Skip to main content

Home/ Larvata/ Group items tagged document

Rss Feed Group items tagged

張 旭

Variables - Ansible Documentation - 0 views

  • with the last listed variables winning prioritization
  • anything that goes into “role defaults” (the defaults folder inside the role) is the most malleable and easily overridden.
  • Anything in the vars directory of the role overrides previous versions of that variable in namespace.
  • ...1 more annotation...
  • with command line -e extra vars always winning
張 旭

How services work | Docker Documentation - 0 views

  • a service is the image for a microservice within the context of some larger application.
  • When you create a service, you specify which container image to use and which commands to execute inside running containers.
  • an overlay network for the service to connect to other services in the swarm
  • ...13 more annotations...
  • In the swarm mode model, each task invokes exactly one container
  • A task is analogous to a “slot” where the scheduler places a container.
  • A task is the atomic unit of scheduling within a swarm.
  • A task is a one-directional mechanism. It progresses monotonically through a series of states: assigned, prepared, running, etc.
  • Docker swarm mode is a general purpose scheduler and orchestrator.
  • Hypothetically, you could implement other types of tasks such as virtual machine tasks or non-containerized process tasks.
  • If all nodes are paused or drained, and you create a service, it is pending until a node becomes available.
  • reserve a specific amount of memory for a service.
  • impose placement constraints on the service
  • As the administrator of a swarm, you declare the desired state of your swarm, and the manager works with the nodes in the swarm to create that state.
  • two types of service deployments, replicated and global.
  • A global service is a service that runs one task on every node.
  • Good candidates for global services are monitoring agents, an anti-virus scanners or other types of containers that you want to run on every node in the swarm.
張 旭

Manage nodes in a swarm | Docker Documentation - 0 views

  • Drain means the scheduler doesn’t assign new tasks to the node. The scheduler shuts down any existing tasks and schedules them on an available node.
  • Reachable means the node is a manager node participating in the Raft consensus quorum. If the leader node becomes unavailable, the node is eligible for election as the new leader.
  • If a manager node becomes unavailable, you should either join a new manager node to the swarm or promote a worker node to be a manager.
  • ...8 more annotations...
  • docker node inspect self --pretty
  • docker node update --availability drain node
  • use node labels in service constraints
  • The labels you set for nodes using docker node update apply only to the node entity within the swarm
  • node labels can be used to limit critical tasks to nodes that meet certain requirements
  • promote a worker node to the manager role
  • demote a manager node to the worker role
  • If the last manager node leaves the swarm, the swarm becomes unavailable requiring you to take disaster recovery measures.
張 旭

Manage swarm security with public key infrastructure (PKI) | Docker Documentation - 0 views

  • The nodes in a swarm use mutual Transport Layer Security (TLS) to authenticate, authorize, and encrypt the communications with other nodes in the swarm.
  • By default, the manager node generates a new root Certificate Authority (CA) along with a key pair, which are used to secure communications with other nodes that join the swarm.
  • The manager node also generates two tokens to use when you join additional nodes to the swarm: one worker token and one manager token.
  • ...3 more annotations...
  • Each time a new node joins the swarm, the manager issues a certificate to the node
  • By default, each node in the swarm renews its certificate every three months.
  • a cluster CA key or a manager node is compromised, you can rotate the swarm root CA so that none of the nodes trust certificates signed by the old root CA anymore.
  •  
    "The nodes in a swarm use mutual Transport Layer Security (TLS) to authenticate, authorize, and encrypt the communications with other nodes in the swarm."
張 旭

Swarm task states | Docker Documentation - 0 views

  • Each service can start multiple tasks.
  • Tasks are execution units that run once to completion.
  • The task progresses forward through a number of states, and its state doesn’t go backward.
張 旭

Deploy a registry server | Docker Documentation - 0 views

  • By default, secrets are mounted into a service at /run/secrets/<secret-name>
  • docker secret create
  • If you use a distributed storage driver, such as Amazon S3, you can use a fully replicated service. Each worker can write to the storage back-end without causing write conflicts.
  • ...10 more annotations...
  • You can access the service on port 443 of any swarm node. Docker sends the requests to the node which is running the service.
  • --publish published=443,target=443
  • The most important aspect is that a load balanced cluster of registries must share the same resources
  • S3 or Azure, they should be accessing the same resource and share an identical configuration.
  • you must make sure you are properly sending the X-Forwarded-Proto, X-Forwarded-For, and Host headers to their “client-side” values. Failure to do so usually makes the registry issue redirects to internal hostnames or downgrading from https to http.
  • A properly secured registry should return 401 when the “/v2/” endpoint is hit without credentials
  • registries should always implement access restrictions.
  • REGISTRY_AUTH=htpasswd
  • REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd
  • The registry also supports delegated authentication which redirects users to a specific trusted token server. This approach is more complicated to set up, and only makes sense if you need to fully configure ACLs and need more control over the registry’s integration into your global authorization and authentication systems.
  •  
    "You can access the service on port 443 of any swarm node. Docker sends the requests to the node which is running the service. "
張 旭

Creating Reusable Playbooks - Ansible Documentation - 0 views

  • Ansible pre-processes all static imports during Playbook parsing time
  • Dynamic includes are processed during runtime at the point in which that task is encountered.
  • advantage of using include* statements is looping. When a loop is used with an include, the included tasks or role will be executed once for each item in the loop.
  • ...1 more annotation...
  • loops cannot be used with imports at all
張 旭

Including and Importing - Ansible Documentation - 0 views

  • All import* statements are pre-processed at the time playbooks are parsed
  • All include* statements are processed as they encountered during the execution of the playbook.
張 旭

Use swarm mode routing mesh | Docker Documentation - 0 views

  • Docker Engine swarm mode makes it easy to publish ports for services to make them available to resources outside the swarm.
  • All nodes participate in an ingress routing mesh.
  • routing mesh enables each node in the swarm to accept connections on published ports for any service running in the swarm, even if there’s no task running on the node.
  • ...6 more annotations...
  • Port 7946 TCP/UDP for container network discovery
  • Port 4789 UDP for the container ingress network.
  • When you access port 8080 on any node, the swarm load balancer routes your request to an active container.
  • The routing mesh listens on the published port for any IP address assigned to the node.
  • publish a port for an existing service
  • To use an external load balancer without the routing mesh, set --endpoint-mode to dnsrr instead of the default value of vip
張 旭

Use multi-stage builds | Docker Documentation - 0 views

  • Maintaining two Dockerfiles is not ideal.
  • This is failure-prone and hard to maintain. It’s easy to insert another command and forget to continue the line using the \ character
  • create a container from it to copy the artifact out
  • ...4 more annotations...
  • You only need the single Dockerfile. You don’t need a separate build script,
  • You don’t need to create any intermediate images and you don’t need to extract any artifacts to your local system at all.
  • Debugging a specific build stage
  • You can use the COPY --from instruction to copy from a separate image, either using the local image name, a tag available locally or on a Docker registry, or a tag ID.
張 旭

Best practices for writing Dockerfiles | Docker Documentation - 0 views

  • building efficient images
  • Docker builds images automatically by reading the instructions from a Dockerfile -- a text file that contains all commands, in order, needed to build a given image.
  • A Docker image consists of read-only layers each of which represents a Dockerfile instruction.
  • ...47 more annotations...
  • The layers are stacked and each one is a delta of the changes from the previous layer
  • When you run an image and generate a container, you add a new writable layer (the “container layer”) on top of the underlying layers.
  • By “ephemeral,” we mean that the container can be stopped and destroyed, then rebuilt and replaced with an absolute minimum set up and configuration.
  • Inadvertently including files that are not necessary for building an image results in a larger build context and larger image size.
  • To exclude files not relevant to the build (without restructuring your source repository) use a .dockerignore file. This file supports exclusion patterns similar to .gitignore files.
  • minimize image layers by leveraging build cache.
  • if your build contains several layers, you can order them from the less frequently changed (to ensure the build cache is reusable) to the more frequently changed
  • avoid installing extra or unnecessary packages just because they might be “nice to have.”
  • Each container should have only one concern.
  • Decoupling applications into multiple containers makes it easier to scale horizontally and reuse containers
  • Limiting each container to one process is a good rule of thumb, but it is not a hard and fast rule.
  • Use your best judgment to keep containers as clean and modular as possible.
  • do multi-stage builds and only copy the artifacts you need into the final image. This allows you to include tools and debug information in your intermediate build stages without increasing the size of the final image.
  • avoid duplication of packages and make the list much easier to update.
  • When building an image, Docker steps through the instructions in your Dockerfile, executing each in the order specified.
  • the next instruction is compared against all child images derived from that base image to see if one of them was built using the exact same instruction. If not, the cache is invalidated.
  • simply comparing the instruction in the Dockerfile with one of the child images is sufficient.
  • For the ADD and COPY instructions, the contents of the file(s) in the image are examined and a checksum is calculated for each file.
  • If anything has changed in the file(s), such as the contents and metadata, then the cache is invalidated.
  • cache checking does not look at the files in the container to determine a cache match.
  • In that case just the command string itself is used to find a match.
    • 張 旭
       
      RUN apt-get 這樣的指令,直接比對指令內容的意思。
  • Whenever possible, use current official repositories as the basis for your images.
  • Using RUN apt-get update && apt-get install -y ensures your Dockerfile installs the latest package versions with no further coding or manual intervention.
  • cache busting
  • Docker executes these commands using the /bin/sh -c interpreter, which only evaluates the exit code of the last operation in the pipe to determine success.
  • set -o pipefail && to ensure that an unexpected error prevents the build from inadvertently succeeding.
  • The CMD instruction should be used to run the software contained by your image, along with any arguments.
  • CMD should almost always be used in the form of CMD [“executable”, “param1”, “param2”…]
  • CMD should rarely be used in the manner of CMD [“param”, “param”] in conjunction with ENTRYPOINT
  • The ENV instruction is also useful for providing required environment variables specific to services you wish to containerize,
  • Each ENV line creates a new intermediate layer, just like RUN commands
  • COPY is preferred
  • COPY only supports the basic copying of local files into the container
  • the best use for ADD is local tar file auto-extraction into the image, as in ADD rootfs.tar.xz /
  • If you have multiple Dockerfile steps that use different files from your context, COPY them individually, rather than all at once.
  • using ADD to fetch packages from remote URLs is strongly discouraged; you should use curl or wget instead
  • The best use for ENTRYPOINT is to set the image’s main command, allowing that image to be run as though it was that command (and then use CMD as the default flags).
  • the image name can double as a reference to the binary as shown in the command
  • The VOLUME instruction should be used to expose any database storage area, configuration storage, or files/folders created by your docker container.
  • use VOLUME for any mutable and/or user-serviceable parts of your image
  • If you absolutely need functionality similar to sudo, such as initializing the daemon as root but running it as non-root), consider using “gosu”.
  • always use absolute paths for your WORKDIR
  • An ONBUILD command executes after the current Dockerfile build completes.
  • Think of the ONBUILD command as an instruction the parent Dockerfile gives to the child Dockerfile
  • A Docker build executes ONBUILD commands before any command in a child Dockerfile.
  • Be careful when putting ADD or COPY in ONBUILD. The “onbuild” image fails catastrophically if the new build’s context is missing the resource being added.
張 旭

Networking with overlay networks | Docker Documentation - 0 views

  • The manager host will function as both a manager and a worker, which means it can both run service tasks and manage the swarm.
  • connected together using an overlay network called ingress
  • each of them now has an overlay network called ingress and a bridge network called docker_gwbridge
  • ...7 more annotations...
  • The docker_gwbridge connects the ingress network to the Docker host’s network interface so that traffic can flow to and from swarm managers and workers
  • recommended that you use separate overlay networks for each application or group of applications which will work together
  • You don’t need to create the overlay network on the other nodes, beacause it will be automatically created when one of those nodes starts running a service task which requires it.
  • The default publish mode of ingress, which is used when you do not specify a mode for the --publish flag, means that if you browse to port 80 on manager, worker-1, or worker-2, you will be connected to port 80 on one of the 5 service tasks, even if no tasks are currently running on the node you browse to.
  • Even though overlay networks are automatically created on swarm worker nodes as needed, they are not automatically removed.
  • The -dit flags mean to start the container detached (in the background), interactive (with the ability to type into it), and with a TTY (so you can see the input and output).
  • alpine containers running ash, which is Alpine’s default shell rather than bash
張 旭

Deploy services to a swarm | Docker Documentation - 0 views

  • Swarm services use a declarative model, which means that you define the desired state of the service, and rely upon Docker to maintain this state.
  • To create a single-replica service with no extra configuration, you only need to supply the image name.
  • A service can be in a pending state if its image is unavailable
  • ...12 more annotations...
  • If your image is available on a private registry which requires login, use the --with-registry-auth flag
  • When you update a service, Docker stops its containers and restarts them with the new configuration.
  • When updating an existing service, the flag is --publish-add. There is also a --publish-rm flag to remove a port that was previously published.
  • To update the command an existing service runs, you can use the --args flag.
  • force the service to use a specific version of the image
  • If the manager can’t resolve the tag to a digest, each worker node is responsible for resolving the tag to a digest, and different nodes may use different versions of the image.
  • After you create a service, its image is never updated unless you explicitly run docker service update with the --image flag as described below.
  • When you run service update with the --image flag, the swarm manager queries Docker Hub or your private Docker registry for the digest the tag currently points to and updates the service tasks to use that digest.
  • You can publish a service task’s port directly on the swarm node where that service is running.
  • You can rely on the routing mesh. When you publish a service port, the swarm makes the service accessible at the target port on every node, regardless of whether there is a task for the service running on that node or not.
  • To publish a service’s ports externally to the swarm, use the --publish <PUBLISHED-PORT>:<SERVICE-PORT> flag.
  • published port on every swarm node
張 旭

Boosting your kubectl productivity ♦︎ Learnk8s - 0 views

  • kubectl is your cockpit to control Kubernetes.
  • kubectl is a client for the Kubernetes API
  • Kubernetes API is an HTTP REST API.
  • ...75 more annotations...
  • This API is the real Kubernetes user interface.
  • Kubernetes is fully controlled through this API
  • every Kubernetes operation is exposed as an API endpoint and can be executed by an HTTP request to this endpoint.
  • the main job of kubectl is to carry out HTTP requests to the Kubernetes API
  • Kubernetes maintains an internal state of resources, and all Kubernetes operations are CRUD operations on these resources.
  • Kubernetes is a fully resource-centred system
  • Kubernetes API reference is organised as a list of resource types with their associated operations.
  • This is how kubectl works for all commands that interact with the Kubernetes cluster.
  • kubectl simply makes HTTP requests to the appropriate Kubernetes API endpoints.
  • it's totally possible to control Kubernetes with a tool like curl by manually issuing HTTP requests to the Kubernetes API.
  • Kubernetes consists of a set of independent components that run as separate processes on the nodes of a cluster.
  • components on the master nodes
  • Storage backend: stores resource definitions (usually etcd is used)
  • API server: provides Kubernetes API and manages storage backend
  • Controller manager: ensures resource statuses match specifications
  • Scheduler: schedules Pods to worker nodes
  • component on the worker nodes
  • Kubelet: manages execution of containers on a worker node
  • triggers the ReplicaSet controller, which is a sub-process of the controller manager.
  • the scheduler, who watches for Pod definitions that are not yet scheduled to a worker node.
  • creating and updating resources in the storage backend on the master node.
  • The kubelet of the worker node your ReplicaSet Pods have been scheduled to instructs the configured container runtime (which may be Docker) to download the required container images and run the containers.
  • Kubernetes components (except the API server and the storage backend) work by watching for resource changes in the storage backend and manipulating resources in the storage backend.
  • However, these components do not access the storage backend directly, but only through the Kubernetes API.
    • 張 旭
       
      很精彩,相互之間都是使用 API call 溝通,良好的微服務行為。
  • double usage of the Kubernetes API for internal components as well as for external users is a fundamental design concept of Kubernetes.
  • All other Kubernetes components and users read, watch, and manipulate the state (i.e. resources) of Kubernetes through the Kubernetes API
  • The storage backend stores the state (i.e. resources) of Kubernetes.
  • command completion is a shell feature that works by the means of a completion script.
  • A completion script is a shell script that defines the completion behaviour for a specific command. Sourcing a completion script enables completion for the corresponding command.
  • kubectl completion zsh
  • /etc/bash_completion.d directory (create it, if it doesn't exist)
  • source <(kubectl completion bash)
  • source <(kubectl completion zsh)
  • autoload -Uz compinit compinit
  • the API reference, which contains the full specifications of all resources.
  • kubectl api-resources
  • displays the resource names in their plural form (e.g. deployments instead of deployment). It also displays the shortname (e.g. deploy) for those resources that have one. Don't worry about these differences. All of these name variants are equivalent for kubectl.
  • .spec
  • custom columns output format comes in. It lets you freely define the columns and the data to display in them. You can choose any field of a resource to be displayed as a separate column in the output
  • kubectl get pods -o custom-columns='NAME:metadata.name,NODE:spec.nodeName'
  • kubectl explain pod.spec.
  • kubectl explain pod.metadata.
  • browse the resource specifications and try it out with any fields you like!
  • JSONPath is a language to extract data from JSON documents (it is similar to XPath for XML).
  • with kubectl explain, only a subset of the JSONPath capabilities is supported
  • Many fields of Kubernetes resources are lists, and this operator allows you to select items of these lists. It is often used with a wildcard as [*] to select all items of the list.
  • kubectl get pods -o custom-columns='NAME:metadata.name,IMAGES:spec.containers[*].image'
  • a Pod may contain more than one container.
  • The availability zones for each node are obtained through the special failure-domain.beta.kubernetes.io/zone label.
  • kubectl get nodes -o yaml kubectl get nodes -o json
  • The default kubeconfig file is ~/.kube/config
  • with multiple clusters, then you have connection parameters for multiple clusters configured in your kubeconfig file.
  • Within a cluster, you can set up multiple namespaces (a namespace is kind of "virtual" clusters within a physical cluster)
  • overwrite the default kubeconfig file with the --kubeconfig option for every kubectl command.
  • Namespace: the namespace to use when connecting to the cluster
  • a one-to-one mapping between clusters and contexts.
  • When kubectl reads a kubeconfig file, it always uses the information from the current context.
  • just change the current context in the kubeconfig file
  • to switch to another namespace in the same cluster, you can change the value of the namespace element of the current context
  • kubectl also provides the --cluster, --user, --namespace, and --context options that allow you to overwrite individual elements and the current context itself, regardless of what is set in the kubeconfig file.
  • for switching between clusters and namespaces is kubectx.
  • kubectl config get-contexts
  • just have to download the shell scripts named kubectl-ctx and kubectl-ns to any directory in your PATH and make them executable (for example, with chmod +x)
  • kubectl proxy
  • kubectl get roles
  • kubectl get pod
  • Kubectl plugins are distributed as simple executable files with a name of the form kubectl-x. The prefix kubectl- is mandatory,
  • To install a plugin, you just have to copy the kubectl-x file to any directory in your PATH and make it executable (for example, with chmod +x)
  • krew itself is a kubectl plugin
  • check out the kubectl-plugins GitHub topic
  • The executable can be of any type, a Bash script, a compiled Go program, a Python script, it really doesn't matter. The only requirement is that it can be directly executed by the operating system.
  • kubectl plugins can be written in any programming or scripting language.
  • you can write more sophisticated plugins with real programming languages, for example, using a Kubernetes client library. If you use Go, you can also use the cli-runtime library, which exists specifically for writing kubectl plugins.
  • a kubeconfig file consists of a set of contexts
  • changing the current context means changing the cluster, if you have only a single context per cluster.
張 旭

Configuration - docker-sync 0.5.10 documentation - 0 views

  • Be sure to use a sync-name which is unique, since it will be a container name.
    • 張 旭
       
      慣例是 docker-sync 的 container name 後綴都是 -sync
  • split your docker-compose configuration for production and development (as usual)
  • ...9 more annotations...
  • production stack (docker-compose.yml) does not need any changes and would look like this (and is portable, no docker-sync adjustments).
  • docker-compose-dev.yml ( it needs to be called that way, look like this ) will override
    • 張 旭
       
      開發版的 docker-compose-dev.yml 僅會覆寫 production docker-compose.yml 的 volumes 設定,也就接上 docker-sync.yml 的 volumes,其它都維持不變
  • nocopy # nocopy is important
  • nocopy # nocopy is important
  • docker-compose -f docker-compose.yml -f docker-compose-dev.yml up
  • add the external volume and the mount here
  • In case the folder we mount to has been declared as a VOLUME during image build, its content will be merged with the name volume we mount from the host
    • 張 旭
       
      如果在 Dockerfile 裡面有宣告一個 volume,那麼在 docker build 的時候這個 volume mount point 會被記錄起來,在 container 跑起來的時候,會將 host (server) 上的同名的 volume 內容合併進來 (取代)。也就是說 container 跑起來的時候,會去接上已經存在的既有的 host (server) 上的 volume。
  • enforce the content from our host on the initial wiring
  • set your environment variables by creating a .env file at the root of your project
  •  
    "Be sure to use a sync-name which is unique, since it will be a container name."
張 旭

Public Key Infrastructure (PKI) Overview - 0 views

  • A PKI allows you to bind public keys (contained in SSL certificates) with a person in a way that allows you to trust the certificate.
  • Public Key Infrastructures, like the one used to secure the Internet, most commonly use a Certificate Authority (also called a Registration Authority) to verify the identity of an entity and create unforgeable certificates.
  • An SSL Certificate Authority (also called a trusted third party or CA) is an organization that issues digital certificates to organizations or individuals after verifying their identity.
  • ...9 more annotations...
  • An SSL Certificate provides assurances that we are talking to the right server, but the assurances are limited.
  • In PKI, trust simply means that a certificate can be validated by a CA that is in our trust store.
  • An SSL Certificate in a PKI is a digital document containing a public key, entity information, and a digital signature from the certificate issuer.
  • it is much more practical and secure to establish a chain of trust to the Root certificate by signing an Intermediate certificate
  • A trust store is a collection of Root certificates that are trusted by default.
  • there are four primary trust stores that are relied upon for the majority of software: Apple, Microsoft, Chrome, and Mozilla.
  • a revocation system that allows a certificate to be listed as invalid if it was improperly issued or if the private key has been compromised.
  • Online Certificate Status Protocol (OCSP)
  • Certificate Revocation List (CRL)
張 旭

Docker for AWS persistent data volumes | Docker Documentation - 0 views

  • Cloudstor is a modern volume plugin built by Docker
  • Docker swarm mode tasks and regular Docker containers can use a volume created with Cloudstor to mount a persistent data volume.
  • Global shared Cloudstor volumes mounted by all tasks in a swarm service.
  • ...14 more annotations...
  • Workloads running in a Docker service that require access to low latency/high IOPs persistent storage, such as a database engine, can use a relocatable Cloudstor volume backed by EBS.
  • Each relocatable Cloudstor volume is backed by a single EBS volume.
  • If a swarm task using a relocatable Cloudstor volume gets rescheduled to another node within the same availability zone as the original node where the task was running, Cloudstor detaches the backing EBS volume from the original node and attaches it to the new target node automatically.
  • in a different availability zone,
  • Cloudstor transfers the contents of the backing EBS volume to the destination availability zone using a snapshot, and cleans up the EBS volume in the original availability zone.
  • Typically the snapshot-based transfer process across availability zones takes between 2 and 5 minutes unless the work load is write-heavy.
  • A swarm task is not started until the volume it mounts becomes available
  • Sharing/mounting the same Cloudstor volume backed by EBS among multiple tasks is not a supported scenario and leads to data loss.
  • a Cloudstor volume to share data between tasks, choose the appropriate EFS backed shared volume option.
  • When multiple swarm service tasks need to share data in a persistent storage volume, you can use a shared Cloudstor volume backed by EFS.
  • a volume and its contents can be mounted by multiple swarm service tasks without the risk of data loss
  • over NFS
  • the persistent data backed by EFS volumes is always available.
  • shared Cloudstor volumes only work in those AWS regions where EFS is supported.
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

vSphere Storage for Kubernetes | vSphere Storage for Kubernetes - 0 views

  • Containers are ephemeral by nature
  • stateful applications
  • When containers are re-scheduled, they can die on one host and might get scheduled on a different host.
  • ...3 more annotations...
  • the storage should also be shifted and made available on the new host for the container to start gracefully.
  • The underlying infrastructure should handle the complexity of unmounting and mounting.
  • Kubernetes provides abstractions to ensure that the storage details are separated from allocation and usage of storage.
« First ‹ Previous 41 - 60 of 80 Next ›
Showing 20 items per page