Skip to main content

Home/ Larvata/ Group items tagged heavy

Rss Feed Group items tagged

crazylion lee

Heavy Metal and Natural Language Processing - Part 1 - 0 views

  •  
    " In this post I refer to lyrics of certain bands as being "Metal". I know some people have strong feelings about how genres are defined, and would probably disagree with me about some of the bands I call metal in this post. I call these band "Metal" here for the sake of brevity only, and I apologise in advance. "
張 旭

MongoDB Performance Tuning: Everything You Need to Know - Stackify - 0 views

  • db.serverStatus().globalLock
  • db.serverStatus().locks
  • globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it’s consistently high. This can happen if a lot of requests are waiting for a lock to be released.
  • ...35 more annotations...
  • globalLock.totalTime: If this is higher than the total database uptime, the database has been in a lock state for too long.
  • Unlike relational databases such as MySQL or PostgreSQL, MongoDB uses JSON-like documents for storing data.
  • Databases operate in an environment that consists of numerous reads, writes, and updates.
  • When a lock occurs, no other operation can read or modify the data until the operation that initiated the lock is finished.
  • locks.deadlockCount: Number of times the lock acquisitions have encountered deadlocks
  • Is the database frequently locking from queries? This might indicate issues with the schema design, query structure, or system architecture.
  • For version 3.2 on, WiredTiger is the default.
  • MMAPv1 locks whole collections, not individual documents.
  • WiredTiger performs locking at the document level.
  • When the MMAPv1 storage engine is in use, MongoDB will use memory-mapped files to store data.
  • All available memory will be allocated for this usage if the data set is large enough.
  • db.serverStatus().mem
  • mem.resident: Roughly equivalent to the amount of RAM in megabytes that the database process uses
  • If mem.resident exceeds the value of system memory and there’s a large amount of unmapped data on disk, we’ve most likely exceeded system capacity.
  • If the value of mem.mapped is greater than the amount of system memory, some operations will experience page faults.
  • The WiredTiger storage engine is a significant improvement over MMAPv1 in performance and concurrency.
  • By default, MongoDB will reserve 50 percent of the available memory for the WiredTiger data cache.
  • wiredTiger.cache.bytes currently in the cache – This is the size of the data currently in the cache.
  • wiredTiger.cache.tracked dirty bytes in the cache – This is the size of the dirty data in the cache.
  • we can look at the wiredTiger.cache.bytes read into cache value for read-heavy applications. If this value is consistently high, increasing the cache size may improve overall read performance.
  • check whether the application is read-heavy. If it is, increase the size of the replica set and distribute the read operations to secondary members of the set.
  • write-heavy, use sharding within a sharded cluster to distribute the load.
  • Replication is the propagation of data from one node to another
  • Replication sets handle this replication.
  • Sometimes, data isn’t replicated as quickly as we’d like.
  • a particularly thorny problem if the lag between a primary and secondary node is high and the secondary becomes the primary
  • use the db.printSlaveReplicationInfo() or the rs.printSlaveReplicationInfo() command to see the status of a replica set from the perspective of the secondary member of the set.
  • shows how far behind the secondary members are from the primary. This number should be as low as possible.
  • monitor this metric closely.
  • watch for any spikes in replication delay.
  • Always investigate these issues to understand the reasons for the lag.
  • One replica set is primary. All others are secondary.
  • it’s not normal for nodes to change back and forth between primary and secondary.
  • use the profiler to gain a deeper understanding of the database’s behavior.
  • Enabling the profiler can affect system performance, due to the additional activity.
  •  
    "globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it's consistently high. This can happen if a lot of requests are waiting for a lock to be released."
張 旭

How to Use Docker on OS X: The Missing Guide | Viget - 0 views

  • Docker is a client-server application.
  • The Docker server is a daemon that does all the heavy lifting: building and downloading images, starting and stopping containers, and the like. It exposes a REST API for remote management.
  • The Docker client is a command line program that communicates with the Docker server using the REST API.
  • ...9 more annotations...
  • interact with Docker by using the client to send commands to the server.
  • The machine running the Docker server is called the Docker host
  • Docker uses features only available to Linux, that machine must be running Linux (more specifically, the Linux kernel).
  • boot2docker is a “lightweight Linux distribution made specifically to run Docker containers.”
  • Docker server will run inside our boot2docker VM
  • boot2docker, not OS X, is the Docker host, not OS X.
  • Docker mounts volumes from the boot2docker VM, not from OS X
  • initialize boot2docker (we only have to do this once):
  • The Docker client assumes the Docker host is the current machine. We need to tell it to use our boot2docker VM by setting the DOCKER_HOST environment variable
張 旭

Queues - Laravel - The PHP Framework For Web Artisans - 0 views

  • Laravel queues provide a unified API across a variety of different queue backends, such as Beanstalk, Amazon SQS, Redis, or even a relational database.
  • The queue configuration file is stored in config/queue.php
  • a synchronous driver that will execute jobs immediately (for local use)
  • ...56 more annotations...
  • A null queue driver is also included which discards queued jobs.
  • In your config/queue.php configuration file, there is a connections configuration option.
  • any given queue connection may have multiple "queues" which may be thought of as different stacks or piles of queued jobs.
  • each connection configuration example in the queue configuration file contains a queue attribute.
  • if you dispatch a job without explicitly defining which queue it should be dispatched to, the job will be placed on the queue that is defined in the queue attribute of the connection configuration
  • pushing jobs to multiple queues can be especially useful for applications that wish to prioritize or segment how jobs are processed
  • specify which queues it should process by priority.
  • If your Redis queue connection uses a Redis Cluster, your queue names must contain a key hash tag.
  • ensure all of the Redis keys for a given queue are placed into the same hash slot
  • all of the queueable jobs for your application are stored in the app/Jobs directory.
  • Job classes are very simple, normally containing only a handle method which is called when the job is processed by the queue.
  • we were able to pass an Eloquent model directly into the queued job's constructor. Because of the SerializesModels trait that the job is using, Eloquent models will be gracefully serialized and unserialized when the job is processing.
  • When the job is actually handled, the queue system will automatically re-retrieve the full model instance from the database.
  • The handle method is called when the job is processed by the queue
  • The arguments passed to the dispatch method will be given to the job's constructor
  • delay the execution of a queued job, you may use the delay method when dispatching a job.
  • dispatch a job immediately (synchronously), you may use the dispatchNow method.
  • When using this method, the job will not be queued and will be run immediately within the current process
  • specify a list of queued jobs that should be run in sequence.
  • Deleting jobs using the $this->delete() method will not prevent chained jobs from being processed. The chain will only stop executing if a job in the chain fails.
  • this does not push jobs to different queue "connections" as defined by your queue configuration file, but only to specific queues within a single connection.
  • To specify the queue, use the onQueue method when dispatching the job
  • To specify the connection, use the onConnection method when dispatching the job
  • defining the maximum number of attempts on the job class itself.
  • to defining how many times a job may be attempted before it fails, you may define a time at which the job should timeout.
  • using the funnel method, you may limit jobs of a given type to only be processed by one worker at a time
  • using the throttle method, you may throttle a given type of job to only run 10 times every 60 seconds.
  • If an exception is thrown while the job is being processed, the job will automatically be released back onto the queue so it may be attempted again.
  • dispatch a Closure. This is great for quick, simple tasks that need to be executed outside of the current request cycle
  • When dispatching Closures to the queue, the Closure's code contents is cryptographically signed so it can not be modified in transit.
  • Laravel includes a queue worker that will process new jobs as they are pushed onto the queue.
  • once the queue:work command has started, it will continue to run until it is manually stopped or you close your terminal
  • queue workers are long-lived processes and store the booted application state in memory.
  • they will not notice changes in your code base after they have been started.
  • during your deployment process, be sure to restart your queue workers.
  • customize your queue worker even further by only processing particular queues for a given connection
  • The --once option may be used to instruct the worker to only process a single job from the queue
  • The --stop-when-empty option may be used to instruct the worker to process all jobs and then exit gracefully.
  • Daemon queue workers do not "reboot" the framework before processing each job.
  • you should free any heavy resources after each job completes.
  • Since queue workers are long-lived processes, they will not pick up changes to your code without being restarted.
  • restart the workers during your deployment process.
  • php artisan queue:restart
  • The queue uses the cache to store restart signals
  • the queue workers will die when the queue:restart command is executed, you should be running a process manager such as Supervisor to automatically restart the queue workers.
  • each queue connection defines a retry_after option. This option specifies how many seconds the queue connection should wait before retrying a job that is being processed.
  • The --timeout option specifies how long the Laravel queue master process will wait before killing off a child queue worker that is processing a job.
  • When jobs are available on the queue, the worker will keep processing jobs with no delay in between them.
  • While sleeping, the worker will not process any new jobs - the jobs will be processed after the worker wakes up again
  • the numprocs directive will instruct Supervisor to run 8 queue:work processes and monitor all of them, automatically restarting them if they fail.
  • Laravel includes a convenient way to specify the maximum number of times a job should be attempted.
  • define a failed method directly on your job class, allowing you to perform job specific clean-up when a failure occurs.
  • a great opportunity to notify your team via email or Slack.
  • php artisan queue:retry all
  • php artisan queue:flush
  • When injecting an Eloquent model into a job, it is automatically serialized before being placed on the queue and restored when the job is processed
張 旭

Docker for AWS persistent data volumes | Docker Documentation - 0 views

  • Cloudstor is a modern volume plugin built by Docker
  • Docker swarm mode tasks and regular Docker containers can use a volume created with Cloudstor to mount a persistent data volume.
  • Global shared Cloudstor volumes mounted by all tasks in a swarm service.
  • ...14 more annotations...
  • Workloads running in a Docker service that require access to low latency/high IOPs persistent storage, such as a database engine, can use a relocatable Cloudstor volume backed by EBS.
  • Each relocatable Cloudstor volume is backed by a single EBS volume.
  • If a swarm task using a relocatable Cloudstor volume gets rescheduled to another node within the same availability zone as the original node where the task was running, Cloudstor detaches the backing EBS volume from the original node and attaches it to the new target node automatically.
  • in a different availability zone,
  • Cloudstor transfers the contents of the backing EBS volume to the destination availability zone using a snapshot, and cleans up the EBS volume in the original availability zone.
  • Typically the snapshot-based transfer process across availability zones takes between 2 and 5 minutes unless the work load is write-heavy.
  • A swarm task is not started until the volume it mounts becomes available
  • Sharing/mounting the same Cloudstor volume backed by EBS among multiple tasks is not a supported scenario and leads to data loss.
  • a Cloudstor volume to share data between tasks, choose the appropriate EFS backed shared volume option.
  • When multiple swarm service tasks need to share data in a persistent storage volume, you can use a shared Cloudstor volume backed by EFS.
  • a volume and its contents can be mounted by multiple swarm service tasks without the risk of data loss
  • over NFS
  • the persistent data backed by EFS volumes is always available.
  • shared Cloudstor volumes only work in those AWS regions where EFS is supported.
張 旭

MongoDB Performance - MongoDB Manual - 0 views

  • MongoDB uses a locking system to ensure data set consistency. If certain operations are long-running or a queue forms, performance will degrade as requests and operations wait for the lock.
  • performance limitations as a result of inadequate or inappropriate indexing strategies, or as a consequence of poor schema design patterns.
  • performance issues may be temporary and related to abnormal traffic load.
  • ...9 more annotations...
  • Lock-related slowdowns can be intermittent.
  • If globalLock.currentQueue.total is consistently high, then there is a chance that a large number of requests are waiting for a lock.
  • If globalLock.totalTime is high relative to uptime, the database has existed in a lock state for a significant amount of time.
  • For write-heavy applications, deploy sharding and add one or more shards to a sharded cluster to distribute load among mongod instances.
  • Unless constrained by system-wide limits, the maximum number of incoming connections supported by MongoDB is configured with the maxIncomingConnections setting.
  • When logLevel is set to 0, MongoDB records slow operations to the diagnostic log at a rate determined by slowOpSampleRate.
  • At higher logLevel settings, all operations appear in the diagnostic log regardless of their latency with the following exception
  • Full Time Diagnostic Data Collection (FTDC) mechanism. FTDC data files are compressed, are not human-readable, and inherit the same file access permissions as the MongoDB data files.
  • mongod processes store FTDC data files in a diagnostic.data directory under the instances storage.dbPath.
  •  
    "MongoDB uses a locking system to ensure data set consistency. If certain operations are long-running or a queue forms, performance will degrade as requests and operations wait for the lock."
1 - 6 of 6
Showing 20 items per page