Skip to main content

Home/ Larvata/ Group items tagged doc

Rss Feed Group items tagged

張 旭

Kubernetes Components | Kubernetes - 0 views

  • A Kubernetes cluster consists of a set of worker machines, called nodes, that run containerized applications
  • Every cluster has at least one worker node.
  • The control plane manages the worker nodes and the Pods in the cluster.
  • ...29 more annotations...
  • The control plane's components make global decisions about the cluster
  • Control plane components can be run on any machine in the cluster.
  • for simplicity, set up scripts typically start all control plane components on the same machine, and do not run user containers on this machine
  • The API server is the front end for the Kubernetes control plane.
  • kube-apiserver is designed to scale horizontally—that is, it scales by deploying more instances. You can run several instances of kube-apiserver and balance traffic between those instances.
  • Kubernetes cluster uses etcd as its backing store, make sure you have a back up plan for those data.
  • watches for newly created Pods with no assigned node, and selects a node for them to run on.
  • Factors taken into account for scheduling decisions include: individual and collective resource requirements, hardware/software/policy constraints, affinity and anti-affinity specifications, data locality, inter-workload interference, and deadlines.
  • each controller is a separate process, but to reduce complexity, they are all compiled into a single binary and run in a single process.
  • Node controller
  • Job controller
  • Endpoints controller
  • Service Account & Token controllers
  • The cloud controller manager lets you link your cluster into your cloud provider's API, and separates out the components that interact with that cloud platform from components that only interact with your cluster.
  • If you are running Kubernetes on your own premises, or in a learning environment inside your own PC, the cluster does not have a cloud controller manager.
  • An agent that runs on each node in the cluster. It makes sure that containers are running in a Pod.
  • The kubelet takes a set of PodSpecs that are provided through various mechanisms and ensures that the containers described in those PodSpecs are running and healthy.
  • The kubelet doesn't manage containers which were not created by Kubernetes.
  • kube-proxy is a network proxy that runs on each node in your cluster, implementing part of the Kubernetes Service concept.
  • kube-proxy maintains network rules on nodes. These network rules allow network communication to your Pods from network sessions inside or outside of your cluster.
  • kube-proxy uses the operating system packet filtering layer if there is one and it's available.
  • Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and any implementation of the Kubernetes CRI (Container Runtime Interface).
  • Addons use Kubernetes resources (DaemonSet, Deployment, etc) to implement cluster features
  • namespaced resources for addons belong within the kube-system namespace.
  • all Kubernetes clusters should have cluster DNS,
  • Cluster DNS is a DNS server, in addition to the other DNS server(s) in your environment, which serves DNS records for Kubernetes services.
  • Containers started by Kubernetes automatically include this DNS server in their DNS searches.
  • Container Resource Monitoring records generic time-series metrics about containers in a central database, and provides a UI for browsing that data.
  • A cluster-level logging mechanism is responsible for saving container logs to a central log store with search/browsing interface.
張 旭

Ingress - Kubernetes - 0 views

  • An API object that manages external access to the services in a cluster, typically HTTP.
  • load balancing
  • SSL termination
  • ...62 more annotations...
  • name-based virtual hosting
  • Edge routerA router that enforces the firewall policy for your cluster.
  • Cluster networkA set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • A Kubernetes ServiceA way to expose an application running on a set of Pods as a network service. that identifies a set of Pods using labelTags objects with identifying attributes that are meaningful and relevant to users. selectors.
  • Services are assumed to have virtual IPs only routable within the cluster network.
  • Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster.
  • Traffic routing is controlled by rules defined on the Ingress resource.
  • An Ingress can be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name based virtual hosting.
  • Exposing services other than HTTP and HTTPS to the internet typically uses a service of type Service.Type=NodePort or Service.Type=LoadBalancer.
  • You must have an ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • As with all other Kubernetes resources, an Ingress needs apiVersion, kind, and metadata fields
  • Ingress frequently uses annotations to configure some options depending on the Ingress controller,
  • Ingress resource only supports rules for directing HTTP traffic.
  • An optional host.
  • A list of paths
  • A backend is a combination of Service and port names
  • has an associated backend
  • Both the host and path must match the content of an incoming request before the load balancer directs traffic to the referenced Service.
  • HTTP (and HTTPS) requests to the Ingress that matches the host and path of the rule are sent to the listed backend.
  • A default backend is often configured in an Ingress controller to service any requests that do not match a path in the spec.
  • An Ingress with no rules sends all traffic to a single default backend.
  • Ingress controllers and load balancers may take a minute or two to allocate an IP address.
  • A fanout configuration routes traffic from a single IP address to more than one Service, based on the HTTP URI being requested.
  • nginx.ingress.kubernetes.io/rewrite-target: /
  • describe ingress
  • get ingress
  • Name-based virtual hosts support routing HTTP traffic to multiple host names at the same IP address.
  • route requests based on the Host header.
  • an Ingress resource without any hosts defined in the rules, then any web traffic to the IP address of your Ingress controller can be matched without a name based virtual host being required.
  • secure an Ingress by specifying a SecretStores sensitive information, such as passwords, OAuth tokens, and ssh keys. that contains a TLS private key and certificate.
  • Currently the Ingress only supports a single TLS port, 443, and assumes TLS termination.
  • An Ingress controller is bootstrapped with some load balancing policy settings that it applies to all Ingress, such as the load balancing algorithm, backend weight scheme, and others.
  • persistent sessions, dynamic weights) are not yet exposed through the Ingress. You can instead get these features through the load balancer used for a Service.
  • review the controller specific documentation to see how they handle health checks
  • edit ingress
  • After you save your changes, kubectl updates the resource in the API server, which tells the Ingress controller to reconfigure the load balancer.
  • kubectl replace -f on a modified Ingress YAML file.
  • Node: A worker machine in Kubernetes, part of a cluster.
  • in most common Kubernetes deployments, nodes in the cluster are not part of the public internet.
  • Edge router: A router that enforces the firewall policy for your cluster.
  • a gateway managed by a cloud provider or a physical piece of hardware.
  • Cluster network: A set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • Service: A Kubernetes Service that identifies a set of Pods using label selectors.
  • An Ingress may be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based virtual hosting.
  • An Ingress does not expose arbitrary ports or protocols.
  • You must have an Ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • The name of an Ingress object must be a valid DNS subdomain name
  • The Ingress spec has all the information needed to configure a load balancer or proxy server.
  • Ingress resource only supports rules for directing HTTP(S) traffic.
  • An Ingress with no rules sends all traffic to a single default backend and .spec.defaultBackend is the backend that should handle requests in that case.
  • If defaultBackend is not set, the handling of requests that do not match any of the rules will be up to the ingress controller
  • A common usage for a Resource backend is to ingress data to an object storage backend with static assets.
  • Exact: Matches the URL path exactly and with case sensitivity.
  • Prefix: Matches based on a URL path prefix split by /. Matching is case sensitive and done on a path element by element basis.
  • multiple paths within an Ingress will match a request. In those cases precedence will be given first to the longest matching path.
  • Hosts can be precise matches (for example “foo.bar.com”) or a wildcard (for example “*.foo.com”).
  • No match, wildcard only covers a single DNS label
  • Each Ingress should specify a class, a reference to an IngressClass resource that contains additional configuration including the name of the controller that should implement the class.
  • secure an Ingress by specifying a Secret that contains a TLS private key and certificate.
  • The Ingress resource only supports a single TLS port, 443, and assumes TLS termination at the ingress point (traffic to the Service and its Pods is in plaintext).
  • TLS will not work on the default rule because the certificates would have to be issued for all the possible sub-domains.
  • hosts in the tls section need to explicitly match the host in the rules section.
張 旭

Secrets - Kubernetes - 0 views

  • Putting this information in a secret is safer and more flexible than putting it verbatim in a PodThe smallest and simplest Kubernetes object. A Pod represents a set of running containers on your cluster. definition or in a container imageStored instance of a container that holds a set of software needed to run an application. .
  • A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key.
  • Users can create secrets, and the system also creates some secrets.
  • ...63 more annotations...
  • To use a secret, a pod needs to reference the secret.
  • A secret can be used with a pod in two ways: as files in a volumeA directory containing data, accessible to the containers in a pod. mounted on one or more of its containers, or used by kubelet when pulling images for the pod.
  • --from-file
  • You can also create a Secret in a file first, in json or yaml format, and then create that object.
  • The Secret contains two maps: data and stringData.
  • The data field is used to store arbitrary data, encoded using base64.
  • Kubernetes automatically creates secrets which contain credentials for accessing the API and it automatically modifies your pods to use this type of secret.
  • kubectl get and kubectl describe avoid showing the contents of a secret by default.
  • stringData field is provided for convenience, and allows you to provide secret data as unencoded strings.
  • where you are deploying an application that uses a Secret to store a configuration file, and you want to populate parts of that configuration file during your deployment process.
  • a field is specified in both data and stringData, the value from stringData is used.
  • The keys of data and stringData must consist of alphanumeric characters, ‘-’, ‘_’ or ‘.’.
  • Newlines are not valid within these strings and must be omitted.
  • When using the base64 utility on Darwin/macOS users should avoid using the -b option to split long lines.
  • create a Secret from generators and then apply it to create the object on the Apiserver.
  • The generated Secrets name has a suffix appended by hashing the contents.
  • base64 --decode
  • Secrets can be mounted as data volumes or be exposed as environment variablesContainer environment variables are name=value pairs that provide useful information into containers running in a Pod. to be used by a container in a pod.
  • Multiple pods can reference the same secret.
  • Each key in the secret data map becomes the filename under mountPath
  • each container needs its own volumeMounts block, but only one .spec.volumes is needed per secret
  • use .spec.volumes[].secret.items field to change target path of each key:
  • If .spec.volumes[].secret.items is used, only keys specified in items are projected. To consume all keys from the secret, all of them must be listed in the items field.
  • You can also specify the permission mode bits files part of a secret will have. If you don’t specify any, 0644 is used by default.
  • JSON spec doesn’t support octal notation, so use the value 256 for 0400 permissions.
  • Inside the container that mounts a secret volume, the secret keys appear as files and the secret values are base-64 decoded and stored inside these files.
  • Mounted Secrets are updated automatically
  • Kubelet is checking whether the mounted secret is fresh on every periodic sync.
  • cache propagation delay depends on the chosen cache type
  • A container using a Secret as a subPath volume mount will not receive Secret updates.
  • Multiple pods can reference the same secret.
  • env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username
  • Inside a container that consumes a secret in an environment variables, the secret keys appear as normal environment variables containing the base-64 decoded values of the secret data.
  • An imagePullSecret is a way to pass a secret that contains a Docker (or other) image registry password to the Kubelet so it can pull a private image on behalf of your Pod.
  • a secret needs to be created before any pods that depend on it.
  • Secret API objects reside in a namespaceAn abstraction used by Kubernetes to support multiple virtual clusters on the same physical cluster. . They can only be referenced by pods in that same namespace.
  • Individual secrets are limited to 1MiB in size.
  • Kubelet only supports use of secrets for Pods it gets from the API server.
  • Secrets must be created before they are consumed in pods as environment variables unless they are marked as optional.
  • References to Secrets that do not exist will prevent the pod from starting.
  • References via secretKeyRef to keys that do not exist in a named Secret will prevent the pod from starting.
  • Once a pod is scheduled, the kubelet will try to fetch the secret value.
  • Think carefully before sending your own ssh keys: other users of the cluster may have access to the secret.
  • volumes: - name: secret-volume secret: secretName: ssh-key-secret
  • Special characters such as $, \*, and ! require escaping. If the password you are using has special characters, you need to escape them using the \\ character.
  • You do not need to escape special characters in passwords from files
  • make that key begin with a dot
  • Dotfiles in secret volume
  • .secret-file
  • a frontend container which handles user interaction and business logic, but which cannot see the private key;
  • a signer container that can see the private key, and responds to simple signing requests from the frontend
  • When deploying applications that interact with the secrets API, access should be limited using authorization policies such as RBAC
  • watch and list requests for secrets within a namespace are extremely powerful capabilities and should be avoided
  • watch and list all secrets in a cluster should be reserved for only the most privileged, system-level components.
  • additional precautions with secret objects, such as avoiding writing them to disk where possible.
  • A secret is only sent to a node if a pod on that node requires it
  • only the secrets that a pod requests are potentially visible within its containers
  • each container in a pod has to request the secret volume in its volumeMounts for it to be visible within the container.
  • In the API server secret data is stored in etcdConsistent and highly-available key value store used as Kubernetes’ backing store for all cluster data.
  • limit access to etcd to admin users
  • Base64 encoding is not an encryption method and is considered the same as plain text.
  • A user who can create a pod that uses a secret can also see the value of that secret.
  • anyone with root on any node can read any secret from the apiserver, by impersonating the kubelet.
張 旭

Boosting your kubectl productivity ♦︎ Learnk8s - 0 views

  • kubectl is your cockpit to control Kubernetes.
  • kubectl is a client for the Kubernetes API
  • Kubernetes API is an HTTP REST API.
  • ...75 more annotations...
  • This API is the real Kubernetes user interface.
  • Kubernetes is fully controlled through this API
  • every Kubernetes operation is exposed as an API endpoint and can be executed by an HTTP request to this endpoint.
  • the main job of kubectl is to carry out HTTP requests to the Kubernetes API
  • Kubernetes maintains an internal state of resources, and all Kubernetes operations are CRUD operations on these resources.
  • Kubernetes is a fully resource-centred system
  • Kubernetes API reference is organised as a list of resource types with their associated operations.
  • This is how kubectl works for all commands that interact with the Kubernetes cluster.
  • kubectl simply makes HTTP requests to the appropriate Kubernetes API endpoints.
  • it's totally possible to control Kubernetes with a tool like curl by manually issuing HTTP requests to the Kubernetes API.
  • Kubernetes consists of a set of independent components that run as separate processes on the nodes of a cluster.
  • components on the master nodes
  • Storage backend: stores resource definitions (usually etcd is used)
  • API server: provides Kubernetes API and manages storage backend
  • Controller manager: ensures resource statuses match specifications
  • Scheduler: schedules Pods to worker nodes
  • component on the worker nodes
  • Kubelet: manages execution of containers on a worker node
  • triggers the ReplicaSet controller, which is a sub-process of the controller manager.
  • the scheduler, who watches for Pod definitions that are not yet scheduled to a worker node.
  • creating and updating resources in the storage backend on the master node.
  • The kubelet of the worker node your ReplicaSet Pods have been scheduled to instructs the configured container runtime (which may be Docker) to download the required container images and run the containers.
  • Kubernetes components (except the API server and the storage backend) work by watching for resource changes in the storage backend and manipulating resources in the storage backend.
  • However, these components do not access the storage backend directly, but only through the Kubernetes API.
    • 張 旭
       
      很精彩,相互之間都是使用 API call 溝通,良好的微服務行為。
  • double usage of the Kubernetes API for internal components as well as for external users is a fundamental design concept of Kubernetes.
  • All other Kubernetes components and users read, watch, and manipulate the state (i.e. resources) of Kubernetes through the Kubernetes API
  • The storage backend stores the state (i.e. resources) of Kubernetes.
  • command completion is a shell feature that works by the means of a completion script.
  • A completion script is a shell script that defines the completion behaviour for a specific command. Sourcing a completion script enables completion for the corresponding command.
  • kubectl completion zsh
  • /etc/bash_completion.d directory (create it, if it doesn't exist)
  • source <(kubectl completion bash)
  • source <(kubectl completion zsh)
  • autoload -Uz compinit compinit
  • the API reference, which contains the full specifications of all resources.
  • kubectl api-resources
  • displays the resource names in their plural form (e.g. deployments instead of deployment). It also displays the shortname (e.g. deploy) for those resources that have one. Don't worry about these differences. All of these name variants are equivalent for kubectl.
  • .spec
  • custom columns output format comes in. It lets you freely define the columns and the data to display in them. You can choose any field of a resource to be displayed as a separate column in the output
  • kubectl get pods -o custom-columns='NAME:metadata.name,NODE:spec.nodeName'
  • kubectl explain pod.spec.
  • kubectl explain pod.metadata.
  • browse the resource specifications and try it out with any fields you like!
  • JSONPath is a language to extract data from JSON documents (it is similar to XPath for XML).
  • with kubectl explain, only a subset of the JSONPath capabilities is supported
  • Many fields of Kubernetes resources are lists, and this operator allows you to select items of these lists. It is often used with a wildcard as [*] to select all items of the list.
  • kubectl get pods -o custom-columns='NAME:metadata.name,IMAGES:spec.containers[*].image'
  • a Pod may contain more than one container.
  • The availability zones for each node are obtained through the special failure-domain.beta.kubernetes.io/zone label.
  • kubectl get nodes -o yaml kubectl get nodes -o json
  • The default kubeconfig file is ~/.kube/config
  • with multiple clusters, then you have connection parameters for multiple clusters configured in your kubeconfig file.
  • Within a cluster, you can set up multiple namespaces (a namespace is kind of "virtual" clusters within a physical cluster)
  • overwrite the default kubeconfig file with the --kubeconfig option for every kubectl command.
  • Namespace: the namespace to use when connecting to the cluster
  • a one-to-one mapping between clusters and contexts.
  • When kubectl reads a kubeconfig file, it always uses the information from the current context.
  • just change the current context in the kubeconfig file
  • to switch to another namespace in the same cluster, you can change the value of the namespace element of the current context
  • kubectl also provides the --cluster, --user, --namespace, and --context options that allow you to overwrite individual elements and the current context itself, regardless of what is set in the kubeconfig file.
  • for switching between clusters and namespaces is kubectx.
  • kubectl config get-contexts
  • just have to download the shell scripts named kubectl-ctx and kubectl-ns to any directory in your PATH and make them executable (for example, with chmod +x)
  • kubectl proxy
  • kubectl get roles
  • kubectl get pod
  • Kubectl plugins are distributed as simple executable files with a name of the form kubectl-x. The prefix kubectl- is mandatory,
  • To install a plugin, you just have to copy the kubectl-x file to any directory in your PATH and make it executable (for example, with chmod +x)
  • krew itself is a kubectl plugin
  • check out the kubectl-plugins GitHub topic
  • The executable can be of any type, a Bash script, a compiled Go program, a Python script, it really doesn't matter. The only requirement is that it can be directly executed by the operating system.
  • kubectl plugins can be written in any programming or scripting language.
  • you can write more sophisticated plugins with real programming languages, for example, using a Kubernetes client library. If you use Go, you can also use the cli-runtime library, which exists specifically for writing kubectl plugins.
  • a kubeconfig file consists of a set of contexts
  • changing the current context means changing the cluster, if you have only a single context per cluster.
張 旭

Custom Resources | Kubernetes - 0 views

  • Custom resources are extensions of the Kubernetes API
  • A resource is an endpoint in the Kubernetes API that stores a collection of API objects of a certain kind
  • Custom resources can appear and disappear in a running cluster through dynamic registration
  • ...30 more annotations...
  • Once a custom resource is installed, users can create and access its objects using kubectl
  • When you combine a custom resource with a custom controller, custom resources provide a true declarative API.
  • A declarative API allows you to declare or specify the desired state of your resource and tries to keep the current state of Kubernetes objects in sync with the desired state.
  • Custom controllers can work with any kind of resource, but they are especially effective when combined with custom resources.
  • The Operator pattern combines custom resources and custom controllers.
  • the API represents a desired state, not an exact state.
  • define configuration of applications or infrastructure.
  • The main operations on the objects are CRUD-y (creating, reading, updating and deleting).
  • The client says "do this", and then gets an operation ID back, and has to check a separate Operation object to determine completion of the request.
  • The natural operations on the objects are not CRUD-y.
  • High bandwidth access (10s of requests per second sustained) needed.
  • Use a ConfigMap if any of the following apply
  • You want to put the entire config file into one key of a configMap.
  • You want to perform rolling updates via Deployment, etc., when the file is updated.
  • Use a secret for sensitive data, which is similar to a configMap but more secure.
  • You want to build new automation that watches for updates on the new object, and then CRUD other objects, or vice versa.
  • You want the object to be an abstraction over a collection of controlled resources, or a summarization of other resources.
  • CRDs are simple and can be created without any programming.
  • Aggregated APIs are subordinate API servers that sit behind the primary API server
  • CRDs allow users to create new types of resources without adding another API server
  • Defining a CRD object creates a new custom resource with a name and schema that you specify.
  • The name of a CRD object must be a valid DNS subdomain name
  • each resource in the Kubernetes API requires code that handles REST requests and manages persistent storage of objects.
  • The main API server delegates requests to you for the custom resources that you handle, making them available to all of its clients.
  • The new endpoints support CRUD basic operations via HTTP and kubectl
  • Custom resources consume storage space in the same way that ConfigMaps do.
  • Aggregated API servers may use the same storage as the main API server
  • CRDs always use the same authentication, authorization, and audit logging as the built-in resources of your API server.
  • most RBAC roles will not grant access to the new resources (except the cluster-admin role or any role created with wildcard rules).
  • CRDs and Aggregated APIs often come bundled with new role definitions for the types they add.
張 旭

Replication - MongoDB Manual - 0 views

  • A replica set in MongoDB is a group of mongod processes that maintain the same data set.
  • Replica sets provide redundancy and high availability, and are the basis for all production deployments.
  • With multiple copies of data on different database servers, replication provides a level of fault tolerance against the loss of a single database server.
  • ...18 more annotations...
  • replication can provide increased read capacity as clients can send read operations to different servers.
  • A replica set is a group of mongod instances that maintain the same data set.
  • A replica set contains several data bearing nodes and optionally one arbiter node.
  • one and only one member is deemed the primary node, while the other nodes are deemed secondary nodes.
  • A replica set can have only one primary capable of confirming writes with { w: "majority" } write concern; although in some circumstances, another mongod instance may transiently believe itself to also be primary.
  • The secondaries replicate the primary’s oplog and apply the operations to their data sets such that the secondaries’ data sets reflect the primary’s data set
  • add a mongod instance to a replica set as an arbiter. An arbiter participates in elections but does not hold data
  • An arbiter will always be an arbiter whereas a primary may step down and become a secondary and a secondary may become the primary during an election.
  • Secondaries replicate the primary’s oplog and apply the operations to their data sets asynchronously.
  • These slow oplog messages are logged for the secondaries in the diagnostic log under the REPL component with the text applied op: <oplog entry> took <num>ms.
  • Replication lag refers to the amount of time that it takes to copy (i.e. replicate) a write operation on the primary to a secondary.
  • When a primary does not communicate with the other members of the set for more than the configured electionTimeoutMillis period (10 seconds by default), an eligible secondary calls for an election to nominate itself as the new primary.
  • The replica set cannot process write operations until the election completes successfully.
  • The median time before a cluster elects a new primary should not typically exceed 12 seconds, assuming default replica configuration settings.
  • Factors such as network latency may extend the time required for replica set elections to complete, which in turn affects the amount of time your cluster may operate without a primary.
  • Your application connection logic should include tolerance for automatic failovers and the subsequent elections.
  • MongoDB drivers can detect the loss of the primary and automatically retry certain write operations a single time, providing additional built-in handling of automatic failovers and elections
  • By default, clients read from the primary [1]; however, clients can specify a read preference to send read operations to secondaries.
張 旭

Production environment | Kubernetes - 0 views

  • to promote an existing cluster for production use
  • Separating the control plane from the worker nodes.
  • Having enough worker nodes available
  • ...22 more annotations...
  • You can use role-based access control (RBAC) and other security mechanisms to make sure that users and workloads can get access to the resources they need, while keeping workloads, and the cluster itself, secure. You can set limits on the resources that users and workloads can access by managing policies and container resources.
  • you need to plan how to scale to relieve increased pressure from more requests to the control plane and worker nodes or scale down to reduce unused resources.
  • Managed control plane: Let the provider manage the scale and availability of the cluster's control plane, as well as handle patches and upgrades.
  • The simplest Kubernetes cluster has the entire control plane and worker node services running on the same machine.
  • You can deploy a control plane using tools such as kubeadm, kops, and kubespray.
  • Secure communications between control plane services are implemented using certificates.
  • Certificates are automatically generated during deployment or you can generate them using your own certificate authority.
  • Separate and backup etcd service: The etcd services can either run on the same machines as other control plane services or run on separate machines
  • Create multiple control plane systems: For high availability, the control plane should not be limited to a single machine
  • Some deployment tools set up Raft consensus algorithm to do leader election of Kubernetes services. If the primary goes away, another service elects itself and take over.
  • Groups of zones are referred to as regions.
  • if you installed with kubeadm, there are instructions to help you with Certificate Management and Upgrading kubeadm clusters.
  • Production-quality workloads need to be resilient and anything they rely on needs to be resilient (such as CoreDNS).
  • Add nodes to the cluster: If you are managing your own cluster you can add nodes by setting up your own machines and either adding them manually or having them register themselves to the cluster’s apiserver.
  • Set up node health checks: For important workloads, you want to make sure that the nodes and pods running on those nodes are healthy.
  • Authentication: The apiserver can authenticate users using client certificates, bearer tokens, an authenticating proxy, or HTTP basic auth.
  • Authorization: When you set out to authorize your regular users, you will probably choose between RBAC and ABAC authorization.
  • Role-based access control (RBAC): Lets you assign access to your cluster by allowing specific sets of permissions to authenticated users. Permissions can be assigned for a specific namespace (Role) or across the entire cluster (ClusterRole).
  • Attribute-based access control (ABAC): Lets you create policies based on resource attributes in the cluster and will allow or deny access based on those attributes.
  • Set limits on workload resources
  • Set namespace limits: Set per-namespace quotas on things like memory and CPU
  • Prepare for DNS demand: If you expect workloads to massively scale up, your DNS service must be ready to scale up as well.
張 旭

Best practices for building Kubernetes Operators and stateful apps | Google Cloud Blog - 0 views

  • use the StatefulSet workload controller to maintain identity for each of the pods, and to use Persistent Volumes to persist data so it can survive a service restart.
  • a way to extend Kubernetes functionality with application specific logic using custom resources and custom controllers.
  • An Operator can automate various features of an application, but it should be specific to a single application
  • ...12 more annotations...
  • Kubebuilder is a comprehensive development kit for building and publishing Kubernetes APIs and Controllers using CRDs
  • Design declarative APIs for operators, not imperative APIs. This aligns well with Kubernetes APIs that are declarative in nature.
  • With declarative APIs, users only need to express their desired cluster state, while letting the operator perform all necessary steps to achieve it.
  • scaling, backup, restore, and monitoring. An operator should be made up of multiple controllers that specifically handle each of the those features.
  • the operator can have a main controller to spawn and manage application instances, a backup controller to handle backup operations, and a restore controller to handle restore operations.
  • each controller should correspond to a specific CRD so that the domain of each controller's responsibility is clear.
  • If you keep a log for every container, you will likely end up with unmanageable amount of logs.
  • integrate application-specific details to the log messages such as adding a prefix for the application name.
  • you may have to use external logging tools such as Google Stackdriver, Elasticsearch, Fluentd, or Kibana to perform the aggregations.
  • adding labels to metrics to facilitate aggregation and analysis by monitoring systems.
  • a more viable option is for application pods to expose a metrics HTTP endpoint for monitoring tools to scrape.
  • A good way to achieve this is to use open-source application-specific exporters for exposing Prometheus-style metrics.
張 旭

Cluster Networking - Kubernetes - 0 views

  • Networking is a central part of Kubernetes, but it can be challenging to understand exactly how it is expected to work
  • Highly-coupled container-to-container communications
  • Pod-to-Pod communications
  • ...57 more annotations...
  • this is the primary focus of this document
    • 張 旭
       
      Cluster Networking 所關注處理的是: Pod 到 Pod 之間的連線
  • Pod-to-Service communications
  • External-to-Service communications
  • Kubernetes is all about sharing machines between applications.
  • sharing machines requires ensuring that two applications do not try to use the same ports.
  • Dynamic port allocation brings a lot of complications to the system
  • Every Pod gets its own IP address
  • do not need to explicitly create links between Pods
  • almost never need to deal with mapping container ports to host ports.
  • Pods can be treated much like VMs or physical hosts from the perspectives of port allocation, naming, service discovery, load balancing, application configuration, and migration.
  • pods on a node can communicate with all pods on all nodes without NAT
  • agents on a node (e.g. system daemons, kubelet) can communicate with all pods on that node
  • pods in the host network of a node can communicate with all pods on all nodes without NAT
  • If your job previously ran in a VM, your VM had an IP and could talk to other VMs in your project. This is the same basic model.
  • containers within a Pod share their network namespaces - including their IP address
  • containers within a Pod can all reach each other’s ports on localhost
  • containers within a Pod must coordinate port usage
  • “IP-per-pod” model.
  • request ports on the Node itself which forward to your Pod (called host ports), but this is a very niche operation
  • The Pod itself is blind to the existence or non-existence of host ports.
  • AOS is an Intent-Based Networking system that creates and manages complex datacenter environments from a simple integrated platform.
  • Cisco Application Centric Infrastructure offers an integrated overlay and underlay SDN solution that supports containers, virtual machines, and bare metal servers.
  • AOS Reference Design currently supports Layer-3 connected hosts that eliminate legacy Layer-2 switching problems.
  • The AWS VPC CNI offers integrated AWS Virtual Private Cloud (VPC) networking for Kubernetes clusters.
  • users can apply existing AWS VPC networking and security best practices for building Kubernetes clusters.
  • Using this CNI plugin allows Kubernetes pods to have the same IP address inside the pod as they do on the VPC network.
  • The CNI allocates AWS Elastic Networking Interfaces (ENIs) to each Kubernetes node and using the secondary IP range from each ENI for pods on the node.
  • Big Cloud Fabric is a cloud native networking architecture, designed to run Kubernetes in private cloud/on-premises environments.
  • Cilium is L7/HTTP aware and can enforce network policies on L3-L7 using an identity based security model that is decoupled from network addressing.
  • CNI-Genie is a CNI plugin that enables Kubernetes to simultaneously have access to different implementations of the Kubernetes network model in runtime.
  • CNI-Genie also supports assigning multiple IP addresses to a pod, each from a different CNI plugin.
  • cni-ipvlan-vpc-k8s contains a set of CNI and IPAM plugins to provide a simple, host-local, low latency, high throughput, and compliant networking stack for Kubernetes within Amazon Virtual Private Cloud (VPC) environments by making use of Amazon Elastic Network Interfaces (ENI) and binding AWS-managed IPs into Pods using the Linux kernel’s IPvlan driver in L2 mode.
  • to be straightforward to configure and deploy within a VPC
  • Contiv provides configurable networking
  • Contrail, based on Tungsten Fabric, is a truly open, multi-cloud network virtualization and policy management platform.
  • DANM is a networking solution for telco workloads running in a Kubernetes cluster.
  • Flannel is a very simple overlay network that satisfies the Kubernetes requirements.
  • Any traffic bound for that subnet will be routed directly to the VM by the GCE network fabric.
  • sysctl net.ipv4.ip_forward=1
  • Jaguar provides overlay network using vxlan and Jaguar CNIPlugin provides one IP address per pod.
  • Knitter is a network solution which supports multiple networking in Kubernetes.
  • Kube-OVN is an OVN-based kubernetes network fabric for enterprises.
  • Kube-router provides a Linux LVS/IPVS-based service proxy, a Linux kernel forwarding-based pod-to-pod networking solution with no overlays, and iptables/ipset-based network policy enforcer.
  • If you have a “dumb” L2 network, such as a simple switch in a “bare-metal” environment, you should be able to do something similar to the above GCE setup.
  • Multus is a Multi CNI plugin to support the Multi Networking feature in Kubernetes using CRD based network objects in Kubernetes.
  • NSX-T can provide network virtualization for a multi-cloud and multi-hypervisor environment and is focused on emerging application frameworks and architectures that have heterogeneous endpoints and technology stacks.
  • NSX-T Container Plug-in (NCP) provides integration between NSX-T and container orchestrators such as Kubernetes
  • Nuage uses the open source Open vSwitch for the data plane along with a feature rich SDN Controller built on open standards.
  • OpenVSwitch is a somewhat more mature but also complicated way to build an overlay network
  • OVN is an opensource network virtualization solution developed by the Open vSwitch community.
  • Project Calico is an open source container networking provider and network policy engine.
  • Calico provides a highly scalable networking and network policy solution for connecting Kubernetes pods based on the same IP networking principles as the internet
  • Calico can be deployed without encapsulation or overlays to provide high-performance, high-scale data center networking.
  • Calico can also be run in policy enforcement mode in conjunction with other networking solutions such as Flannel, aka canal, or native GCE, AWS or Azure networking.
  • Romana is an open source network and security automation solution that lets you deploy Kubernetes without an overlay network
  • Weave Net runs as a CNI plug-in or stand-alone. In either version, it doesn’t require any configuration or extra code to run, and in both cases, the network provides one IP address per pod - as is standard for Kubernetes.
  • The network model is implemented by the container runtime on each node.
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Kubernetes Deployments: The Ultimate Guide - Semaphore - 1 views

  • Continuous integration gives you confidence in your code. To extend that confidence to the release process, your deployment operations need to come with a safety belt.
  • these Kubernetes objects ensure that you can progressively deploy, roll back and scale your applications without downtime.
  • A pod is just a group of containers (it can be a group of one container) that run on the same machine, and share a few things together.
  • ...34 more annotations...
  • the containers within a pod can communicate with each other over localhost
  • From a network perspective, all the processes in these containers are local.
  • we can never create a standalone container: the closest we can do is create a pod, with a single container in it.
  • Kubernetes is a declarative system (by opposition to imperative systems).
  • All we can do, is describe what we want to have, and wait for Kubernetes to take action to reconcile what we have, with what we want to have.
  • In other words, we can say, “I would like a 40-feet long blue container with yellow doors“, and Kubernetes will find such a container for us. If it doesn’t exist, it will build it; if there is already one but it’s green with red doors, it will paint it for us; if there is already a container of the right size and color, Kubernetes will do nothing, since what we have already matches what we want.
  • The specification of a replica set looks very much like the specification of a pod, except that it carries a number, indicating how many replicas
  • What happens if we change that definition? Suddenly, there are zero pods matching the new specification.
  • the creation of new pods could happen in a more gradual manner.
  • the specification for a deployment looks very much like the one for a replica set: it features a pod specification, and a number of replicas.
  • Deployments, however, don’t create or delete pods directly.
  • When we update a deployment and adjust the number of replicas, it passes that update down to the replica set.
  • When we update the pod specification, the deployment creates a new replica set with the updated pod specification. That replica set has an initial size of zero. Then, the size of that replica set is progressively increased, while decreasing the size of the other replica set.
  • we are going to fade in (turn up the volume) on the new replica set, while we fade out (turn down the volume) on the old one.
  • During the whole process, requests are sent to pods of both the old and new replica sets, without any downtime for our users.
  • A readiness probe is a test that we add to a container specification.
  • Kubernetes supports three ways of implementing readiness probes:Running a command inside a container;Making an HTTP(S) request against a container; orOpening a TCP socket against a container.
  • When we roll out a new version, Kubernetes will wait for the new pod to mark itself as “ready” before moving on to the next one.
  • If there is no readiness probe, then the container is considered as ready, as long as it could be started.
  • MaxSurge indicates how many extra pods we are willing to run during a rolling update, while MaxUnavailable indicates how many pods we can lose during the rolling update.
  • Setting MaxUnavailable to 0 means, “do not shutdown any old pod before a new one is up and ready to serve traffic“.
  • Setting MaxSurge to 100% means, “immediately start all the new pods“, implying that we have enough spare capacity on our cluster, and that we want to go as fast as possible.
  • kubectl rollout undo deployment web
  • the replica set doesn’t look at the pods’ specifications, but only at their labels.
  • A replica set contains a selector, which is a logical expression that “selects” (just like a SELECT query in SQL) a number of pods.
  • it is absolutely possible to manually create pods with these labels, but running a different image (or with different settings), and fool our replica set.
  • Selectors are also used by services, which act as the load balancers for Kubernetes traffic, internal and external.
  • internal IP address (denoted by the name ClusterIP)
  • during a rollout, the deployment doesn’t reconfigure or inform the load balancer that pods are started and stopped. It happens automatically through the selector of the service associated to the load balancer.
  • a pod is added as a valid endpoint for a service only if all its containers pass their readiness check. In other words, a pod starts receiving traffic only once it’s actually ready for it.
  • In blue/green deployment, we want to instantly switch over all the traffic from the old version to the new, instead of doing it progressively
  • We can achieve blue/green deployment by creating multiple deployments (in the Kubernetes sense), and then switching from one to another by changing the selector of our service
  • kubectl label pods -l app=blue,version=v1.5 status=enabled
  • kubectl label pods -l app=blue,version=v1.4 status-
  •  
    "Continuous integration gives you confidence in your code. To extend that confidence to the release process, your deployment operations need to come with a safety belt."
張 旭

Service | Kubernetes - 0 views

  • Each Pod gets its own IP address
  • Pods are nonpermanent resources.
  • Kubernetes Pods are created and destroyed to match the state of your cluster
  • ...23 more annotations...
  • In Kubernetes, a Service is an abstraction which defines a logical set of Pods and a policy by which to access them (sometimes this pattern is called a micro-service).
  • The set of Pods targeted by a Service is usually determined by a selector
  • If you're able to use Kubernetes APIs for service discovery in your application, you can query the API server for Endpoints, that get updated whenever the set of Pods in a Service changes.
  • A Service in Kubernetes is a REST object, similar to a Pod.
  • The name of a Service object must be a valid DNS label name
  • Kubernetes assigns this Service an IP address (sometimes called the "cluster IP"), which is used by the Service proxies
  • A Service can map any incoming port to a targetPort. By default and for convenience, the targetPort is set to the same value as the port field.
  • The default protocol for Services is TCP
  • As many Services need to expose more than one port, Kubernetes supports multiple port definitions on a Service object. Each port definition can have the same protocol, or a different one.
  • Because this Service has no selector, the corresponding Endpoints object is not created automatically. You can manually map the Service to the network address and port where it's running, by adding an Endpoints object manually
  • Endpoint IP addresses cannot be the cluster IPs of other Kubernetes Services
  • Kubernetes ServiceTypes allow you to specify what kind of Service you want. The default is ClusterIP
  • ClusterIP: Exposes the Service on a cluster-internal IP.
  • NodePort: Exposes the Service on each Node's IP at a static port (the NodePort). A ClusterIP Service, to which the NodePort Service routes, is automatically created. You'll be able to contact the NodePort Service, from outside the cluster, by requesting <NodeIP>:<NodePort>.
  • LoadBalancer: Exposes the Service externally using a cloud provider's load balancer
  • ExternalName: Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by returning a CNAME record with its value. No proxying of any kind is set up.
  • You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point for your cluster.
  • If you set the type field to NodePort, the Kubernetes control plane allocates a port from a range specified by --service-node-port-range flag (default: 30000-32767).
  • The default for --nodeport-addresses is an empty list. This means that kube-proxy should consider all available network interfaces for NodePort.
  • you need to take care of possible port collisions yourself. You also have to use a valid port number, one that's inside the range configured for NodePort use.
  • Service is visible as <NodeIP>:spec.ports[*].nodePort and .spec.clusterIP:spec.ports[*].port
  • Choosing this value makes the Service only reachable from within the cluster.
  • NodePort: Exposes the Service on each Node's IP at a static port
張 旭

Container Runtimes | Kubernetes - 0 views

  • Kubernetes releases before v1.24 included a direct integration with Docker Engine, using a component named dockershim. That special direct integration is no longer part of Kubernetes
  • You need to install a container runtime into each node in the cluster so that Pods can run there.
  • Kubernetes 1.26 requires that you use a runtime that conforms with the Container Runtime Interface (CRI).
  • ...9 more annotations...
  • On Linux, control groups are used to constrain resources that are allocated to processes.
  • Both kubelet and the underlying container runtime need to interface with control groups to enforce resource management for pods and containers and set resources such as cpu/memory requests and limits.
  • When the cgroupfs driver is used, the kubelet and the container runtime directly interface with the cgroup filesystem to configure cgroups.
  • The cgroupfs driver is not recommended when systemd is the init system
  • When systemd is chosen as the init system for a Linux distribution, the init process generates and consumes a root control group (cgroup) and acts as a cgroup manager.
  • Two cgroup managers result in two views of the available and in-use resources in the system.
  • Changing the cgroup driver of a Node that has joined a cluster is a sensitive operation. If the kubelet has created Pods using the semantics of one cgroup driver, changing the container runtime to another cgroup driver can cause errors when trying to re-create the Pod sandbox for such existing Pods. Restarting the kubelet may not solve such errors.
  • The approach to mitigate this instability is to use systemd as the cgroup driver for the kubelet and the container runtime when systemd is the selected init system.
  • Kubernetes 1.26 defaults to using v1 of the CRI API. If a container runtime does not support the v1 API, the kubelet falls back to using the (deprecated) v1alpha2 API instead.
張 旭

Choosing an Executor Type - CircleCI - 0 views

  • Containers are an instance of the Docker Image you specify and the first image listed in your configuration is the primary container image in which all steps run.
  • In this example, all steps run in the container created by the first image listed under the build job
  • If you experience increases in your run times due to installing additional tools during execution, it is best practice to use the Building Custom Docker Images Documentation to create a custom image with tools that are pre-loaded in the container to meet the job requirements.
  • ...9 more annotations...
  • The machine option runs your jobs in a dedicated, ephemeral VM
  • Using the machine executor gives your application full access to OS resources and provides you with full control over the job environment.
  • Using machine may require additional fees in a future pricing update.
  • Using the macos executor allows you to run your job in a macOS environment on a VM.
  • In a multi-image configuration job, all steps are executed in the container created by the first image listed.
  • All containers run in a common network and every exposed port will be available on localhost from a primary container.
  • If you want to work with private images/registries, please refer to Using Private Images.
  • Docker also has built-in image caching and enables you to build, run, and publish Docker images via Remote Docker.
  • if you require low-level access to the network or need to mount external volumes consider using machine
張 旭

Pods - Kubernetes - 0 views

  • Pods are the smallest deployable units of computing
  • A Pod (as in a pod of whales or pea pod) is a group of one or more containersA lightweight and portable executable image that contains software and all of its dependencies. (such as Docker containers), with shared storage/network, and a specification for how to run the containers.
  • A Pod’s contents are always co-located and co-scheduled, and run in a shared context.
  • ...32 more annotations...
  • A Pod models an application-specific “logical host”
  • application containers which are relatively tightly coupled
  • being executed on the same physical or virtual machine would mean being executed on the same logical host.
  • The shared context of a Pod is a set of Linux namespaces, cgroups, and potentially other facets of isolation
  • Containers within a Pod share an IP address and port space, and can find each other via localhost
  • Containers in different Pods have distinct IP addresses and can not communicate by IPC without special configuration. These containers usually communicate with each other via Pod IP addresses.
  • Applications within a Pod also have access to shared volumesA directory containing data, accessible to the containers in a pod. , which are defined as part of a Pod and are made available to be mounted into each application’s filesystem.
  • a Pod is modelled as a group of Docker containers with shared namespaces and shared filesystem volumes
    • 張 旭
       
      類似 docker-compose 裡面宣告的同一坨?
  • Pods are considered to be relatively ephemeral (rather than durable) entities.
  • Pods are created, assigned a unique ID (UID), and scheduled to nodes where they remain until termination (according to restart policy) or deletion.
  • it can be replaced by an identical Pod
  • When something is said to have the same lifetime as a Pod, such as a volume, that means that it exists as long as that Pod (with that UID) exists.
  • uses a persistent volume for shared storage between the containers
  • Pods serve as unit of deployment, horizontal scaling, and replication
  • The applications in a Pod all use the same network namespace (same IP and port space), and can thus “find” each other and communicate using localhost
  • flat shared networking space
  • Containers within the Pod see the system hostname as being the same as the configured name for the Pod.
  • Volumes enable data to survive container restarts and to be shared among the applications within the Pod.
  • Individual Pods are not intended to run multiple instances of the same application
  • The individual containers may be versioned, rebuilt and redeployed independently.
  • Pods aren’t intended to be treated as durable entities.
  • Controllers like StatefulSet can also provide support to stateful Pods.
  • When a user requests deletion of a Pod, the system records the intended grace period before the Pod is allowed to be forcefully killed, and a TERM signal is sent to the main process in each container.
  • Once the grace period has expired, the KILL signal is sent to those processes, and the Pod is then deleted from the API server.
  • grace period
  • Pod is removed from endpoints list for service, and are no longer considered part of the set of running Pods for replication controllers.
  • When the grace period expires, any processes still running in the Pod are killed with SIGKILL.
  • By default, all deletes are graceful within 30 seconds.
  • You must specify an additional flag --force along with --grace-period=0 in order to perform force deletions.
  • Force deletion of a Pod is defined as deletion of a Pod from the cluster state and etcd immediately.
  • StatefulSet Pods
  • Processes within the container get almost the same privileges that are available to processes outside a container.
張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
張 旭

Controllers | Kubernetes - 0 views

  • In robotics and automation, a control loop is a non-terminating loop that regulates the state of a system.
  • controllers are control loops that watch the state of your cluster, then make or request changes where needed
  • Each controller tries to move the current cluster state closer to the desired state.
  • ...12 more annotations...
  • A controller tracks at least one Kubernetes resource type.
  • The controller(s) for that resource are responsible for making the current state come closer to that desired state.
  • in Kubernetes, a controller will send messages to the API server that have useful side effects.
  • Built-in controllers manage state by interacting with the cluster API server.
  • By contrast with Job, some controllers need to make changes to things outside of your cluster.
  • the controller makes some change to bring about your desired state, and then reports current state back to your cluster's API server. Other control loops can observe that reported data and take their own actions.
  • As long as the controllers for your cluster are running and able to make useful changes, it doesn't matter if the overall state is stable or not.
  • Kubernetes uses lots of controllers that each manage a particular aspect of cluster state.
  • a particular control loop (controller) uses one kind of resource as its desired state, and has a different kind of resource that it manages to make that desired state happen.
  • There can be several controllers that create or update the same kind of object.
  • you can have Deployments and Jobs; these both create Pods. The Job controller does not delete the Pods that your Deployment created, because there is information (labels) the controllers can use to tell those Pods apart.
  • Kubernetes comes with a set of built-in controllers that run inside the kube-controller-manager.
  •  
    "In robotics and automation, a control loop is a non-terminating loop that regulates the state of a system. "
張 旭

Considerations for large clusters | Kubernetes - 0 views

  • A cluster is a set of nodes (physical or virtual machines) running Kubernetes agents, managed by the control plane.
  • Kubernetes v1.23 supports clusters with up to 5000 nodes.
  • criteria: No more than 110 pods per node No more than 5000 nodes No more than 150000 total pods No more than 300000 total containers
  • ...14 more annotations...
  • In-use IP addresses
  • run one or two control plane instances per failure zone, scaling those instances vertically first and then scaling horizontally after reaching the point of falling returns to (vertical) scale.
  • Kubernetes nodes do not automatically steer traffic towards control-plane endpoints that are in the same failure zone
  • store Event objects in a separate dedicated etcd instance.
  • start and configure additional etcd instance
  • Kubernetes resource limits help to minimize the impact of memory leaks and other ways that pods and containers can impact on other components.
  • Addons' default limits are typically based on data collected from experience running each addon on small or medium Kubernetes clusters.
  • When running on large clusters, addons often consume more of some resources than their default limits.
  • Many addons scale horizontally - you add capacity by running more pods
  • The VerticalPodAutoscaler can run in recommender mode to provide suggested figures for requests and limits.
  • Some addons run as one copy per node, controlled by a DaemonSet: for example, a node-level log aggregator.
  • VerticalPodAutoscaler is a custom resource that you can deploy into your cluster to help you manage resource requests and limits for pods.
  • The cluster autoscaler integrates with a number of cloud providers to help you run the right number of nodes for the level of resource demand in your cluster.
  • The addon resizer helps you in resizing the addons automatically as your cluster's scale changes.
張 旭

State: Workspaces - Terraform by HashiCorp - 0 views

  • The persistent data stored in the backend belongs to a workspace.
  • Certain backends support multiple named workspaces, allowing multiple states to be associated with a single configuration.
  • Terraform starts with a single workspace named "default". This workspace is special both because it is the default and also because it cannot ever be deleted.
  • ...12 more annotations...
  • Within your Terraform configuration, you may include the name of the current workspace using the ${terraform.workspace} interpolation sequence.
  • changing behavior based on the workspace.
  • Named workspaces allow conveniently switching between multiple instances of a single configuration within its single backend.
  • A common use for multiple workspaces is to create a parallel, distinct copy of a set of infrastructure in order to test a set of changes before modifying the main production infrastructure.
  • Non-default workspaces are often related to feature branches in version control.
  • Workspaces alone are not a suitable tool for system decomposition, because each subsystem should have its own separate configuration and backend, and will thus have its own distinct set of workspaces.
  • In particular, organizations commonly want to create a strong separation between multiple deployments of the same infrastructure serving different development stages (e.g. staging vs. production) or different internal teams.
  • use one or more re-usable modules to represent the common elements, and then represent each instance as a separate configuration that instantiates those common elements in the context of a different backend.
  • If a Terraform state for one configuration is stored in a remote backend that is accessible to other configurations then terraform_remote_state can be used to directly consume its root module outputs from those other configurations.
  • For server addresses, use a provider-specific resource to create a DNS record with a predictable name and then either use that name directly or use the dns provider to retrieve the published addresses in other configurations.
  • Workspaces are technically equivalent to renaming your state file.
  • using a remote backend instead is recommended when there are multiple collaborators.
  •  
    "The persistent data stored in the backend belongs to a workspace."
張 旭

MongoDB Performance Tuning: Everything You Need to Know - Stackify - 0 views

  • db.serverStatus().globalLock
  • db.serverStatus().locks
  • globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it’s consistently high. This can happen if a lot of requests are waiting for a lock to be released.
  • ...35 more annotations...
  • globalLock.totalTime: If this is higher than the total database uptime, the database has been in a lock state for too long.
  • Unlike relational databases such as MySQL or PostgreSQL, MongoDB uses JSON-like documents for storing data.
  • Databases operate in an environment that consists of numerous reads, writes, and updates.
  • When a lock occurs, no other operation can read or modify the data until the operation that initiated the lock is finished.
  • locks.deadlockCount: Number of times the lock acquisitions have encountered deadlocks
  • Is the database frequently locking from queries? This might indicate issues with the schema design, query structure, or system architecture.
  • For version 3.2 on, WiredTiger is the default.
  • MMAPv1 locks whole collections, not individual documents.
  • WiredTiger performs locking at the document level.
  • When the MMAPv1 storage engine is in use, MongoDB will use memory-mapped files to store data.
  • All available memory will be allocated for this usage if the data set is large enough.
  • db.serverStatus().mem
  • mem.resident: Roughly equivalent to the amount of RAM in megabytes that the database process uses
  • If mem.resident exceeds the value of system memory and there’s a large amount of unmapped data on disk, we’ve most likely exceeded system capacity.
  • If the value of mem.mapped is greater than the amount of system memory, some operations will experience page faults.
  • The WiredTiger storage engine is a significant improvement over MMAPv1 in performance and concurrency.
  • By default, MongoDB will reserve 50 percent of the available memory for the WiredTiger data cache.
  • wiredTiger.cache.bytes currently in the cache – This is the size of the data currently in the cache.
  • wiredTiger.cache.tracked dirty bytes in the cache – This is the size of the dirty data in the cache.
  • we can look at the wiredTiger.cache.bytes read into cache value for read-heavy applications. If this value is consistently high, increasing the cache size may improve overall read performance.
  • check whether the application is read-heavy. If it is, increase the size of the replica set and distribute the read operations to secondary members of the set.
  • write-heavy, use sharding within a sharded cluster to distribute the load.
  • Replication is the propagation of data from one node to another
  • Replication sets handle this replication.
  • Sometimes, data isn’t replicated as quickly as we’d like.
  • a particularly thorny problem if the lag between a primary and secondary node is high and the secondary becomes the primary
  • use the db.printSlaveReplicationInfo() or the rs.printSlaveReplicationInfo() command to see the status of a replica set from the perspective of the secondary member of the set.
  • shows how far behind the secondary members are from the primary. This number should be as low as possible.
  • monitor this metric closely.
  • watch for any spikes in replication delay.
  • Always investigate these issues to understand the reasons for the lag.
  • One replica set is primary. All others are secondary.
  • it’s not normal for nodes to change back and forth between primary and secondary.
  • use the profiler to gain a deeper understanding of the database’s behavior.
  • Enabling the profiler can affect system performance, due to the additional activity.
  •  
    "globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it's consistently high. This can happen if a lot of requests are waiting for a lock to be released."
1 - 20 of 200 Next › Last »
Showing 20 items per page