • pushing jobs to multiple queues can be especially useful for applications that wish to prioritize or segment how jobs are processed
  • specify which queues it should process by priority.
  • If your Redis queue connection uses a Redis Cluster, your queue names must contain a key hash tag.
  • ensure all of the Redis keys for a given queue are placed into the same hash slot
  • all of the queueable jobs for your application are stored in the app/Jobs directory.
  • Job classes are very simple, normally containing only a handle method which is called when the job is processed by the queue.
  • we were able to pass an Eloquent model directly into the queued job's constructor. Because of the SerializesModels trait that the job is using, Eloquent models will be gracefully serialized and unserialized when the job is processing.
  • When the job is actually handled, the queue system will automatically re-retrieve the full model instance from the database.
  • The handle method is called when the job is processed by the queue
  • The arguments passed to the dispatch method will be given to the job's constructor
  • delay the execution of a queued job, you may use the delay method when dispatching a job.
  • dispatch a job immediately (synchronously), you may use the dispatchNow method.
  • When using this method, the job will not be queued and will be run immediately within the current process
  • specify a list of queued jobs that should be run in sequence.
  • Deleting jobs using the $this->delete() method will not prevent chained jobs from being processed. The chain will only stop executing if a job in the chain fails.
  • this does not push jobs to different queue "connections" as defined by your queue configuration file, but only to specific queues within a single connection.
  • To specify the queue, use the onQueue method when dispatching the job
  • To specify the connection, use the onConnection method when dispatching the job
  • defining the maximum number of attempts on the job class itself.
  • to defining how many times a job may be attempted before it fails, you may define a time at which the job should timeout.
  • using the funnel method, you may limit jobs of a given type to only be processed by one worker at a time
  • using the throttle method, you may throttle a given type of job to only run 10 times every 60 seconds.
  • If an exception is thrown while the job is being processed, the job will automatically be released back onto the queue so it may be attempted again.
  • dispatch a Closure. This is great for quick, simple tasks that need to be executed outside of the current request cycle
  • When dispatching Closures to the queue, the Closure's code contents is cryptographically signed so it can not be modified in transit.
  • Laravel includes a queue worker that will process new jobs as they are pushed onto the queue.
  • once the queue:work command has started, it will continue to run until it is manually stopped or you close your terminal
  • queue workers are long-lived processes and store the booted application state in memory.
  • they will not notice changes in your code base after they have been started.
  • during your deployment process, be sure to restart your queue workers.
  • customize your queue worker even further by only processing particular queues for a given connection
  • The --once option may be used to instruct the worker to only process a single job from the queue
  • The --stop-when-empty option may be used to instruct the worker to process all jobs and then exit gracefully.
  • Daemon queue workers do not "reboot" the framework before processing each job.
  • you should free any heavy resources after each job completes.
  • Since queue workers are long-lived processes, they will not pick up changes to your code without being restarted.
  • restart the workers during your deployment process.
  • php artisan queue:restart
  • The queue uses the cache to store restart signals
  • the queue workers will die when the queue:restart command is executed, you should be running a process manager such as Supervisor to automatically restart the queue workers.
  • each queue connection defines a retry_after option. This option specifies how many seconds the queue connection should wait before retrying a job that is being processed.
  • The --timeout option specifies how long the Laravel queue master process will wait before killing off a child queue worker that is processing a job.
  • When jobs are available on the queue, the worker will keep processing jobs with no delay in between them.
  • While sleeping, the worker will not process any new jobs - the jobs will be processed after the worker wakes up again
  • the numprocs directive will instruct Supervisor to run 8 queue:work processes and monitor all of them, automatically restarting them if they fail.
  • Laravel includes a convenient way to specify the maximum number of times a job should be attempted.
  • define a failed method directly on your job class, allowing you to perform job specific clean-up when a failure occurs.
  • a great opportunity to notify your team via email or Slack.
  • php artisan queue:retry all
  • php artisan queue:flush
  • When injecting an Eloquent model into a job, it is automatically serialized before being placed on the queue and restored when the job is processed
張 旭

Open source load testing tool review 2020 - 0 views

  • Hey is a simple tool, written in Go, with good performance and the most common features you'll need to run simple static URL tests.
  • Hey supports HTTP/2, which neither Wrk nor Apachebench does
  • Apachebench is very fast, so often you will not need more than one CPU core to generate enough traffic
  • ...16 more annotations...
  • Hey has rate limiting, which can be used to run fixed-rate tests.
  • Vegeta was designed to be run on the command line; it reads from stdin a list of HTTP transactions to generate, and sends results in binary format to stdout,
  • Vegeta is a really strong tool that caters to people who want a tool to test simple, static URLs (perhaps API end points) but also want a bit more functionality.
  • Vegeta can even be used as a Golang library/package if you want to create your own load testing tool.
  • Wrk is so damn fast
  • being fast and measuring correctly is about all that Wrk does
  • k6 is scriptable in plain Javascript
  • k6 is average or better. In some categories (documentation, scripting API, command line UX) it is outstanding.
  • Jmeter is a huge beast compared to most other tools.
  • Siege is a simple tool, similar to e.g. Apachebench in that it has no scripting and is primarily used when you want to hit a single, static URL repeatedly.
  • A good way of testing the testing tools is to not test them on your code, but on some third-party thing that is sure to be very high-performing.
  • use a tool like e.g. top to keep track of Nginx CPU usage while testing. If you see just one process, and see it using close to 100% CPU, it means you could be CPU-bound on the target side.
  • If you see multiple Nginx processes but only one is using a lot of CPU, it means your load testing tool is only talking to that particular worker process.
  • Network delay is also important to take into account as it sets an upper limit on the number of requests per second you can push through.
  • If, say, the Nginx default page requires a transfer of 250 bytes to load, it means that if the servers are connected via a 100 Mbit/s link, the theoretical max RPS rate would be around 100,000,000 divided by 8 (bits per byte) divided by 250 => 100M/2000 = 50,000 RPS. Though that is a very optimistic calculation - protocol overhead will make the actual number a lot lower so in the case above I would start to get worried bandwidth was an issue if I saw I could push through max 30,000 RPS, or something like that.
  • Wrk managed to push through over 50,000 RPS and that made 8 Nginx workers on the target system consume about 600% CPU.
crazylion lee

Open Whisper Systems >> Blog >> Advanced cryptographic ratcheting - 0 views

  •  
    "At Open WhisperSystems, we've been working on improving our encrypted asynchronous chat protocol for TextSecure. The TextSecure protocol was originally a derivative of OTR, with minor changes to accommodate it for transports with constraints like SMS or Push. Some of the recent changes we've made include simplifying and improving OTR's deniability, as well as creating a key exchange mechanism for asynchronous transports. Our most recent change incorporates what we believe to be substantial improvements to OTR's forward secrecy "ratchet.""
張 旭

Using Workflows to Schedule Jobs - CircleCI - 1 views

  • A workflow is a set of rules for defining a collection of jobs and their run order.
  • Schedule workflows for jobs that should only run periodically.
  • run multiple jobs in parallel
  • ...37 more annotations...
  • rerun just the failed job
  • Builds without workflows require a build job.
  • Refer the YAML Anchors/Aliases documentation for information about how to alias and reuse syntax to keep your .circleci/config.yml file small.
  • workflow orchestration with two parallel jobs
  • jobs run according to configured requirements, each job waiting to start until the required job finishes successfully
  • requires: key
  • fans-out to run a set of acceptance test jobs in parallel, and finally fans-in to run a common deploy job.
  • Holding a Workflow for a Manual Approval
  • Workflows can be configured to wait for manual approval of a job before continuing to the next job
  • add a job to the jobs list with the key type: approval
  • approval is a special job type that is only available to jobs under the workflow key
  • The name of the job to hold is arbitrary - it could be wait or pause, for example, as long as the job has a type: approval key in it.
  • schedule a workflow to run at a certain time for specific branches.
  • The triggers key is only added under your workflows key
  • using cron syntax to represent Coordinated Universal Time (UTC) for specified branches.
  • By default, a workflow is triggered on every git push
  • the commit workflow has no triggers key and will run on every git push
  • The nightly workflow has a triggers key and will run on the specified schedule
  • Cron step syntax (for example, */1, */20) is not supported.
  • use a context to share environment variables
  • use the same shared environment variables when initiated by a user who is part of the organization.
  • CircleCI does not run workflows for tags unless you explicitly specify tag filters.
  • CircleCI branch and tag filters support the Java variant of regex pattern matching.
  • Each workflow has an associated workspace which can be used to transfer files to downstream jobs as the workflow progresses.
  • The workspace is an additive-only store of data.
  • Jobs can persist data to the workspace
  • Downstream jobs can attach the workspace to their container filesystem.
  • Attaching the workspace downloads and unpacks each layer based on the ordering of the upstream jobs in the workflow graph.
  • Workflows that include jobs running on multiple branches may require data to be shared using workspaces
  • To persist data from a job and make it available to other jobs, configure the job to use the persist_to_workspace key.
  • Files and directories named in the paths: property of persist_to_workspace will be uploaded to the workflow’s temporary workspace relative to the directory specified with the root key.
  • Configure a job to get saved data by configuring the attach_workspace key.
  • persist_to_workspace
  • attach_workspace
  • To rerun only a workflow’s failed jobs, click the Workflows icon in the app and select a workflow to see the status of each job, then click the Rerun button and select Rerun from failed.
  • if you do not see your workflows triggering, a configuration error is preventing the workflow from starting.
  • check your Workflows page of the CircleCI app (not the Job page)
  •  
    "A workflow is a set of rules for defining a collection of jobs and their run order."
張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
張 旭

Ruby and AOP: Decouple your code even more - Arkency Blog - 0 views

  • Dark Parts in our apps - persistence, networking, logging, notifications… these parts are scattered in our code
  • aspect-oriented programming!
  • components are parts we can easily encapsulate into some kind of code abstraction - a methods, objects or procedures.
  • ...16 more annotations...
  • application’s logic is a great example of a component
  • Aspects cross-cut our application - when we use some kind of persistence (e.g. a database) or network communication (such as ZMQ sockets) our components need to know about it.
  • Aspect-oriented programming aims to get rid of cross-cuts by separating aspect code from component code using injections of our aspects in certain join points in our component code.
  • It’s responsible for pushing snippets scenario
  • SRP-conformant object
  • the join points in Ruby
  • advice
    • 張 旭
       
      AOP 裡面的術語
  • In most cases after and before advice are sufficient.
  • what does it mean to “evaluate code around” something? In our case it means: Don’t run this method. Take it and push to my advice as an argument and evaluate this advice
  • to provide a join point
  • You’ll often see empty methods in code written in AOP paradigm
  • provide aspect code to link with our use case
  • use case is a pure domain object, without even knowing it’s connected with some kind of persistence and logging layer.
  • Aspect-oriented programming is fixing the problem with polluting pure logic objects with technical context of our applications.
  • we treat our glues as a configuration part, not the logic part of our apps.
  • Glues should not contain any logic at all
張 旭

Introducing Infrastructure as Code | Linode - 0 views

  • Infrastructure as Code (IaC) is a technique for deploying and managing infrastructure using software, configuration files, and automated tools.
  • With the older methods, technicians must configure a device manually, perhaps with the aid of an interactive tool. Information is added to configuration files by hand or through the use of ad-hoc scripts. Configuration wizards and similar utilities are helpful, but they still require hands-on management. A small group of experts owns the expertise, the process is typically poorly defined, and errors are common.
  • The development of the continuous integration and continuous delivery (CI/CD) pipeline made the idea of treating infrastructure as software much more attractive.
  • ...20 more annotations...
  • Infrastructure as Code takes advantage of the software development process, making use of quality assurance and test automation techniques.
  • Consistency/Standardization
  • Each node in the network becomes what is known as a snowflake, with its own unique settings. This leads to a system state that cannot easily be reproduced and is difficult to debug.
  • With standard configuration files and software-based configuration, there is greater consistency between all equipment of the same type. A key IaC concept is idempotence.
  • Idempotence makes it easy to troubleshoot, test, stabilize, and upgrade all the equipment.
  • Infrastructure as Code is central to the culture of DevOps, which is a mix of development and operations
  • edits are always made to the source configuration files, never on the target.
  • A declarative approach describes the final state of a device, but does not mandate how it should get there. The specific IaC tool makes all the procedural decisions. The end state is typically defined through a configuration file, a JSON specification, or a similar encoding.
  • An imperative approach defines specific functions or procedures that must be used to configure the device. It focuses on what must happen, but does not necessarily describe the final state. Imperative techniques typically use scripts for the implementation.
  • With a push configuration, the central server pushes the configuration to the destination device.
  • If a device is mutable, its configuration can be changed while it is active
  • Immutable devices cannot be changed. They must be decommissioned or rebooted and then completely rebuilt.
  • an immutable approach ensures consistency and avoids drift. However, it usually takes more time to remove or rebuild a configuration than it does to change it.
  • System administrators should consider security issues as part of the development process.
  • Ansible is a very popular open source IaC application from Red Hat
  • Ansible is often used in conjunction with Kubernetes and Docker.
  • Linode offers a collection of several Ansible guides for a more comprehensive overview.
  • Pulumi permits the use of a variety of programming languages to deploy and manage infrastructure within a cloud environment.
  • Terraform allows users to provision data center infrastructure using either JSON or Terraform’s own declarative language.
  • Terraform manages resources through the use of providers, which are similar to APIs.
張 旭

Logstash Alternatives: Pros & Cons of 5 Log Shippers [2019] - Sematext - 0 views

  • In this case, Elasticsearch. And because Elasticsearch can be down or struggling, or the network can be down, the shipper would ideally be able to buffer and retry
  • Logstash is typically used for collecting, parsing, and storing logs for future use as part of log management.
  • Logstash’s biggest con or “Achille’s heel” has always been performance and resource consumption (the default heap size is 1GB).
  • ...37 more annotations...
  • This can be a problem for high traffic deployments, when Logstash servers would need to be comparable with the Elasticsearch ones.
  • Filebeat was made to be that lightweight log shipper that pushes to Logstash or Elasticsearch.
  • differences between Logstash and Filebeat are that Logstash has more functionality, while Filebeat takes less resources.
  • Filebeat is just a tiny binary with no dependencies.
  • For example, how aggressive it should be in searching for new files to tail and when to close file handles when a file didn’t get changes for a while.
  • For example, the apache module will point Filebeat to default access.log and error.log paths
  • Filebeat’s scope is very limited,
  • Initially it could only send logs to Logstash and Elasticsearch, but now it can send to Kafka and Redis, and in 5.x it also gains filtering capabilities.
  • Filebeat can parse JSON
  • you can push directly from Filebeat to Elasticsearch, and have Elasticsearch do both parsing and storing.
  • You shouldn’t need a buffer when tailing files because, just as Logstash, Filebeat remembers where it left off
  • For larger deployments, you’d typically use Kafka as a queue instead, because Filebeat can talk to Kafka as well
  • The default syslog daemon on most Linux distros, rsyslog can do so much more than just picking logs from the syslog socket and writing to /var/log/messages.
  • It can tail files, parse them, buffer (on disk and in memory) and ship to a number of destinations, including Elasticsearch.
  • rsyslog is the fastest shipper
  • Its grammar-based parsing module (mmnormalize) works at constant speed no matter the number of rules (we tested this claim).
  • use it as a simple router/shipper, any decent machine will be limited by network bandwidth
  • It’s also one of the lightest parsers you can find, depending on the configured memory buffers.
  • rsyslog requires more work to get the configuration right
  • the main difference between Logstash and rsyslog is that Logstash is easier to use while rsyslog lighter.
  • rsyslog fits well in scenarios where you either need something very light yet capable (an appliance, a small VM, collecting syslog from within a Docker container).
  • rsyslog also works well when you need that ultimate performance.
  • syslog-ng as an alternative to rsyslog (though historically it was actually the other way around).
  • a modular syslog daemon, that can do much more than just syslog
  • Unlike rsyslog, it features a clear, consistent configuration format and has nice documentation.
  • Similarly to rsyslog, you’d probably want to deploy syslog-ng on boxes where resources are tight, yet you do want to perform potentially complex processing.
  • syslog-ng has an easier, more polished feel than rsyslog, but likely not that ultimate performance
  • Fluentd was built on the idea of logging in JSON wherever possible (which is a practice we totally agree with) so that log shippers down the line don’t have to guess which substring is which field of which type.
  • Fluentd plugins are in Ruby and very easy to write.
  • structured data through Fluentd, it’s not made to have the flexibility of other shippers on this list (Filebeat excluded).
  • Fluent Bit, which is to Fluentd similar to how Filebeat is for Logstash.
  • Fluentd is a good fit when you have diverse or exotic sources and destinations for your logs, because of the number of plugins.
  • Splunk isn’t a log shipper, it’s a commercial logging solution
  • Graylog is another complete logging solution, an open-source alternative to Splunk.
  • everything goes through graylog-server, from authentication to queries.
  • Graylog is nice because you have a complete logging solution, but it’s going to be harder to customize than an ELK stack.
  • it depends
張 旭

Using cache in GitLab CI with Docker-in-Docker | $AYMDEV() - 0 views

  • optimize our images.
  • When you build an image, it is made of multiple layers: we add a layer per instruction.
  • If we build the same image again without modifying any file, Docker will use existing layers rather than re-executing the instructions.
  • ...21 more annotations...
  • an image is made of multiple layers, and we can accelerate its build by using layers cache from the previous image version.
  • by using Docker-in-Docker, we get a fresh Docker instance per job which local registry is empty.
  • docker build --cache-from "$CI_REGISTRY_IMAGE:latest" -t "$CI_REGISTRY_IMAGE:new-tag"
  • But if you maintain a CHANGELOG in this format, and/or your Git tags are also your Docker tags, you can get the previous version and use cache the this image version.
  • script: - export PREVIOUS_VERSION=$(perl -lne 'print "v${1}" if /^##\s\[(\d\.\d\.\d)\]\s-\s\d{4}(?:-\d{2}){2}\s*$/' CHANGELOG.md | sed -n '2 p') - docker build --cache-from "$CI_REGISTRY_IMAGE:$PREVIOUS_VERSION" -t "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG" -f ./prod.Dockerfile .
  • « Docker layer caching » is enough to optimize the build time.
  • Cache in CI/CD is about saving directories or files across pipelines.
  • We're building a Docker image, dependencies are installed inside a container.We can't cache a dependencies directory if it doesn't exists in the job workspace.
  • Dependencies will always be installed from a container but will be extracted by the GitLab Runner in the job workspace. Our goal is to send the cached version in the build context.
  • We set the directories to cache in the job settings with a key to share the cache per branch and stage.
  • - docker cp app:/var/www/html/vendor/ ./vendor
  • after_script
  • - docker cp app:/var/www/html/node_modules/ ./node_modules
  • To avoid old dependencies to be mixed with the new ones, at the risk of keeping unused dependencies in cache, which would make cache and images heavier.
  • If you need to cache directories in testing jobs, it's easier: use volumes !
  • version your cache keys !
  • sharing Docker image between jobs
  • In every job, we automatically get artifacts from previous stages.
  • docker save $DOCKER_CI_IMAGE | gzip > app.tar.gz
  • I personally use the « push / pull » technique,
  • we docker push after the build, then we docker pull if needed in the next jobs.
張 旭

Choose when to run jobs | GitLab - 0 views

  • Rules are evaluated in order until the first match.
  • no rules match, so the job is not added to any other pipeline.
  • define a set of rules to exclude jobs in a few cases, but run them in all other cases
  • ...32 more annotations...
  • use all rules keywords, like if, changes, and exists, in the same rule. The rule evaluates to true only when all included keywords evaluate to true.
  • use parentheses with && and || to build more complicated variable expressions.
  • Use workflow to specify which types of pipelines can run.
  • every push to an open merge request’s source branch causes duplicated pipelines.
  • avoid duplicate pipelines by changing the job rules to avoid either push (branch) pipelines or merge request pipelines.
  • do not mix only/except jobs with rules jobs in the same pipeline.
  • For behavior similar to the only/except keywords, you can check the value of the $CI_PIPELINE_SOURCE variable
  • commonly used variables for if clauses
  • rules:changes expressions to determine when to add jobs to a pipeline
  • Use !reference tags to reuse rules in different jobs.
  • Use except to define when a job does not run.
  • only or except used without refs is the same as only:refs / except/refs
  • If you change multiple files, but only one file ends in .md, the build job is still skipped.
  • If you use multiple keywords with only or except, the keywords are evaluated as a single conjoined expression.
  • only includes the job if all of the keys have at least one condition that matches.
  • except excludes the job if any of the keys have at least one condition that matches.
  • With only, individual keys are logically joined by an AND
  • With except, individual keys are logically joined by an OR
  • To specify a job as manual, add when: manual to the job in the .gitlab-ci.yml file.
  • Use protected environments to define a list of users authorized to run a manual job.
  • Use when: delayed to execute scripts after a waiting period, or if you want to avoid jobs immediately entering the pending state.
  • To split a large job into multiple smaller jobs that run in parallel, use the parallel keyword
  • run a trigger job multiple times in parallel in a single pipeline, but with different variable values for each instance of the job.
  • The @ symbol denotes the beginning of a ref’s repository path. To match a ref name that contains the @ character in a regular expression, you must use the hex character code match \x40.
  • Compare a variable to a string
  • Check if a variable is undefined
  • Check if a variable is empty
  • Check if a variable exists
  • Check if a variable is empty
  • Matches are found when using =~.
  • Matches are not found when using !~.
  • Join variable expressions together with && or ||
  •  
    "Rules are evaluated in order until the first match."
張 旭

Active Record Associations - Ruby on Rails Guides - 0 views

  • With Active Record associations, we can streamline these - and other - operations by declaratively telling Rails that there is a connection between the two models.
  • belongs_to has_one has_many has_many :through has_one :through has_and_belongs_to_many
  • an association is a connection between two Active Record models
  • ...195 more annotations...
  • Associations are implemented using macro-style calls, so that you can declaratively add features to your models
  • A belongs_to association sets up a one-to-one connection with another model, such that each instance of the declaring model "belongs to" one instance of the other model.
  • belongs_to associations must use the singular term.
  • belongs_to
  • A has_one association also sets up a one-to-one connection with another model, but with somewhat different semantics (and consequences).
  • This association indicates that each instance of a model contains or possesses one instance of another model
  • belongs_to
  • A has_many association indicates a one-to-many connection with another model.
  • This association indicates that each instance of the model has zero or more instances of another model.
  • belongs_to
  • A has_many :through association is often used to set up a many-to-many connection with another model
  • This association indicates that the declaring model can be matched with zero or more instances of another model by proceeding through a third model.
  • through:
  • through:
  • The collection of join models can be managed via the API
  • new join models are created for newly associated objects, and if some are gone their rows are deleted.
  • The has_many :through association is also useful for setting up "shortcuts" through nested has_many associations
  • A has_one :through association sets up a one-to-one connection with another model. This association indicates that the declaring model can be matched with one instance of another model by proceeding through a third model.
  • A has_and_belongs_to_many association creates a direct many-to-many connection with another model, with no intervening model.
  • id: false
  • The has_one relationship says that one of something is yours
  • using t.references :supplier instead.
  • declare a many-to-many relationship is to use has_many :through. This makes the association indirectly, through a join model
  • set up a has_many :through relationship if you need to work with the relationship model as an independent entity
  • set up a has_and_belongs_to_many relationship (though you'll need to remember to create the joining table in the database).
  • use has_many :through if you need validations, callbacks, or extra attributes on the join model
  • With polymorphic associations, a model can belong to more than one other model, on a single association.
  • belongs_to :imageable, polymorphic: true
  • a polymorphic belongs_to declaration as setting up an interface that any other model can use.
    • 張 旭
       
      _id 記錄的是不同類型的外連鍵 id;_type 記錄的是不同類型的表格名稱。
  • In designing a data model, you will sometimes find a model that should have a relation to itself
  • add a references column to the model itself
  • Controlling caching Avoiding name collisions Updating the schema Controlling association scope Bi-directional associations
  • All of the association methods are built around caching, which keeps the result of the most recent query available for further operations.
  • it is a bad idea to give an association a name that is already used for an instance method of ActiveRecord::Base. The association method would override the base method and break things.
  • You are responsible for maintaining your database schema to match your associations.
  • belongs_to associations you need to create foreign keys
  • has_and_belongs_to_many associations you need to create the appropriate join table
  • If you create an association some time after you build the underlying model, you need to remember to create an add_column migration to provide the necessary foreign key.
  • Active Record creates the name by using the lexical order of the class names
  • So a join between customer and order models will give the default join table name of "customers_orders" because "c" outranks "o" in lexical ordering.
  • For example, one would expect the tables "paper_boxes" and "papers" to generate a join table name of "papers_paper_boxes" because of the length of the name "paper_boxes", but it in fact generates a join table name of "paper_boxes_papers" (because the underscore '' is lexicographically _less than 's' in common encodings).
  • id: false
  • pass id: false to create_table because that table does not represent a model
  • By default, associations look for objects only within the current module's scope.
  • will work fine, because both the Supplier and the Account class are defined within the same scope.
  • To associate a model with a model in a different namespace, you must specify the complete class name in your association declaration:
  • class_name
  • class_name
  • Active Record provides the :inverse_of option
    • 張 旭
       
      意思是說第一次比較兩者的 first_name 是相同的;但透過 c 實體修改 first_name 之後,再次比較就不相同了,因為兩個是記憶體裡面兩個不同的物件。
  • preventing inconsistencies and making your application more efficient
  • Every association will attempt to automatically find the inverse association and set the :inverse_of option heuristically (based on the association name)
  • In database terms, this association says that this class contains the foreign key.
  • In all of these methods, association is replaced with the symbol passed as the first argument to belongs_to.
  • (force_reload = false)
  • The association method returns the associated object, if any. If no associated object is found, it returns nil.
  • the cached version will be returned.
  • The association= method assigns an associated object to this object.
  • Behind the scenes, this means extracting the primary key from the associate object and setting this object's foreign key to the same value.
  • The build_association method returns a new object of the associated type
  • but the associated object will not yet be saved.
  • The create_association method returns a new object of the associated type
  • once it passes all of the validations specified on the associated model, the associated object will be saved
  • raises ActiveRecord::RecordInvalid if the record is invalid.
  • dependent
  • counter_cache
  • :autosave :class_name :counter_cache :dependent :foreign_key :inverse_of :polymorphic :touch :validate
  • finding the number of belonging objects more efficient.
  • Although the :counter_cache option is specified on the model that includes the belongs_to declaration, the actual column must be added to the associated model.
  • add a column named orders_count to the Customer model.
  • :destroy, when the object is destroyed, destroy will be called on its associated objects.
  • deleted directly from the database without calling their destroy method.
  • Rails will not create foreign key columns for you
  • The :inverse_of option specifies the name of the has_many or has_one association that is the inverse of this association
  • set the :touch option to :true, then the updated_at or updated_on timestamp on the associated object will be set to the current time whenever this object is saved or destroyed
  • specify a particular timestamp attribute to update
  • If you set the :validate option to true, then associated objects will be validated whenever you save this object
  • By default, this is false: associated objects will not be validated when this object is saved.
  • where includes readonly select
  • make your code somewhat more efficient
  • no need to use includes for immediate associations
  • will be read-only when retrieved via the association
  • The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated object
  • using the association.nil?
  • Assigning an object to a belongs_to association does not automatically save the object. It does not save the associated object either.
  • In database terms, this association says that the other class contains the foreign key.
  • the cached version will be returned.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • Setting the :as option indicates that this is a polymorphic association
  • :nullify causes the foreign key to be set to NULL. Callbacks are not executed.
  • It's necessary not to set or leave :nullify option for those associations that have NOT NULL database constraints.
  • The :source_type option specifies the source association type for a has_one :through association that proceeds through a polymorphic association.
  • The :source option specifies the source association name for a has_one :through association.
  • The :through option specifies a join model through which to perform the query
  • more efficient by including representatives in the association from suppliers to accounts
  • When you assign an object to a has_one association, that object is automatically saved (in order to update its foreign key).
  • If either of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_one association) is unsaved (that is, new_record? returns true) then the child objects are not saved.
  • If you want to assign an object to a has_one association without saving the object, use the association.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}, ...) collection.create(attributes = {}) collection.create!(attributes = {})
  • In all of these methods, collection is replaced with the symbol passed as the first argument to has_many, and collection_singular is replaced with the singularized version of that symbol.
  • The collection<< method adds one or more objects to the collection by setting their foreign keys to the primary key of the calling model
  • The collection.delete method removes one or more objects from the collection by setting their foreign keys to NULL.
  • objects will be destroyed if they're associated with dependent: :destroy, and deleted if they're associated with dependent: :delete_all
  • The collection.destroy method removes one or more objects from the collection by running destroy on each object.
  • The collection_singular_ids method returns an array of the ids of the objects in the collection.
  • The collection_singular_ids= method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate
  • The default strategy for has_many :through associations is delete_all, and for has_many associations is to set the foreign keys to NULL.
  • The collection.clear method removes all objects from the collection according to the strategy specified by the dependent option
  • uses the same syntax and options as ActiveRecord::Base.find
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.build method returns one or more new objects of the associated type. These objects will be instantiated from the passed attributes, and the link through their foreign key will be created, but the associated objects will not yet be saved.
  • The collection.create method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through its foreign key will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • :delete_all causes all the associated objects to be deleted directly from the database (so callbacks will not execute)
  • :nullify causes the foreign keys to be set to NULL. Callbacks are not executed.
  • where includes readonly select
  • :conditions :through :polymorphic :foreign_key
  • By convention, Rails assumes that the column used to hold the primary key of the association is id. You can override this and explicitly specify the primary key with the :primary_key option.
  • The :source option specifies the source association name for a has_many :through association.
  • You only need to use this option if the name of the source association cannot be automatically inferred from the association name.
  • The :source_type option specifies the source association type for a has_many :through association that proceeds through a polymorphic association.
  • The :through option specifies a join model through which to perform the query.
  • has_many :through associations provide a way to implement many-to-many relationships,
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • If you use a hash-style where option, then record creation via this association will be automatically scoped using the hash
  • The extending method specifies a named module to extend the association proxy.
  • Association extensions
  • The group method supplies an attribute name to group the result set by, using a GROUP BY clause in the finder SQL.
  • has_many :line_items, -> { group 'orders.id' },                        through: :orders
  • more efficient by including line items in the association from customers to orders
  • The limit method lets you restrict the total number of objects that will be fetched through an association.
  • The offset method lets you specify the starting offset for fetching objects via an association
  • The order method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY clause).
  • Use the distinct method to keep the collection free of duplicates.
  • mostly useful together with the :through option
  • -> { distinct }
  • .all.inspect
  • If you want to make sure that, upon insertion, all of the records in the persisted association are distinct (so that you can be sure that when you inspect the association that you will never find duplicate records), you should add a unique index on the table itself
  • unique: true
  • Do not attempt to use include? to enforce distinctness in an association.
  • multiple users could be attempting this at the same time
  • checking for uniqueness using something like include? is subject to race conditions
  • When you assign an object to a has_many association, that object is automatically saved (in order to update its foreign key).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added
  • All unsaved members of the association will automatically be saved when the parent is saved.
  • assign an object to a has_many association without saving the object, use the collection.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}) collection.create(attributes = {}) collection.create!(attributes = {})
  • If the join table for a has_and_belongs_to_many association has additional columns beyond the two foreign keys, these columns will be added as attributes to records retrieved via that association.
  • Records returned with additional attributes will always be read-only
  • If you require this sort of complex behavior on the table that joins two models in a many-to-many relationship, you should use a has_many :through association instead of has_and_belongs_to_many.
  • aliased as collection.concat and collection.push.
  • The collection.delete method removes one or more objects from the collection by deleting records in the join table
  • not destroy the objects
  • The collection.destroy method removes one or more objects from the collection by running destroy on each record in the join table, including running callbacks.
  • not destroy the objects.
  • The collection.clear method removes every object from the collection by deleting the rows from the joining table.
  • not destroy the associated objects.
  • The collection.find method finds objects within the collection. It uses the same syntax and options as ActiveRecord::Base.find.
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.exists? method checks whether an object meeting the supplied conditions exists in the collection.
  • The collection.build method returns a new object of the associated type.
  • the associated object will not yet be saved.
  • the associated object will be saved.
  • The collection.create method returns a new object of the associated type.
  • it passes all of the validations specified on the associated model
  • :association_foreign_key :autosave :class_name :foreign_key :join_table :validate
  • The :foreign_key and :association_foreign_key options are useful when setting up a many-to-many self-join.
  • Rails assumes that the column in the join table used to hold the foreign key pointing to the other model is the name of that model with the suffix _id added.
  • If you set the :autosave option to true, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
  • By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to this model is the name of this model with the suffix _id added.
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • set conditions via a hash
  • In this case, using @parts.assemblies.create or @parts.assemblies.build will create orders where the factory column has the value "Seattle"
  • If you use a hash-style where, then record creation via this association will be automatically scoped using the hash
  • using a GROUP BY clause in the finder SQL.
  • Use the uniq method to remove duplicates from the collection.
  • assign an object to a has_and_belongs_to_many association, that object is automatically saved (in order to update the join table).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_and_belongs_to_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added.
  • If you want to assign an object to a has_and_belongs_to_many association without saving the object, use the collection.build method.
  • Normal callbacks hook into the life cycle of Active Record objects, allowing you to work with those objects at various points
  • define association callbacks by adding options to the association declaration
  • Rails passes the object being added or removed to the callback.
  • stack callbacks on a single event by passing them as an array
  • If a before_add callback throws an exception, the object does not get added to the collection.
  • if a before_remove callback throws an exception, the object does not get removed from the collection
  • extend these objects through anonymous modules, adding new finders, creators, or other methods.
  • order_number
  • use a named extension module
  • proxy_association.owner returns the object that the association is a part of.
張 旭

Getting Started with Docker - Servers for Hackers - 0 views

  • Docker is an isolated portion of the host computer, sharing the host kernel (OS) and even its bin/libraries if appropriate.
  • the Docker Container contains the parts that make Ubuntu different from CoreOS.
  • A Docker container only stays alive as long as there is an active process being run in it.
  • ...10 more annotations...
  • Allocate a (pseudo) tty
  • Keep stdin open (so we can interact with it)
  • Docker allows us make changes to an image, commit those changes, and then push those changes out somehwere.
  • Docker tracks any changes we make to a container
  • The Dockerfile provides a set of instructions for Docker to run on a container.
  • what image (and tag in this case) to base this off of
  • run the given command (as user "root")
  • copy a file from the host machine into the container
  • expose a port to the host machine. You can expose multiple ports
  • run a command
tboydar

Swift 推播處理 (2) - 0 views

  •  
    基本介紹教學目標了解如何透過 Swift 程式語言搭配 Parse 雲端服務進行推播通知。 前置作業在 Parse 雲端服務中匯入推播通知服務的開發與產品 p12 憑證。 使用教學請開啟 Xcode 開發工具,接著新增 Single View Appliation 專案,再開啟 AppDelegate.swift 程式碼檔案進行推播通知服務實作。 推播通知註冊和接收 Parse 雲端服務程式碼。1
張 旭

Flynn: first preview release | Hacker News - 0 views

  • Etcd and Zookeeper provide essentially the same functionality. They are both a strongly consistent key/value stores that support notifications to clients of changes. These two projects are limited to service discovery
  • So lets say you had a client application that would talk to a node application that could be on any number of servers. What you could do is hard code that list into your application and randomly select one, in order to "fake" load balancing. However every time a machine went up or down you would have to update that list.
  • What Consul provides is you just tell your app to connect to "mynodeapp.consul" and then consul will give you the proper address of one of your node apps.
  • ...9 more annotations...
  • Consul and Skydock are both applications that build on top of a tool like Zookeeper and Etcd.
  • What a developer ideally wants to do is just push code and not have to worry about what servers are running what, and worry about failover and the like
  • What Flynn provides (if I get it), is a diy Heroku like platform
  • Another project that I believe may be similar to Flynn is Apache Mesos.
  • a self hosted Heroku
  • Google Omega is Google's answer to Apache Mesos
  • Omega would need a service like Raft to understand what services are currently available
  • Raft is a consensus algorithm for keeping a set of distributed state machines in a consistent state.
  • I want to use Docker, but it has no easy way to say "take this file that contains instructions and make everything". You can write Dockerfiles, but you can only use one part of the stack in them, otherwise you run into trouble.
  •  
    " So lets say you had a client application that would talk to a node application that could be on any number of servers. What you could do is hard code that list into your application and randomly select one, in order to "fake" load balancing. However every time a machine went up or down you would have to update that list. What Consul provides is you just tell your app to connect to "mynodeapp.consul" and then consul will give you the proper address of one of your node apps."
張 旭

Running Docker Commands - CircleCI - 0 views

  • To build Docker images for deployment, you must use a special setup_remote_docker key which creates a separate environment for each build for security.
  • When setup_remote_docker executes, a remote environment will be created, and your current primary container will be configured to use it.
  • Once setup_remote_docker is called, a new remote environment is created, and your primary container is configured to use it.
  • ...8 more annotations...
  • but building/pushing images and running containers happens in the remote Docker Engine
  • use a primary image that already has Docker (recommended)
  • installs Docker and has Git, use 17.05.0-ce-git
  • The job and remote docker run in separate environments.
  • It is not possible to start a service in remote docker and ping it directly from a primary container or to start a primary container that can ping a service in remote docker.
  • It is not possible to mount a folder from your job space into a container in Remote Docker (and vice versa).
    • 張 旭
       
      等於是 docker client 跟 docker server 是兩台不同的主機就對了。
  • use https://github.com/outstand/docker-dockup or a similar image for backup and restore to spin up a container
  •  
    "To build Docker images for deployment, you must use a special setup_remote_docker key which creates a separate environment for each build for security. "
張 旭

10 Common Git Problems and How to Fix Them - DEV Community - 0 views

  • Please keep in mind that --amend actually will create a new commit which replaces the previous one, so don’t use it for modifying commits which already have been pushed to a central repository.
  • git rebase --interactive
  • Just pick the commit(s) you want to update, change pick to reword (or r for short), and you will be taken to a new view where you can edit the message.
  • ...8 more annotations...
  • you can completely remove commits by deleting them from the list, as well as edit, reorder, and squash them.
  • Squashing allows you to merge several commits into one
  • In case you don’t want to create additional revert commits but only apply the necessary changes to your working tree, you can use the --no-commit/-n option.
  • reuse recorded resolution
  • Unfortunately it turns out that one of the branches isn’t quite there yet, so you decide to un-merge it again. Several days (or weeks) later when the branch is finally ready you merge it again, but thanks to the recorded resolutions, you won’t have to resolve the same merge conflicts again.
  • You can also define global hooks to use in all your projects by creating a template directory that git will use when initializing a new repository
  • removing sensitive data
  • Keep in mind that this will rewrite your project’s entire history, which can be very disruptive in a distributed workflow.
1 - 20 of 29 Next ›
Showing 20 items per page