Skip to main content

Home/ Larvata/ Group items tagged cluster

Rss Feed Group items tagged

張 旭

How To Create a Kubernetes Cluster Using Kubeadm on Ubuntu 18.04 | DigitalOcean - 0 views

  • A pod is an atomic unit that runs one or more containers.
  • Pods are the basic unit of scheduling in Kubernetes: all containers in a pod are guaranteed to run on the same node that the pod is scheduled on.
  • Each pod has its own IP address, and a pod on one node should be able to access a pod on another node using the pod's IP.
  • ...12 more annotations...
  • Communication between pods is more complicated, however, and requires a separate networking component that can transparently route traffic from a pod on one node to a pod on another.
  • pod network plugins. For this cluster, you will use Flannel, a stable and performant option.
  • Passing the argument --pod-network-cidr=10.244.0.0/16 specifies the private subnet that the pod IPs will be assigned from.
  • kubectl apply -f descriptor.[yml|json] is the syntax for telling kubectl to create the objects described in the descriptor.[yml|json] file.
  • deploy Nginx using Deployments and Services
  • A deployment is a type of Kubernetes object that ensures there's always a specified number of pods running based on a defined template, even if the pod crashes during the cluster's lifetime.
  • NodePort, a scheme that will make the pod accessible through an arbitrary port opened on each node of the cluster
  • Services are another type of Kubernetes object that expose cluster internal services to clients, both internal and external.
  • load balancing requests to multiple pods
  • Pods are ubiquitous in Kubernetes, so understanding them will facilitate your work
  • how controllers such as deployments work since they are used frequently in stateless applications for scaling and the automated healing of unhealthy applications.
  • Understanding the types of services and the options they have is essential for running both stateless and stateful applications.
張 旭

MetalLB, bare metal load-balancer for Kubernetes - 0 views

  • it allows you to create Kubernetes services of type “LoadBalancer” in clusters that don’t run on a cloud provider
  • In a cloud-enabled Kubernetes cluster, you request a load-balancer, and your cloud platform assigns an IP address to you.
  • MetalLB cannot create IP addresses out of thin air, so you do have to give it pools of IP addresses that it can use.
  • ...6 more annotations...
  • MetalLB lets you define as many address pools as you want, and doesn’t care what “kind” of addresses you give it.
  • Once MetalLB has assigned an external IP address to a service, it needs to make the network beyond the cluster aware that the IP “lives” in the cluster.
  • In layer 2 mode, one machine in the cluster takes ownership of the service, and uses standard address discovery protocols (ARP for IPv4, NDP for IPv6) to make those IPs reachable on the local network
  • From the LAN’s point of view, the announcing machine simply has multiple IP addresses.
  • In BGP mode, all machines in the cluster establish BGP peering sessions with nearby routers that you control, and tell those routers how to forward traffic to the service IPs.
  • Using BGP allows for true load balancing across multiple nodes, and fine-grained traffic control thanks to BGP’s policy mechanisms.
張 旭

Logging Architecture | Kubernetes - 0 views

  • Application logs can help you understand what is happening inside your application
  • container engines are designed to support logging.
  • The easiest and most adopted logging method for containerized applications is writing to standard output and standard error streams.
  • ...26 more annotations...
  • In a cluster, logs should have a separate storage and lifecycle independent of nodes, pods, or containers. This concept is called cluster-level logging.
  • Cluster-level logging architectures require a separate backend to store, analyze, and query logs
  • Kubernetes does not provide a native storage solution for log data.
  • use kubectl logs --previous to retrieve logs from a previous instantiation of a container.
  • A container engine handles and redirects any output generated to a containerized application's stdout and stderr streams
  • The Docker JSON logging driver treats each line as a separate message.
  • By default, if a container restarts, the kubelet keeps one terminated container with its logs.
  • An important consideration in node-level logging is implementing log rotation, so that logs don't consume all available storage on the node
  • You can also set up a container runtime to rotate an application's logs automatically.
  • The two kubelet flags container-log-max-size and container-log-max-files can be used to configure the maximum size for each log file and the maximum number of files allowed for each container respectively.
  • The kubelet and container runtime do not run in containers.
  • On machines with systemd, the kubelet and container runtime write to journald. If systemd is not present, the kubelet and container runtime write to .log files in the /var/log directory.
  • System components inside containers always write to the /var/log directory, bypassing the default logging mechanism.
  • Kubernetes does not provide a native solution for cluster-level logging
  • Use a node-level logging agent that runs on every node.
  • implement cluster-level logging by including a node-level logging agent on each node.
  • the logging agent is a container that has access to a directory with log files from all of the application containers on that node.
  • the logging agent must run on every node, it is recommended to run the agent as a DaemonSet
  • Node-level logging creates only one agent per node and doesn't require any changes to the applications running on the node.
  • Containers write stdout and stderr, but with no agreed format. A node-level agent collects these logs and forwards them for aggregation.
  • Each sidecar container prints a log to its own stdout or stderr stream.
  • It is not recommended to write log entries with different formats to the same log stream
  • writing logs to a file and then streaming them to stdout can double disk usage.
  • If you have an application that writes to a single file, it's recommended to set /dev/stdout as the destination
  • it's recommended to use stdout and stderr directly and leave rotation and retention policies to the kubelet.
  • Using a logging agent in a sidecar container can lead to significant resource consumption. Moreover, you won't be able to access those logs using kubectl logs because they are not controlled by the kubelet.
張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
張 旭

Introducing the MinIO Operator and Operator Console - 0 views

  • Object-storage-as-a-service is a game changer for IT.
  • provision multi-tenant object storage as a service.
  • have the skill set to create, deploy, tune, scale and manage modern, application oriented object storage using Kubernetes
  • ...12 more annotations...
  • MinIO is purpose-built to take full advantage of the Kubernetes architecture.
  • MinIO and Kubernetes work together to simplify infrastructure management, providing a way to manage object storage infrastructure within the Kubernetes toolset.  
  • The operator pattern extends Kubernetes's familiar declarative API model with custom resource definitions (CRDs) to perform common operations like resource orchestration, non-disruptive upgrades, cluster expansion and to maintain high-availability
  • The Operator uses the command set kubectl that the Kubernetes community was already familiar with and adds the kubectl minio plugin . The MinIO Operator and the MinIO kubectl plugin facilitate the deployment and management of MinIO Object Storage on Kubernetes - which is how multi-tenant object storage as a service is delivered.
  • choosing a leader for a distributed application without an internal member election process
  • The Operator Console makes Kubernetes object storage easier still. In this graphical user interface, MinIO created something so simple that anyone in the organization can create, deploy and manage object storage as a service.
  • The primary unit of managing MinIO on Kubernetes is the tenant.
  • The MinIO Operator can allocate multiple tenants within the same Kubernetes cluster.
  • Each tenant, in turn, can have different capacity (i.e: a small 500GB tenant vs a 100TB tenant), resources (1000m CPU and 4Gi RAM vs 4000m CPU and 16Gi RAM) and servers (4 pods vs 16 pods), as well a separate configurations regarding Identity Providers, Encryption and versions.
  • each tenant is a cluster of server pools (independent sets of nodes with their own compute, network, and storage resources), that, while sharing the same physical infrastructure, are fully isolated from each other in their own namespaces.
  • Each tenant runs their own MinIO cluster, fully isolated from other tenants
  • Each tenant scales independently by federating clusters across geographies.
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

ProxySQL Experimental Feature: Native ProxySQL Clustering - Percona Database Performanc... - 0 views

  • several ProxySQL instances to communicate with and share configuration updates with each other.
  • 4 tables where you can make changes and propagate the configuration
  • When you make a change like INSERT/DELETE/UPDATE on any of these tables, after running the command LOAD … TO RUNTIME , ProxySQL creates a new checksum of the table’s data and increments the version number in the table runtime_checksums_values
  • ...2 more annotations...
  • all nodes are monitoring and communicating with all the other ProxySQL nodes. When another node detects a change in the checksum and version (both at the same time), each node will get a copy of the table that was modified, make the same changes locally, and apply the new config to RUNTIME to refresh the new config, make it visible to the applications connected and automatically save it to DISK for persistence.
  • a “synchronous cluster” so any changes to these 4 tables on any ProxySQL server will be replicated to all other ProxySQL nodes.
張 旭

MetalLB, bare metal load-balancer for Kubernetes - 0 views

  • Kubernetes does not offer an implementation of network load-balancers (Services of type LoadBalancer) for bare metal clusters
  • If you’re not running on a supported IaaS platform (GCP, AWS, Azure…), LoadBalancers will remain in the “pending” state indefinitely when created.
  • Bare metal cluster operators are left with two lesser tools to bring user traffic into their clusters, “NodePort” and “externalIPs” services.
張 旭

Ingress Controllers | Kubernetes - 0 views

  • In order for the Ingress resource to work, the cluster must have an ingress controller running.
  • ingressClassName is a replacement of the older annotation method.
  • If you do not specify an IngressClass for an Ingress, and your cluster has exactly one IngressClass marked as default, then Kubernetes applies the cluster's default IngressClass to the Ingress.
  •  
    "In order for the Ingress resource to work, the cluster must have an ingress controller running. "
張 旭

Installing Addons | Kubernetes - 0 views

  • Calico is a networking and network policy provider. Calico supports a flexible set of networking options so you can choose the most efficient option for your situation, including non-overlay and overlay networks, with or without BGP. Calico uses the same engine to enforce network policy for hosts, pods, and (if using Istio & Envoy) applications at the service mesh layer.
  • Cilium is a networking, observability, and security solution with an eBPF-based data plane. Cilium provides a simple flat Layer 3 network with the ability to span multiple clusters in either a native routing or overlay/encapsulation mode, and can enforce network policies on L3-L7 using an identity-based security model that is decoupled from network addressing. Cilium can act as a replacement for kube-proxy; it also offers additional, opt-in observability and security features.
  • CoreDNS is a flexible, extensible DNS server which can be installed as the in-cluster DNS for pods.
  • ...1 more annotation...
  • The node problem detector runs on Linux nodes and reports system issues as either Events or Node conditions.
張 旭

MySQL on Docker: Running ProxySQL as Kubernetes Service | Severalnines - 0 views

  • Using Kubernetes ConfigMap approach, ProxySQL can be clustered with immutable configuration.
  • Kubernetes handles ProxySQL recovery and balance the connections to the instances automatically.
  • Can be used with external applications outside Kubernetes.
  • ...11 more annotations...
  • load balancing, connection failover and decoupling of the application tier from the underlying database topologies.
  • ProxySQL as a Kubernetes service (centralized deployment)
  • running as a service makes ProxySQL pods live independently from the applications and can be easily scaled and clustered together with the help of Kubernetes ConfigMap.
  • ProxySQL's multi-layer configuration system makes pod clustering possible with ConfigMap.
  • create ProxySQL pods and attach a Kubernetes service to be accessed by the other pods within the Kubernetes network or externally.
  • Default to 6033 for MySQL load-balanced connections and 6032 for ProxySQL administration console.
  • separated by "---" delimiter
  • deploy two ProxySQL pods as a ReplicaSet that matches containers labelled with "app=proxysql,tier=frontend".
  • A Kubernetes service is an abstraction layer which defines the logical set of pods and a policy by which to access them
  • The range of valid ports for NodePort resource is 30000-32767.
  • ConfigMap - To store ProxySQL configuration file as a volume so it can be mounted to multiple pods and can be remounted again if the pod is being rescheduled to the other Kubernetes node.
crazylion lee

GitHub - joyieldInc/predixy: A high performance and full features proxy for redis, supp... - 0 views

  •  
    "A high performance and full features proxy for redis, support redis sentinel and redis cluster"
張 旭

GitLab Auto DevOps 深入淺出,自動部署,連設定檔不用?! | 五倍紅寶石・專業程式教育 - 0 views

  • 一個 K8S 的 Cluster,Auto DevOps 將會把網站部署到這個 Cluster
  • 需要有一個 wildcard 的 DNS 讓部署在這個環境的網站有 Domain name
  • 一個可以跑 Docker 的 GitLab Runner,將會為由它來執行 CI / CD 的流程。
  • ...37 more annotations...
  • 其實 Auto DevOps 就是一份官方寫好的 gitlab-ci.yml,在啟動 Auto DevOps 的專案裡,如果找不到 gitlab-ci.yml 檔,那就會直接用官方 gitlab-ci.yml 去跑 CI / CD 流程。
  • Pod 是 K8S 中可以被部署的最小元件,一個 Pod 是由一到多個 Container 組成,同個 Pod 的不同 Container 之間彼此共享網路資源。
  • 每個 Pod 都會有它的 yaml 檔,用以描述 Pod 會使用的 Image 還有連接的 Port 等資訊。
  • Node 又分成 Worker Node 和 Master Node 兩種
  • Helm 透過參數 (parameter) 跟模板 (template) 的方式,讓我們可以在只修改參數的方式重複利用模板。
  • 為了要有 CI CD 的功能我們會把 .gitlab-ci.yml 放在專案的根目錄裡, GitLab 會依造 .gitlab-ci.yml 的設定產生 CI/CD Pipeline,每個 Pipeline 裡面可能有多個 Job,這時候就會需要有 GitLab Runner 來執行這些 Job 並把執行的結果回傳給 GitLab 讓它知道這個 Job 是否有正常執行。
  • 把專案打包成 Docker Image 這工作又或是 helm 的操作都會在 Container 內執行
  • CI/CD Pipeline 是由 stage 還有 job 組成的,stage 是有順序性的,前面的 stage 完成後才會開始下一個 stage。
  • 每個 stage 裡面包含一到多個 Job
  • Auto Devops 裡也會大量用到這種在指定 Container 內運行的工作。
  • 可以通過 health checks
  • 開 private 的話還要注意使用 Container Registry 的權限問題
  • 申請好的 wildcard 的 DNS
  • Auto Devops 也提供只要設定環境變數就能一定程度客製化的選項
  • 特別注意 namespace 有沒有設定對,不然會找不到資料喔
  • Auto Devops,如果想要進一步的客製化,而且是改 GitLab 環境變數都無法實現的客製化,這時候還是得回到 .gitlab-ci.yml 設定檔
  • 在 Docker in Docker 的環境用 Dockerfile 打包 Image
  • 用 helm upgrade 把 chart 部署到 K8S 上
  • GitLab CI 的環境變數主要有三個來源,優先度高到低依序為Settings > CI/CD 介面定義的變數gitlab_ci.yml 定義環境變數GitLab 預設環境變數
  • 把專案打包成 Docker Image 首先需要在專案下新增一份 Dockerfile
  • Auto Devops 裡面的做法,用 herokuish 提供的 Image 來打包專案
  • 在 Runner 的環境中是沒有 docker 指令可以用的,所以這邊啟動一個 Docker Container 在裡面執行就可以用 docker 指令了。
  • 其中 $CI_COMMIT_SHA $CI_COMMIT_BEFORE_SHA 這兩個都是 GitLab 預設環境變數,代表這次 commit 還有上次 commit 的 SHA 值。
  • dind 則是直接啟動 docker daemon,此外 dind 還會自動產生 TLS certificates
  • 為了在 Docker Container 內運行 Docker,會把 Host 上面的 Docker API 分享給 Container。
  • docker:stable 有執行 docker 需要的執行檔,他裡面也包含要啟動 docker 的程式(docker daemon),但啟動 Container 的 entrypoint 是 sh
  • docker:dind 繼承自 docker:stable,而且它 entrypoint 就是啟動 docker 的腳本,此外還會做完 TLS certificates
  • Container 要去連 Host 上的 Docker API 。但現在連線失敗卻是找 http://docker:2375,現在的 dind 已經不是被當做 services 來用了,而是要直接在裡面跑 Docker,所以他應該是要 unix:///var/run/docker.sock 用這種連線,於是把環境變數 DOCKER_HOST 從 tcp://docker:2375 改成空字串,讓 docker daemon 走預設連線就能成功囉!
  • auto-deploy preparationhelm init 建立 helm 專案設定 tiller 在背景執行設定 cluster 的 namespace
  • auto-deploy deploy使用 helm upgrade 部署 chart 到 K8S 上透過 --set 來設定要注入 template 的參數
  • set -x,這樣就能在執行前,顯示指令內容。
  • 用 helm repo list 看看現在有註冊哪些 Chart Repository
  • helm fetch gitlab/auto-deploy-app --untar
  • nohup 可以讓你在離線或登出系統後,還能夠讓工作繼續進行
  • 在不特別設定 CI_APPLICATION_REPOSITORY 的情況下,image_repository 的值就是預設環境變數 CI_REGISTRY_IMAGE/CI_COMMIT_REF_SLUG
  • A:-B 的意思是如果有 A 就用它,沒有就用 B
  • 研究 Auto Devops 難度最高的地方就是太多工具整合在一起,搞不清楚他們之間的關係,出錯也不知道從何查起
張 旭

Extend the Kubernetes API with CustomResourceDefinitions | Kubernetes - 0 views

  • When you create a new CustomResourceDefinition (CRD), the Kubernetes API Server creates a new RESTful resource path for each version you specify.
  • The CRD can be either namespaced or cluster-scoped, as specified in the CRD's scope field
  • deleting a namespace deletes all custom objects in that namespace.
  • ...7 more annotations...
  • CustomResourceDefinitions themselves are non-namespaced and are available to all namespaces.
  • Custom objects can contain custom fields. These fields can contain arbitrary JSON.
  • When you delete a CustomResourceDefinition, the server will uninstall the RESTful API endpoint and delete all custom objects stored in it
  • CustomResourceDefinitions store validated resource data in the cluster's persistence store, etcd.
  • By default, all unspecified fields for a custom resource, across all versions, are pruned.
  • The field json can store any JSON value, without anything being pruned.
  • Finalizers allow controllers to implement asynchronous pre-delete hooks.
張 旭

Upgrading kubeadm clusters | Kubernetes - 0 views

  • Swap must be disabled.
  • read the release notes carefully.
  • back up any important components, such as app-level state stored in a database.
  • ...16 more annotations...
  • All containers are restarted after upgrade, because the container spec hash value is changed.
  • The upgrade procedure on control plane nodes should be executed one node at a time.
  • /etc/kubernetes/admin.conf
  • kubeadm upgrade also automatically renews the certificates that it manages on this node. To opt-out of certificate renewal the flag --certificate-renewal=false can be used.
  • Manually upgrade your CNI provider plugin.
  • sudo systemctl daemon-reload sudo systemctl restart kubelet
  • If kubeadm upgrade fails and does not roll back, for example because of an unexpected shutdown during execution, you can run kubeadm upgrade again.
  • To recover from a bad state, you can also run kubeadm upgrade apply --force without changing the version that your cluster is running.
  • kubeadm-backup-etcd contains a backup of the local etcd member data for this control plane Node.
  • the contents of this folder can be manually restored in /var/lib/etcd
  • kubeadm-backup-manifests contains a backup of the static Pod manifest files for this control plane Node.
  • the contents of this folder can be manually restored in /etc/kubernetes/manifests
  • Enforces the version skew policies.
  • Upgrades the control plane components or rollbacks if any of them fails to come up.
  • Creates new certificate and key files of the API server and backs up old files if they're about to expire in 180 days.
  • backup folders under /etc/kubernetes/tmp
張 旭

LXC vs Docker: Why Docker is Better | UpGuard - 0 views

  • LXC (LinuX Containers) is a OS-level virtualization technology that allows creation and running of multiple isolated Linux virtual environments (VE) on a single control host.
  • Docker, previously called dotCloud, was started as a side project and only open-sourced in 2013. It is really an extension of LXC’s capabilities.
  • run processes in isolation.
  • ...35 more annotations...
  • Docker is developed in the Go language and utilizes LXC, cgroups, and the Linux kernel itself. Since it’s based on LXC, a Docker container does not include a separate operating system; instead it relies on the operating system’s own functionality as provided by the underlying infrastructure.
  • Docker acts as a portable container engine, packaging the application and all its dependencies in a virtual container that can run on any Linux server.
  • a VE there is no preloaded emulation manager software as in a VM.
  • In a VE, the application (or OS) is spawned in a container and runs with no added overhead, except for a usually minuscule VE initialization process.
  • LXC will boast bare metal performance characteristics because it only packages the needed applications.
  • the OS is also just another application that can be packaged too.
  • a VM, which packages the entire OS and machine setup, including hard drive, virtual processors and network interfaces. The resulting bloated mass usually takes a long time to boot and consumes a lot of CPU and RAM.
  • don’t offer some other neat features of VM’s such as IaaS setups and live migration.
  • LXC as supercharged chroot on Linux. It allows you to not only isolate applications, but even the entire OS.
  • Libvirt, which allows the use of containers through the LXC driver by connecting to 'lxc:///'.
  • 'LXC', is not compatible with libvirt, but is more flexible with more userspace tools.
  • Portable deployment across machines
  • Versioning: Docker includes git-like capabilities for tracking successive versions of a container
  • Component reuse: Docker allows building or stacking of already created packages.
  • Shared libraries: There is already a public registry (http://index.docker.io/ ) where thousands have already uploaded the useful containers they have created.
  • Docker taking the devops world by storm since its launch back in 2013.
  • LXC, while older, has not been as popular with developers as Docker has proven to be
  • LXC having a focus on sys admins that’s similar to what solutions like the Solaris operating system, with its Solaris Zones, Linux OpenVZ, and FreeBSD, with its BSD Jails virtualization system
  • it started out being built on top of LXC, Docker later moved beyond LXC containers to its own execution environment called libcontainer.
  • Unlike LXC, which launches an operating system init for each container, Docker provides one OS environment, supplied by the Docker Engine
  • LXC tooling sticks close to what system administrators running bare metal servers are used to
  • The LXC command line provides essential commands that cover routine management tasks, including the creation, launch, and deletion of LXC containers.
  • Docker containers aim to be even lighter weight in order to support the fast, highly scalable, deployment of applications with microservice architecture.
  • With backing from Canonical, LXC and LXD have an ecosystem tightly bound to the rest of the open source Linux community.
  • Docker Swarm
  • Docker Trusted Registry
  • Docker Compose
  • Docker Machine
  • Kubernetes facilitates the deployment of containers in your data center by representing a cluster of servers as a single system.
  • Swarm is Docker’s clustering, scheduling and orchestration tool for managing a cluster of Docker hosts. 
  • rkt is a security minded container engine that uses KVM for VM-based isolation and packs other enhanced security features. 
  • Apache Mesos can run different kinds of distributed jobs, including containers. 
  • Elastic Container Service is Amazon’s service for running and orchestrating containerized applications on AWS
  • LXC offers the advantages of a VE on Linux, mainly the ability to isolate your own private workloads from one another. It is a cheaper and faster solution to implement than a VM, but doing so requires a bit of extra learning and expertise.
  • Docker is a significant improvement of LXC’s capabilities.
張 旭

Internal/Membership Authentication - MongoDB Manual - 0 views

  • equire that members of replica sets and sharded clusters authenticate to each other.
  • Enabling internal authentication also enables client authorization.
張 旭

Container Runtimes | Kubernetes - 0 views

  • Kubernetes releases before v1.24 included a direct integration with Docker Engine, using a component named dockershim. That special direct integration is no longer part of Kubernetes
  • You need to install a container runtime into each node in the cluster so that Pods can run there.
  • Kubernetes 1.26 requires that you use a runtime that conforms with the Container Runtime Interface (CRI).
  • ...9 more annotations...
  • On Linux, control groups are used to constrain resources that are allocated to processes.
  • Both kubelet and the underlying container runtime need to interface with control groups to enforce resource management for pods and containers and set resources such as cpu/memory requests and limits.
  • When the cgroupfs driver is used, the kubelet and the container runtime directly interface with the cgroup filesystem to configure cgroups.
  • The cgroupfs driver is not recommended when systemd is the init system
  • When systemd is chosen as the init system for a Linux distribution, the init process generates and consumes a root control group (cgroup) and acts as a cgroup manager.
  • Two cgroup managers result in two views of the available and in-use resources in the system.
  • Changing the cgroup driver of a Node that has joined a cluster is a sensitive operation. If the kubelet has created Pods using the semantics of one cgroup driver, changing the container runtime to another cgroup driver can cause errors when trying to re-create the Pod sandbox for such existing Pods. Restarting the kubelet may not solve such errors.
  • The approach to mitigate this instability is to use systemd as the cgroup driver for the kubelet and the container runtime when systemd is the selected init system.
  • Kubernetes 1.26 defaults to using v1 of the CRI API. If a container runtime does not support the v1 API, the kubelet falls back to using the (deprecated) v1alpha2 API instead.
張 旭

Securing NGINX-ingress - cert-manager Documentation - 1 views

  • If using a ClusterIssuer, remember to update the Ingress annotation cert-manager.io/issuer to cert-manager.io/cluster-issuer
  • Certificates resources allow you to specify the details of the certificate you want to request.
  • An Issuer defines how cert-manager will request TLS certificates.
  • ...4 more annotations...
  • cert-manager mainly uses two different custom Kubernetes resources - known as CRDs - to configure and control how it operates, as well as to store state. These resources are Issuers and Certificates.
  • using annotations on the ingress with ingress-shim or directly creating a certificate resource.
  • The secret that is used in the ingress should match the secret defined in the certificate.
  • a typo will result in the ingress-nginx-controller falling back to its self-signed certificate.
  •  
    "If using a ClusterIssuer, remember to update the Ingress annotation cert-manager.io/issuer to cert-manager.io/cluster-issuer"
‹ Previous 21 - 40 of 88 Next › Last »
Showing 20 items per page