Skip to main content

Home/ Larvata/ Group items tagged library

Rss Feed Group items tagged

張 旭

Open source load testing tool review 2020 - 0 views

  • Hey is a simple tool, written in Go, with good performance and the most common features you'll need to run simple static URL tests.
  • Hey supports HTTP/2, which neither Wrk nor Apachebench does
  • Apachebench is very fast, so often you will not need more than one CPU core to generate enough traffic
  • ...16 more annotations...
  • Hey has rate limiting, which can be used to run fixed-rate tests.
  • Vegeta was designed to be run on the command line; it reads from stdin a list of HTTP transactions to generate, and sends results in binary format to stdout,
  • Vegeta is a really strong tool that caters to people who want a tool to test simple, static URLs (perhaps API end points) but also want a bit more functionality.
  • Vegeta can even be used as a Golang library/package if you want to create your own load testing tool.
  • Wrk is so damn fast
  • being fast and measuring correctly is about all that Wrk does
  • k6 is scriptable in plain Javascript
  • k6 is average or better. In some categories (documentation, scripting API, command line UX) it is outstanding.
  • Jmeter is a huge beast compared to most other tools.
  • Siege is a simple tool, similar to e.g. Apachebench in that it has no scripting and is primarily used when you want to hit a single, static URL repeatedly.
  • A good way of testing the testing tools is to not test them on your code, but on some third-party thing that is sure to be very high-performing.
  • use a tool like e.g. top to keep track of Nginx CPU usage while testing. If you see just one process, and see it using close to 100% CPU, it means you could be CPU-bound on the target side.
  • If you see multiple Nginx processes but only one is using a lot of CPU, it means your load testing tool is only talking to that particular worker process.
  • Network delay is also important to take into account as it sets an upper limit on the number of requests per second you can push through.
  • If, say, the Nginx default page requires a transfer of 250 bytes to load, it means that if the servers are connected via a 100 Mbit/s link, the theoretical max RPS rate would be around 100,000,000 divided by 8 (bits per byte) divided by 250 => 100M/2000 = 50,000 RPS. Though that is a very optimistic calculation - protocol overhead will make the actual number a lot lower so in the case above I would start to get worried bandwidth was an issue if I saw I could push through max 30,000 RPS, or something like that.
  • Wrk managed to push through over 50,000 RPS and that made 8 Nginx workers on the target system consume about 600% CPU.
張 旭

鳥哥的 Linux 私房菜 -- 第一章、Linux是什麼與如何學習 - 0 views

  • Linux就是核心與系統呼叫介面那兩層
  • 核心與硬體的關係非常的強烈
  • Linux提供了一個完整的作業系統當中最底層的硬體控制與資源管理的完整架構, 這個架構是沿襲Unix良好的傳統來的,所以相當的穩定而功能強大
  • ...31 more annotations...
  • Linux的核心是由Linus Torvalds在1991年的時候給他開發出來的, 並且丟到網路上提供大家下載,後來大家覺得這個小東西(Linux Kernel)相當的小而精巧, 所以慢慢的就有相當多的朋友投入這個小東西的研究領域裡面去
  • 1960年代初期麻省理工學院(MIT)發展了所謂的: 『相容分時系統(Compatible Time-Sharing System, CTSS)』, 它可以讓大型主機透過提供數個終端機(terminal)以連線進入主機,來利用主機的資源進行運算工作
  • 為了更加強化大型主機的功能,以讓主機的資源可以提供更多使用者來利用,所以在1965年前後, 由貝爾實驗室(Bell)、麻省理工學院(MIT)及奇異公司(GE, 或稱為通用電器)共同發起了Multics的計畫
  • 以組合語言(Assembler)寫出了一組核心程式,同時包括一些核心工具程式, 以及一個小小的檔案系統。那個系統就是Unix的原型! 當時Thompson將Multics龐大的複雜系統簡化了不少,於是同實驗室的朋友都戲稱這個系統為:Unics。(當時尚未有Unix的名稱)
  • 所有的程式或系統裝置都是檔案
  • 不管建構編輯器還是附屬檔案,所寫的程式只有一個目的,且要有效的完成目標。
  • Dennis Ritchie (註3) 將B語言重新改寫成C語言,再以C語言重新改寫與編譯Unics的核心, 最後正名與發行出Unix的正式版本!
  • 由於Unix是以較高階的C語言寫的,相對於組合語言需要與硬體有密切的配合, 高階的C語言與硬體的相關性就沒有這麼大了!所以,這個改變也使得Unix很容易被移植到不同的機器上面喔!
  • AT&T此時對於Unix是採取較開放的態度,此外,Unix是以高階的C語言寫成的, 理論上是具有可移植性的!亦即只要取得Unix的原始碼,並且針對大型主機的特性加以修訂原有的原始碼(Source Code), 就可能將Unix移植到另一部不同的主機上頭了。
  • 柏克萊大學的Bill Joy (註4)在取得了Unix的核心原始碼後,著手修改成適合自己機器的版本, 並且同時增加了很多工具軟體與編譯程式,最終將它命名為Berkeley Software Distribution (BSD)。
  • 每一家公司自己出的Unix雖然在架構上面大同小異,但是卻真的僅能支援自身的硬體, 所以囉,早先的Unix只能與伺服器(Server)或者是大型工作站(Workstation)劃上等號!
  • AT&T在1979年發行的第七版Unix中,特別提到了 『不可對學生提供原始碼』的嚴格限制!
  • 純種的Unix指的就是System V以及BSD
  • AT&T自家的System V
  • 既然1979年的Unix第七版可以在Intel的x86架構上面進行移植, 那麼是否意味著可以將Unix改寫並移植到x86上面了呢?在這個想法上, 譚寧邦教授於是乎自己動手寫了Minix這個Unix Like的核心程式!
  • 『既然作業系統太複雜,我就先寫可以在Unix上面運行的小程式,這總可以了吧?』
  • 如果能夠寫出一個不錯的編譯器,那不就是大家都需要的軟體了嗎? 因此他便開始撰寫C語言的編譯器,那就是現在相當有名的GNU C Compiler(gcc)!
  • 他還撰寫了更多可以被呼叫的C函式庫(GNU C library),以及可以被使用來操作作業系統的基本介面BASH shell! 這些都在1990年左右完成了!
  • 有鑑於圖形使用者介面(Graphical User Interface, GUI) 的需求日益加重,在1984年由MIT與其他協力廠商首次發表了X Window System ,並且更在1988年成立了非營利性質的XFree86這個組織。所謂的XFree86其實是 X Window System + Free + x86的整合名稱呢!
  • 譚寧邦教授為了教育需要而撰寫的Minix系統! 他在購買了最新的Intel 386的個人電腦後,就立即安裝了Minix這個作業系統。 另外,上個小節當中也談到,Minix這個作業系統是有附上原始碼的, 所以托瓦茲也經由這個原始碼學習到了很多的核心程式設計的設計概念喔!
  • 托瓦茲自己也說:『我始終是個性能癖』^_^。 為了徹底發揮386的效能,於是托瓦茲花了不少時間在測試386機器上! 他的重要測試就是在測試386的多功性能。首先,他寫了三個小程式,一個程式會持續輸出A、一個會持續輸出B, 最後一個會將兩個程式進行切換。他將三個程式同時執行,結果,他看到螢幕上很順利的一直出現ABABAB...... 他知道,他成功了! ^_^
  • 為了讓所有的軟體都可以在Linux上執行,於是托瓦茲開始參考標準的POSIX規範。
  • POSIX是可攜式作業系統介面(Portable Operating System Interface)的縮寫,重點在規範核心與應用程式之間的介面, 這是由美國電器與電子工程師學會(IEEE)所發佈的一項標準喔
  • 因為托瓦茲放置核心的那個FTP網站的目錄為:Linux, 從此,大家便稱這個核心為Linux了。(請注意,此時的Linux就是那個kernel喔! 另外,托瓦茲所丟到該目錄下的第一個核心版本為0.02呢!)
  • Linux其實就是一個作業系統最底層的核心及其提供的核心工具。 他是GNU GPL授權模式,所以,任何人均可取得原始碼與可執行這個核心程式,並且可以修改。
  • Linux參考POSIX設計規範,於是相容於Unix作業系統,故亦可稱之為Unix Like的一種
  • 為了讓使用者能夠接觸到Linux,於是很多的商業公司或非營利團體, 就將Linux Kernel(含tools)與可運行的軟體整合起來,加上自己具有創意的工具程式, 這個工具程式可以讓使用者以光碟/DVD或者透過網路直接安裝/管理Linux系統。 這個『Kernel + Softwares + Tools + 可完整安裝程序』的咚咚,我們稱之為Linux distribution, 一般中文翻譯成可完整安裝套件,或者Linux發佈商套件等。
  • 在1994年終於完成的Linux的核心正式版!version 1.0。 這一版同時還加入了X Window System的支援呢!且於1996年完成了2.0版、2011 年釋出 3.0 版,更於 2015 年 4 月釋出了 4.0 版哩! 發展相當迅速喔!此外,托瓦茲指明了企鵝為Linux的吉祥物。
  • Linux本身就是個最陽春的作業系統,其開發網站設立在http://www.kernel.org,我們亦稱Linux作業系統最底層的資料為『核心(Kernel)』。
  • 常見的 Linux distributions 分類有『商業、社群』分類法,或『RPM、DPKG』分類法
  • 事實上鳥哥認為distributions主要分為兩大系統,一種是使用RPM方式安裝軟體的系統,包括Red Hat, Fedora, SuSE等都是這類; 一種則是使用Debian的dpkg方式安裝軟體的系統,包括Debian, Ubuntu, B2D等等。
張 旭

LXC vs Docker: Why Docker is Better | UpGuard - 0 views

  • LXC (LinuX Containers) is a OS-level virtualization technology that allows creation and running of multiple isolated Linux virtual environments (VE) on a single control host.
  • Docker, previously called dotCloud, was started as a side project and only open-sourced in 2013. It is really an extension of LXC’s capabilities.
  • run processes in isolation.
  • ...35 more annotations...
  • Docker is developed in the Go language and utilizes LXC, cgroups, and the Linux kernel itself. Since it’s based on LXC, a Docker container does not include a separate operating system; instead it relies on the operating system’s own functionality as provided by the underlying infrastructure.
  • Docker acts as a portable container engine, packaging the application and all its dependencies in a virtual container that can run on any Linux server.
  • a VE there is no preloaded emulation manager software as in a VM.
  • In a VE, the application (or OS) is spawned in a container and runs with no added overhead, except for a usually minuscule VE initialization process.
  • LXC will boast bare metal performance characteristics because it only packages the needed applications.
  • the OS is also just another application that can be packaged too.
  • a VM, which packages the entire OS and machine setup, including hard drive, virtual processors and network interfaces. The resulting bloated mass usually takes a long time to boot and consumes a lot of CPU and RAM.
  • don’t offer some other neat features of VM’s such as IaaS setups and live migration.
  • LXC as supercharged chroot on Linux. It allows you to not only isolate applications, but even the entire OS.
  • Libvirt, which allows the use of containers through the LXC driver by connecting to 'lxc:///'.
  • 'LXC', is not compatible with libvirt, but is more flexible with more userspace tools.
  • Portable deployment across machines
  • Versioning: Docker includes git-like capabilities for tracking successive versions of a container
  • Component reuse: Docker allows building or stacking of already created packages.
  • Shared libraries: There is already a public registry (http://index.docker.io/ ) where thousands have already uploaded the useful containers they have created.
  • Docker taking the devops world by storm since its launch back in 2013.
  • LXC, while older, has not been as popular with developers as Docker has proven to be
  • LXC having a focus on sys admins that’s similar to what solutions like the Solaris operating system, with its Solaris Zones, Linux OpenVZ, and FreeBSD, with its BSD Jails virtualization system
  • it started out being built on top of LXC, Docker later moved beyond LXC containers to its own execution environment called libcontainer.
  • Unlike LXC, which launches an operating system init for each container, Docker provides one OS environment, supplied by the Docker Engine
  • LXC tooling sticks close to what system administrators running bare metal servers are used to
  • The LXC command line provides essential commands that cover routine management tasks, including the creation, launch, and deletion of LXC containers.
  • Docker containers aim to be even lighter weight in order to support the fast, highly scalable, deployment of applications with microservice architecture.
  • With backing from Canonical, LXC and LXD have an ecosystem tightly bound to the rest of the open source Linux community.
  • Docker Swarm
  • Docker Trusted Registry
  • Docker Compose
  • Docker Machine
  • Kubernetes facilitates the deployment of containers in your data center by representing a cluster of servers as a single system.
  • Swarm is Docker’s clustering, scheduling and orchestration tool for managing a cluster of Docker hosts. 
  • rkt is a security minded container engine that uses KVM for VM-based isolation and packs other enhanced security features. 
  • Apache Mesos can run different kinds of distributed jobs, including containers. 
  • Elastic Container Service is Amazon’s service for running and orchestrating containerized applications on AWS
  • LXC offers the advantages of a VE on Linux, mainly the ability to isolate your own private workloads from one another. It is a cheaper and faster solution to implement than a VM, but doing so requires a bit of extra learning and expertise.
  • Docker is a significant improvement of LXC’s capabilities.
張 旭

Memory inside Linux containers | Fabio Kung - 0 views

  • /sys/fs/cgroup/ is the recommended location for cgroup hierarchies, but it is not a standard.
  • most container specific metrics are available at the cgroup filesystem via /path/to/cgroup/memory.stat, /path/to/cgroup/memory.usage_in_bytes, /path/to/cgroup/memory.limit_in_bytes and others.
  • cat /sys/fs/cgroup/memory/memory.stat
  • ...3 more annotations...
  • /sys/fs/cgroup is just an umbrella for all cgroup hierarchies, there is no recommendation or standard for my own cgroup location.
  • an userspace library that processes can use to query their memory usage and available memory.
  • we might need to encourage people to stop using those tools inside containers.
張 旭

Helm | Template Functions and Pipelines - 0 views

  • When injecting strings from the .Values object into the template, we ought to quote these strings.
  • Helm has over 60 available functions. Some of them are defined by the Go template language itself. Most of the others are part of the Sprig template library
  • the "Helm template language" as if it is Helm-specific, it is actually a combination of the Go template language, some extra functions, and a variety of wrappers to expose certain objects to the templates.
  • ...10 more annotations...
  • Drawing on a concept from UNIX, pipelines are a tool for chaining together a series of template commands to compactly express a series of transformations.
  • the default function: default DEFAULT_VALUE GIVEN_VALUE
  • all static default values should live in the values.yaml, and should not be repeated using the default command (otherwise they would be redundant).
  • the default command is perfect for computed values, which can not be declared inside values.yaml.
  • When lookup returns an object, it will return a dictionary.
  • The synopsis of the lookup function is lookup apiVersion, kind, namespace, name -> resource or resource list
  • When no object is found, an empty value is returned. This can be used to check for the existence of an object.
  • The lookup function uses Helm's existing Kubernetes connection configuration to query Kubernetes.
  • Helm is not supposed to contact the Kubernetes API Server during a helm template or a helm install|update|delete|rollback --dry-run, so the lookup function will return an empty list (i.e. dict) in such a case.
  • the operators (eq, ne, lt, gt, and, or and so on) are all implemented as functions. In pipelines, operations can be grouped with parentheses ((, and )).
  •  
    "When injecting strings from the .Values object into the template, we ought to quote these strings. "
張 旭

phusion/passenger-docker: Docker base images for Ruby, Python, Node.js and Meteor web apps - 0 views

  • Ubuntu 20.04 LTS as base system
  • 2.7.5 is configured as the default.
  • Python 3.8
  • ...23 more annotations...
  • A build system, git, and development headers for many popular libraries, so that the most popular Ruby, Python and Node.js native extensions can be compiled without problems.
  • Nginx 1.18. Disabled by default
  • production-grade features, such as process monitoring, administration and status inspection.
  • Redis 5.0. Not installed by default.
  • The image has an app user with UID 9999 and home directory /home/app. Your application is supposed to run as this user.
  • running applications without root privileges is good security practice.
  • Your application should be placed inside /home/app.
  • COPY --chown=app:app
  • Passenger works like a mod_ruby, mod_nodejs, etc. It changes Nginx into an application server and runs your app from Nginx.
  • placing a .conf file in the directory /etc/nginx/sites-enabled
  • The best way to configure Nginx is by adding .conf files to /etc/nginx/main.d and /etc/nginx/conf.d
  • files in conf.d are included in the Nginx configuration's http context.
  • any environment variables you set with docker run -e, Docker linking and /etc/container_environment, won't reach Nginx.
  • To preserve these variables, place an Nginx config file ending with *.conf in the directory /etc/nginx/main.d, in which you tell Nginx to preserve these variables.
  • By default, Phusion Passenger sets all of the following environment variables to the value production
  • Setting these environment variables yourself (e.g. using docker run -e RAILS_ENV=...) will not have any effect, because Phusion Passenger overrides all of these environment variables.
  • PASSENGER_APP_ENV environment variable
  • passenger-docker autogenerates an Nginx configuration file (/etc/nginx/conf.d/00_app_env.conf) during container boot.
  • The configuration file is in /etc/redis/redis.conf. Modify it as you see fit, but make sure daemonize no is set.
  • You can add additional daemons to the image by creating runit entries.
  • The shell script must be called run, must be executable
  • the shell script must run the daemon without letting it daemonize/fork it.
  • We use RVM to install and to manage Ruby interpreters.
張 旭

CDC and DDL Changes to Source Tables - Microsoft® SQL Server 2012 Unleashed [... - 1 views

  • One of the common challenges when capturing data changes from your source tables is how to handle DDL changes to the source tables.
  • Change Data Capture
« First ‹ Previous 61 - 68 of 68
Showing 20 items per page