Skip to main content

Home/ Larvata/ Group items tagged building

Rss Feed Group items tagged

張 旭

Best practices for writing Dockerfiles | Docker Documentation - 0 views

  • building efficient images
  • Docker builds images automatically by reading the instructions from a Dockerfile -- a text file that contains all commands, in order, needed to build a given image.
  • A Docker image consists of read-only layers each of which represents a Dockerfile instruction.
  • ...47 more annotations...
  • The layers are stacked and each one is a delta of the changes from the previous layer
  • When you run an image and generate a container, you add a new writable layer (the “container layer”) on top of the underlying layers.
  • By “ephemeral,” we mean that the container can be stopped and destroyed, then rebuilt and replaced with an absolute minimum set up and configuration.
  • Inadvertently including files that are not necessary for building an image results in a larger build context and larger image size.
  • To exclude files not relevant to the build (without restructuring your source repository) use a .dockerignore file. This file supports exclusion patterns similar to .gitignore files.
  • minimize image layers by leveraging build cache.
  • if your build contains several layers, you can order them from the less frequently changed (to ensure the build cache is reusable) to the more frequently changed
  • avoid installing extra or unnecessary packages just because they might be “nice to have.”
  • Each container should have only one concern.
  • Decoupling applications into multiple containers makes it easier to scale horizontally and reuse containers
  • Limiting each container to one process is a good rule of thumb, but it is not a hard and fast rule.
  • Use your best judgment to keep containers as clean and modular as possible.
  • do multi-stage builds and only copy the artifacts you need into the final image. This allows you to include tools and debug information in your intermediate build stages without increasing the size of the final image.
  • avoid duplication of packages and make the list much easier to update.
  • When building an image, Docker steps through the instructions in your Dockerfile, executing each in the order specified.
  • the next instruction is compared against all child images derived from that base image to see if one of them was built using the exact same instruction. If not, the cache is invalidated.
  • simply comparing the instruction in the Dockerfile with one of the child images is sufficient.
  • For the ADD and COPY instructions, the contents of the file(s) in the image are examined and a checksum is calculated for each file.
  • If anything has changed in the file(s), such as the contents and metadata, then the cache is invalidated.
  • cache checking does not look at the files in the container to determine a cache match.
  • In that case just the command string itself is used to find a match.
    • 張 旭
       
      RUN apt-get 這樣的指令,直接比對指令內容的意思。
  • Whenever possible, use current official repositories as the basis for your images.
  • Using RUN apt-get update && apt-get install -y ensures your Dockerfile installs the latest package versions with no further coding or manual intervention.
  • cache busting
  • Docker executes these commands using the /bin/sh -c interpreter, which only evaluates the exit code of the last operation in the pipe to determine success.
  • set -o pipefail && to ensure that an unexpected error prevents the build from inadvertently succeeding.
  • The CMD instruction should be used to run the software contained by your image, along with any arguments.
  • CMD should almost always be used in the form of CMD [“executable”, “param1”, “param2”…]
  • CMD should rarely be used in the manner of CMD [“param”, “param”] in conjunction with ENTRYPOINT
  • The ENV instruction is also useful for providing required environment variables specific to services you wish to containerize,
  • Each ENV line creates a new intermediate layer, just like RUN commands
  • COPY is preferred
  • COPY only supports the basic copying of local files into the container
  • the best use for ADD is local tar file auto-extraction into the image, as in ADD rootfs.tar.xz /
  • If you have multiple Dockerfile steps that use different files from your context, COPY them individually, rather than all at once.
  • using ADD to fetch packages from remote URLs is strongly discouraged; you should use curl or wget instead
  • The best use for ENTRYPOINT is to set the image’s main command, allowing that image to be run as though it was that command (and then use CMD as the default flags).
  • the image name can double as a reference to the binary as shown in the command
  • The VOLUME instruction should be used to expose any database storage area, configuration storage, or files/folders created by your docker container.
  • use VOLUME for any mutable and/or user-serviceable parts of your image
  • If you absolutely need functionality similar to sudo, such as initializing the daemon as root but running it as non-root), consider using “gosu”.
  • always use absolute paths for your WORKDIR
  • An ONBUILD command executes after the current Dockerfile build completes.
  • Think of the ONBUILD command as an instruction the parent Dockerfile gives to the child Dockerfile
  • A Docker build executes ONBUILD commands before any command in a child Dockerfile.
  • Be careful when putting ADD or COPY in ONBUILD. The “onbuild” image fails catastrophically if the new build’s context is missing the resource being added.
張 旭

Active Record Associations - Ruby on Rails Guides - 0 views

  • With Active Record associations, we can streamline these - and other - operations by declaratively telling Rails that there is a connection between the two models.
  • belongs_to has_one has_many has_many :through has_one :through has_and_belongs_to_many
  • an association is a connection between two Active Record models
  • ...195 more annotations...
  • Associations are implemented using macro-style calls, so that you can declaratively add features to your models
  • A belongs_to association sets up a one-to-one connection with another model, such that each instance of the declaring model "belongs to" one instance of the other model.
  • belongs_to associations must use the singular term.
  • belongs_to
  • A has_one association also sets up a one-to-one connection with another model, but with somewhat different semantics (and consequences).
  • This association indicates that each instance of a model contains or possesses one instance of another model
  • belongs_to
  • A has_many association indicates a one-to-many connection with another model.
  • This association indicates that each instance of the model has zero or more instances of another model.
  • belongs_to
  • A has_many :through association is often used to set up a many-to-many connection with another model
  • This association indicates that the declaring model can be matched with zero or more instances of another model by proceeding through a third model.
  • through:
  • through:
  • The collection of join models can be managed via the API
  • new join models are created for newly associated objects, and if some are gone their rows are deleted.
  • The has_many :through association is also useful for setting up "shortcuts" through nested has_many associations
  • A has_one :through association sets up a one-to-one connection with another model. This association indicates that the declaring model can be matched with one instance of another model by proceeding through a third model.
  • A has_and_belongs_to_many association creates a direct many-to-many connection with another model, with no intervening model.
  • id: false
  • The has_one relationship says that one of something is yours
  • using t.references :supplier instead.
  • declare a many-to-many relationship is to use has_many :through. This makes the association indirectly, through a join model
  • set up a has_many :through relationship if you need to work with the relationship model as an independent entity
  • set up a has_and_belongs_to_many relationship (though you'll need to remember to create the joining table in the database).
  • use has_many :through if you need validations, callbacks, or extra attributes on the join model
  • With polymorphic associations, a model can belong to more than one other model, on a single association.
  • belongs_to :imageable, polymorphic: true
  • a polymorphic belongs_to declaration as setting up an interface that any other model can use.
    • 張 旭
       
      _id 記錄的是不同類型的外連鍵 id;_type 記錄的是不同類型的表格名稱。
  • In designing a data model, you will sometimes find a model that should have a relation to itself
  • add a references column to the model itself
  • Controlling caching Avoiding name collisions Updating the schema Controlling association scope Bi-directional associations
  • All of the association methods are built around caching, which keeps the result of the most recent query available for further operations.
  • it is a bad idea to give an association a name that is already used for an instance method of ActiveRecord::Base. The association method would override the base method and break things.
  • You are responsible for maintaining your database schema to match your associations.
  • belongs_to associations you need to create foreign keys
  • has_and_belongs_to_many associations you need to create the appropriate join table
  • If you create an association some time after you build the underlying model, you need to remember to create an add_column migration to provide the necessary foreign key.
  • Active Record creates the name by using the lexical order of the class names
  • So a join between customer and order models will give the default join table name of "customers_orders" because "c" outranks "o" in lexical ordering.
  • For example, one would expect the tables "paper_boxes" and "papers" to generate a join table name of "papers_paper_boxes" because of the length of the name "paper_boxes", but it in fact generates a join table name of "paper_boxes_papers" (because the underscore '' is lexicographically _less than 's' in common encodings).
  • id: false
  • pass id: false to create_table because that table does not represent a model
  • By default, associations look for objects only within the current module's scope.
  • will work fine, because both the Supplier and the Account class are defined within the same scope.
  • To associate a model with a model in a different namespace, you must specify the complete class name in your association declaration:
  • class_name
  • class_name
  • Active Record provides the :inverse_of option
    • 張 旭
       
      意思是說第一次比較兩者的 first_name 是相同的;但透過 c 實體修改 first_name 之後,再次比較就不相同了,因為兩個是記憶體裡面兩個不同的物件。
  • preventing inconsistencies and making your application more efficient
  • Every association will attempt to automatically find the inverse association and set the :inverse_of option heuristically (based on the association name)
  • In database terms, this association says that this class contains the foreign key.
  • In all of these methods, association is replaced with the symbol passed as the first argument to belongs_to.
  • (force_reload = false)
  • The association method returns the associated object, if any. If no associated object is found, it returns nil.
  • the cached version will be returned.
  • The association= method assigns an associated object to this object.
  • Behind the scenes, this means extracting the primary key from the associate object and setting this object's foreign key to the same value.
  • The build_association method returns a new object of the associated type
  • but the associated object will not yet be saved.
  • The create_association method returns a new object of the associated type
  • once it passes all of the validations specified on the associated model, the associated object will be saved
  • raises ActiveRecord::RecordInvalid if the record is invalid.
  • dependent
  • counter_cache
  • :autosave :class_name :counter_cache :dependent :foreign_key :inverse_of :polymorphic :touch :validate
  • finding the number of belonging objects more efficient.
  • Although the :counter_cache option is specified on the model that includes the belongs_to declaration, the actual column must be added to the associated model.
  • add a column named orders_count to the Customer model.
  • :destroy, when the object is destroyed, destroy will be called on its associated objects.
  • deleted directly from the database without calling their destroy method.
  • Rails will not create foreign key columns for you
  • The :inverse_of option specifies the name of the has_many or has_one association that is the inverse of this association
  • set the :touch option to :true, then the updated_at or updated_on timestamp on the associated object will be set to the current time whenever this object is saved or destroyed
  • specify a particular timestamp attribute to update
  • If you set the :validate option to true, then associated objects will be validated whenever you save this object
  • By default, this is false: associated objects will not be validated when this object is saved.
  • where includes readonly select
  • make your code somewhat more efficient
  • no need to use includes for immediate associations
  • will be read-only when retrieved via the association
  • The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated object
  • using the association.nil?
  • Assigning an object to a belongs_to association does not automatically save the object. It does not save the associated object either.
  • In database terms, this association says that the other class contains the foreign key.
  • the cached version will be returned.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • Setting the :as option indicates that this is a polymorphic association
  • :nullify causes the foreign key to be set to NULL. Callbacks are not executed.
  • It's necessary not to set or leave :nullify option for those associations that have NOT NULL database constraints.
  • The :source_type option specifies the source association type for a has_one :through association that proceeds through a polymorphic association.
  • The :source option specifies the source association name for a has_one :through association.
  • The :through option specifies a join model through which to perform the query
  • more efficient by including representatives in the association from suppliers to accounts
  • When you assign an object to a has_one association, that object is automatically saved (in order to update its foreign key).
  • If either of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_one association) is unsaved (that is, new_record? returns true) then the child objects are not saved.
  • If you want to assign an object to a has_one association without saving the object, use the association.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}, ...) collection.create(attributes = {}) collection.create!(attributes = {})
  • In all of these methods, collection is replaced with the symbol passed as the first argument to has_many, and collection_singular is replaced with the singularized version of that symbol.
  • The collection<< method adds one or more objects to the collection by setting their foreign keys to the primary key of the calling model
  • The collection.delete method removes one or more objects from the collection by setting their foreign keys to NULL.
  • objects will be destroyed if they're associated with dependent: :destroy, and deleted if they're associated with dependent: :delete_all
  • The collection.destroy method removes one or more objects from the collection by running destroy on each object.
  • The collection_singular_ids method returns an array of the ids of the objects in the collection.
  • The collection_singular_ids= method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate
  • The default strategy for has_many :through associations is delete_all, and for has_many associations is to set the foreign keys to NULL.
  • The collection.clear method removes all objects from the collection according to the strategy specified by the dependent option
  • uses the same syntax and options as ActiveRecord::Base.find
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.build method returns one or more new objects of the associated type. These objects will be instantiated from the passed attributes, and the link through their foreign key will be created, but the associated objects will not yet be saved.
  • The collection.create method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through its foreign key will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • :delete_all causes all the associated objects to be deleted directly from the database (so callbacks will not execute)
  • :nullify causes the foreign keys to be set to NULL. Callbacks are not executed.
  • where includes readonly select
  • :conditions :through :polymorphic :foreign_key
  • By convention, Rails assumes that the column used to hold the primary key of the association is id. You can override this and explicitly specify the primary key with the :primary_key option.
  • The :source option specifies the source association name for a has_many :through association.
  • You only need to use this option if the name of the source association cannot be automatically inferred from the association name.
  • The :source_type option specifies the source association type for a has_many :through association that proceeds through a polymorphic association.
  • The :through option specifies a join model through which to perform the query.
  • has_many :through associations provide a way to implement many-to-many relationships,
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • If you use a hash-style where option, then record creation via this association will be automatically scoped using the hash
  • The extending method specifies a named module to extend the association proxy.
  • Association extensions
  • The group method supplies an attribute name to group the result set by, using a GROUP BY clause in the finder SQL.
  • has_many :line_items, -> { group 'orders.id' },                        through: :orders
  • more efficient by including line items in the association from customers to orders
  • The limit method lets you restrict the total number of objects that will be fetched through an association.
  • The offset method lets you specify the starting offset for fetching objects via an association
  • The order method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY clause).
  • Use the distinct method to keep the collection free of duplicates.
  • mostly useful together with the :through option
  • -> { distinct }
  • .all.inspect
  • If you want to make sure that, upon insertion, all of the records in the persisted association are distinct (so that you can be sure that when you inspect the association that you will never find duplicate records), you should add a unique index on the table itself
  • unique: true
  • Do not attempt to use include? to enforce distinctness in an association.
  • multiple users could be attempting this at the same time
  • checking for uniqueness using something like include? is subject to race conditions
  • When you assign an object to a has_many association, that object is automatically saved (in order to update its foreign key).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added
  • All unsaved members of the association will automatically be saved when the parent is saved.
  • assign an object to a has_many association without saving the object, use the collection.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}) collection.create(attributes = {}) collection.create!(attributes = {})
  • If the join table for a has_and_belongs_to_many association has additional columns beyond the two foreign keys, these columns will be added as attributes to records retrieved via that association.
  • Records returned with additional attributes will always be read-only
  • If you require this sort of complex behavior on the table that joins two models in a many-to-many relationship, you should use a has_many :through association instead of has_and_belongs_to_many.
  • aliased as collection.concat and collection.push.
  • The collection.delete method removes one or more objects from the collection by deleting records in the join table
  • not destroy the objects
  • The collection.destroy method removes one or more objects from the collection by running destroy on each record in the join table, including running callbacks.
  • not destroy the objects.
  • The collection.clear method removes every object from the collection by deleting the rows from the joining table.
  • not destroy the associated objects.
  • The collection.find method finds objects within the collection. It uses the same syntax and options as ActiveRecord::Base.find.
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.exists? method checks whether an object meeting the supplied conditions exists in the collection.
  • The collection.build method returns a new object of the associated type.
  • the associated object will not yet be saved.
  • the associated object will be saved.
  • The collection.create method returns a new object of the associated type.
  • it passes all of the validations specified on the associated model
  • :association_foreign_key :autosave :class_name :foreign_key :join_table :validate
  • The :foreign_key and :association_foreign_key options are useful when setting up a many-to-many self-join.
  • Rails assumes that the column in the join table used to hold the foreign key pointing to the other model is the name of that model with the suffix _id added.
  • If you set the :autosave option to true, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
  • By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to this model is the name of this model with the suffix _id added.
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • set conditions via a hash
  • In this case, using @parts.assemblies.create or @parts.assemblies.build will create orders where the factory column has the value "Seattle"
  • If you use a hash-style where, then record creation via this association will be automatically scoped using the hash
  • using a GROUP BY clause in the finder SQL.
  • Use the uniq method to remove duplicates from the collection.
  • assign an object to a has_and_belongs_to_many association, that object is automatically saved (in order to update the join table).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_and_belongs_to_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added.
  • If you want to assign an object to a has_and_belongs_to_many association without saving the object, use the collection.build method.
  • Normal callbacks hook into the life cycle of Active Record objects, allowing you to work with those objects at various points
  • define association callbacks by adding options to the association declaration
  • Rails passes the object being added or removed to the callback.
  • stack callbacks on a single event by passing them as an array
  • If a before_add callback throws an exception, the object does not get added to the collection.
  • if a before_remove callback throws an exception, the object does not get removed from the collection
  • extend these objects through anonymous modules, adding new finders, creators, or other methods.
  • order_number
  • use a named extension module
  • proxy_association.owner returns the object that the association is a part of.
張 旭

Using cache in GitLab CI with Docker-in-Docker | $AYMDEV() - 0 views

  • optimize our images.
  • When you build an image, it is made of multiple layers: we add a layer per instruction.
  • If we build the same image again without modifying any file, Docker will use existing layers rather than re-executing the instructions.
  • ...21 more annotations...
  • an image is made of multiple layers, and we can accelerate its build by using layers cache from the previous image version.
  • by using Docker-in-Docker, we get a fresh Docker instance per job which local registry is empty.
  • docker build --cache-from "$CI_REGISTRY_IMAGE:latest" -t "$CI_REGISTRY_IMAGE:new-tag"
  • But if you maintain a CHANGELOG in this format, and/or your Git tags are also your Docker tags, you can get the previous version and use cache the this image version.
  • script: - export PREVIOUS_VERSION=$(perl -lne 'print "v${1}" if /^##\s\[(\d\.\d\.\d)\]\s-\s\d{4}(?:-\d{2}){2}\s*$/' CHANGELOG.md | sed -n '2 p') - docker build --cache-from "$CI_REGISTRY_IMAGE:$PREVIOUS_VERSION" -t "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG" -f ./prod.Dockerfile .
  • « Docker layer caching » is enough to optimize the build time.
  • Cache in CI/CD is about saving directories or files across pipelines.
  • We're building a Docker image, dependencies are installed inside a container.We can't cache a dependencies directory if it doesn't exists in the job workspace.
  • Dependencies will always be installed from a container but will be extracted by the GitLab Runner in the job workspace. Our goal is to send the cached version in the build context.
  • We set the directories to cache in the job settings with a key to share the cache per branch and stage.
  • - docker cp app:/var/www/html/vendor/ ./vendor
  • after_script
  • - docker cp app:/var/www/html/node_modules/ ./node_modules
  • To avoid old dependencies to be mixed with the new ones, at the risk of keeping unused dependencies in cache, which would make cache and images heavier.
  • If you need to cache directories in testing jobs, it's easier: use volumes !
  • version your cache keys !
  • sharing Docker image between jobs
  • In every job, we automatically get artifacts from previous stages.
  • docker save $DOCKER_CI_IMAGE | gzip > app.tar.gz
  • I personally use the « push / pull » technique,
  • we docker push after the build, then we docker pull if needed in the next jobs.
張 旭

Running Docker Commands - CircleCI - 0 views

  • To build Docker images for deployment, you must use a special setup_remote_docker key which creates a separate environment for each build for security.
  • When setup_remote_docker executes, a remote environment will be created, and your current primary container will be configured to use it.
  • Once setup_remote_docker is called, a new remote environment is created, and your primary container is configured to use it.
  • ...8 more annotations...
  • but building/pushing images and running containers happens in the remote Docker Engine
  • use a primary image that already has Docker (recommended)
  • installs Docker and has Git, use 17.05.0-ce-git
  • The job and remote docker run in separate environments.
  • It is not possible to start a service in remote docker and ping it directly from a primary container or to start a primary container that can ping a service in remote docker.
  • It is not possible to mount a folder from your job space into a container in Remote Docker (and vice versa).
    • 張 旭
       
      等於是 docker client 跟 docker server 是兩台不同的主機就對了。
  • use https://github.com/outstand/docker-dockup or a similar image for backup and restore to spin up a container
  •  
    "To build Docker images for deployment, you must use a special setup_remote_docker key which creates a separate environment for each build for security. "
張 旭

The Twelve-Factor App - 1 views

  • separate build and run
  • The build stage is a transform which converts a code repo into an executable bundle known as a build.
  • the build stage fetches vendors dependencies and compiles binaries and assets.
  • ...7 more annotations...
  • The release stage takes the build produced by the build stage and combines it with the deploy’s current config.
  • is ready for immediate execution in the execution environment.
  • The run stage (also known as “runtime”) runs the app in the execution environment
  • strict separation between the build, release, and run stages.
  • the Capistrano deployment tool stores releases in a subdirectory named releases, where the current release is a symlink to the current release directory.
  • Every release should always have a unique release ID
  • Releases are an append-only ledger and a release cannot be mutated once it is created.
張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
張 旭

Docker ARG, ENV and .env - a Complete Guide · vsupalov.com - 1 views

  • understand and use Docker build-time variables, environment variables and docker-compose templating the right way.
  • ARG is only available during the build of a Docker image (RUN etc), not after the image is created and containers are started from it (ENTRYPOINT, CMD).
  • ENV values are available to containers, but also RUN-style commands during the Docker build starting with the line where they are introduced.
  • ...20 more annotations...
  • set an environment variable in an intermediate container using bash (RUN export VARI=5 && …) it will not persist in the next command.
  • An env_file, is a convenient way to pass many environment variables to a single command in one batch.
  • not be confused with a .env file
  • the dot in front of env - .env, not an “env_file”.
  • If you have a file named .env in your project, it’s only used to put values into the docker-compose.yml file which is in the same folder. Those are used with Docker Compose and Docker Stack.
  • Just type docker-compose config. This way you’ll see how the docker-compose.yml file content looks after the substitution step has been performed without running anything else.
  • ARG are also known as build-time variables. They are only available from the moment they are ‘announced’ in the Dockerfile with an ARG instruction up to the moment when the image is built.
  • Running containers can’t access values of ARG variables.
  • ENV variables are also available during the build, as soon as you introduce them with an ENV instruction. However, unlike ARG, they are also accessible by containers started from the final image.
  • ENV values can be overridden when starting a container,
  • If you don’t provide a value to expected ARG variables which don’t have a default, you’ll get an error message.
  • args block
  • You can use ARG to set the default values of ENV vars.
  • dynamic on-build env values
  • 2. Pass environment variable values from your host
  • 1. Provide values one by one
  • 3. Take values from a file (env_file)
  • for each RUN statement, a new container is launched from an intermediate image.
  • An image is saved by the end of the command, but environment variables do not persist that way.
  • The precedence is, from stronger to less-strong: stuff the containerized application sets, values from single environment entries, values from the env_file(s) and finally Dockerfile defaults.
張 旭

Enabling Build Processing - CircleCI - 0 views

  • If you use << in your shell commands (most commonly found in use of heredocs) you will need to escape them using backslash \ as in \<< in order to use version 2.1 or higher of configuration.
  • Jobs named build will be wrapped in a workflows stanza by the processor
  • Use of configuration version 2.1 or higher requires build processing to be on
  • ...1 more annotation...
  • New API endpoint to trigger builds, including running all workflows in the build
  •  
    "If you use << in your shell commands (most commonly found in use of heredocs) you will need to escape them using backslash \ as in \<< in order to use version 2.1 or higher of configuration."
crazylion lee

Building a CLI in Ruby with GLI | Leigh Halliday - 0 views

  •  
    "Building a CLI in Ruby with GLI"
張 旭

What is DevOps? | Atlassian - 0 views

  • DevOps is a set of practices that automates the processes between software development and IT teams, in order that they can build, test, and release software faster and more reliably.
  • increased trust, faster software releases, ability to solve critical issues quickly, and better manage unplanned work.
  • bringing together the best of software development and IT operations.
  • ...39 more annotations...
  • DevOps is a culture, a movement, a philosophy.
  • a firm handshake between development and operations
  • DevOps isn’t magic, and transformations don’t happen overnight.
  • Infrastructure as code
  • Culture is the #1 success factor in&nbsp;DevOps.
  • Building&nbsp;a culture of shared responsibility, transparency and faster feedback is the foundation of every high performing DevOps team.
  • &nbsp;'not our problem'&nbsp;mentality
  • DevOps is that change in mindset of looking at the development process holistically and breaking down&nbsp;the barrier between Dev and Ops.
  • Speed is everything.
  • Lack of automated test and review cycles&nbsp;block the&nbsp;release&nbsp;to production and poor incident&nbsp;response&nbsp;time kills velocity and&nbsp;team confidence
  • Open communication helps Dev and Ops teams swarm&nbsp;on issues, fix incidents, and unblock the release pipeline faster.
  • Unplanned work is a reality that every team faces–a reality that most often&nbsp;impacts team productivity.
  • “cross-functional collaboration.”
  • All the tooling and automation in the world are useless if they aren’t accompanied by a genuine desire on the part of development and IT/Ops professionals to work together.
  • DevOps doesn’t solve tooling problems. It solves human problems.
  • Forming project- or product-oriented teams to replace function-based teams is a step in the right direction.
  • sharing a common goal and having a plan to reach it together
  • join sprint planning sessions, daily stand-ups, and sprint demos.
  • DevOps culture across every department
  • open channels of communication, and talk regularly
  • DevOps isn’t one team’s job. It’s everyone’s job.
  • automation eliminates repetitive manual work, yields repeatable processes, and creates reliable systems.
  • Build, test, deploy, and provisioning automation
  • continuous delivery: the practice of running each code change through a gauntlet of automated tests, often facilitated by cloud-based infrastructure, then packaging up successful builds and promoting them up toward production using automated deploys.
  • automated deploys alert IT/Ops to server “drift” between environments, which reduces or eliminates surprises when it’s time to release.
  • “configuration as code.”
  • when DevOps uses automated deploys to send thoroughly tested code to identically provisioned environments, “Works on my machine!” becomes irrelevant.
  • A DevOps mindset sees opportunities for continuous improvement everywhere.
  • regular retrospectives
  • A/B testing
  • failure is inevitable. So you might as well set up your team to absorb it, recover, and learn from it (some call this “being anti-fragile”).
  • Postmortems focus on where processes fell down and how to strengthen them – not on which team member f'ed up the code.
  • Our engineers are responsible for QA, writing, and running their own tests to get the software out to customers.
  • How long did it take to go from development to deployment?&nbsp;
  • How long does it take to recover after a system failure?
  • service level agreements (SLAs)
  • Devops isn't any single person's job. It's everyone's job.
  • DevOps is big on the idea that the same people who build an application should be involved in shipping and running it.
  • developers and operators pair with each other in each phase of the application’s lifecycle.
張 旭

Build an Image - Getting Started - Packer by HashiCorp - 0 views

  • The configuration file used to define what image we want built and how is called a template in Packer terminology.
  • JSON struck the best balance between human-editable and machine-editable, allowing both hand-made templates as well as machine generated templates to easily be made.
  • keeping your secret keys out of the template
  • ...3 more annotations...
  • validate the template by running packer validate example.json. This command checks the syntax as well as the configuration values to verify they look valid.
  • At the end of running packer build, Packer outputs the artifacts that were created as part of the build.
  • Packer only builds images. It does not attempt to manage them in any way.
張 旭

VMware ISO - Builders - Packer by HashiCorp - 0 views

  • Packer can use a remote VMware Hypervisor to build the virtual machine.
  • enable GuestIPHack
  • When using a remote VMware Hypervisor, the builder still downloads the ISO and various files locally, and uploads these to the remote machine.
  • ...3 more annotations...
  • Packer needs to decide on a port to use for VNC when building remotely.
  • vnc_disable_password - This must be set to "true" when using VNC with ESXi 6.5 or 6.7
  • remote_type (string) - The type of remote machine that will be used to build this VM rather than a local desktop product. The only value accepted for this currently is esx5. If this is not set, a desktop product will be used. By default, this is not set.
  •  
    "Packer can use a remote VMware Hypervisor to build the virtual machine."
張 旭

mvn clean install - a short guide to Maven - 0 views

  • An equivalent in other languages would be Javascript’s npm, Ruby’s gems or PHP’s composer.
  • Maven expects a certain directory structure for your Java source code to live in and when you later do a mvn clean install , the whole compilation and packaging work will be done for you.
  • any directory that contains a pom.xml file is also a valid Maven project.
  • ...17 more annotations...
  • A pom.xml file contains everything needed to describe your Java project.
  • Java source code is to be meant to live in the "/src/main/java" folder
  • Maven will put compiled Java classes into the "target/classes" folder
  • Maven will also build a .jar or .war file, depending on your project, that lives in the "target" folder.
  • Maven has the concept of a build lifecycle, which is made up of different phases.
  • clean is not part of Maven’s default lifecycle, you end up with commands like mvn clean install or mvn clean package. Install or package will trigger all preceding phases, but you need to specify clean in addition.
  • Maven will always download your project dependencies into your local maven repository first and then reference them for your build.
  • local repositories (in your user’s home directory: ~/.m2/)
  • clean: deletes the /target folder.
  • mvn clean package
  • mvn clean install
  • package: Converts your .java source code into a .jar/.war file and puts it into the /target folder.
  • install: First, it does a package(!). Then it takes that .jar/.war file and puts it into your local Maven repository, which lives in ~/.m2/repository.
  • calling 'mvn install' would be enough if Maven was smart enough to do reliable, incremental builds.
  • figuring out what Java source files/modules changed and only compile those.
  • developers got it ingrained to always call 'mvn clean install' (even though this increases build time a lot in bigger projects).
  • make sure that Maven always tries to download the latest snapshot dependency versions
crazylion lee

Build web application with Golang - GitBook - 0 views

  •  
    "Build web application with Golang"
張 旭

Containers Vs. Config Management - 0 views

  • With configuration management systems, you write code that describes how you want some component of your systems to be installed and configured, and when you execute the code on your server, it should end up in the desired state.
  • building a hosting platform that is capable of a lot of things that system administrators used to do manually
  • build modules on deployment via bundler or npm or similar, it can be incredibly slow to run, taking minutes or longer in some cases
  • ...10 more annotations...
  • pulling from git is slow.
  • deploying with configuration management tools is a pain in the ass and error prone.
  • Support for containers has existed in the Linux kernel since version 2.6.24 when cgroup support was added
  • All of the logic that used to live in your cookbooks/playbooks/manifests/etc now lives in a Dockerfile that resides directly in the repository for the application it is designed to build
  • All of the dependencies of the application are bundled with the container which means no need to build on the fly on every server during deployment.
  • Containers bring standardization which allows for systems like centralized logging, monitoring, and metrics to easily snap into place no matter what is running in the container.
  • Dockerfiles do not give you the same level of control over configuration as your application transitions between environments, like dev, staging, and production.
  • You may even need to have different Dockerfile’s for each environment in certain cases.
  • configuration management systems now have hooks for docker integration.
  • Config management will only be used to install Docker, an orchestration system, configure PAM/SSH auth, and tune OS sysctl values.
  •  
    "With configuration management systems, you write code that describes how you want some component of your systems to be installed and configured, and when you execute the code on your server, it should end up in the desired state."
張 旭

Docker Explained: Using Dockerfiles to Automate Building of Images | DigitalOcean - 0 views

  • CMD would be running an application upon creation of a container which is already installed using RUN (e.g. RUN apt-get install …) inside the image
  • ENTRYPOINT argument sets the concrete default application that is used every time a container is created using the image.
  • ENV command is used to set the environment variables (one or more).
  • ...6 more annotations...
  • EXPOSE command is used to associate a specified port to enable networking between the running process inside the container and the outside world
  • defines the base image to use to start the build process
  • Unlike CMD, it actually is used to build the image (forming another layer on top of the previous one which is committed).
  • VOLUME command is used to enable access from your container to a directory on the host machine
  • set where the command defined with CMD is to be executed
  • To detach yourself from the container, use the escape sequence CTRL+P followed by CTRL+Q
張 旭

Choosing an Executor Type - CircleCI - 0 views

  • Containers are an instance of the Docker Image you specify and the first image listed in your configuration is the primary container image in which all steps run.
  • In this example, all steps run in the container created by the first image listed under the build job
  • If you experience increases in your run times due to installing additional tools during execution, it is best practice to use the Building Custom Docker Images Documentation to create a custom image with tools that are pre-loaded in the container to meet the job requirements.
  • ...9 more annotations...
  • The machine option runs your jobs in a dedicated, ephemeral VM
  • Using the machine executor gives your application full access to OS resources and provides you with full control over the job environment.
  • Using machine may require additional fees in a future pricing update.
  • Using the macos executor allows you to run your job in a macOS environment on a VM.
  • In a multi-image configuration job, all steps are executed in the container created by the first image listed.
  • All containers run in a common network and every exposed port will be available on localhost from a primary container.
  • If you want to work with private images/registries, please refer to Using Private Images.
  • Docker also has built-in image caching and enables you to build, run, and publish Docker images via Remote Docker.
  • if you require low-level access to the network or need to mount external volumes consider using machine
張 旭

Use multi-stage builds | Docker Documentation - 0 views

  • Maintaining two Dockerfiles is not ideal.
  • This is failure-prone and hard to maintain. It’s easy to insert another command and forget to continue the line using the \ character
  • create a container from it to copy the artifact out
  • ...4 more annotations...
  • You only need the single Dockerfile. You don’t need a separate build script,
  • You don’t need to create any intermediate images and you don’t need to extract any artifacts to your local system at all.
  • Debugging a specific build stage
  • You can use the COPY --from instruction to copy from a separate image, either using the local image name, a tag available locally or on a Docker registry, or a tag ID.
張 旭

Glossary - CircleCI - 0 views

  • User authentication may use LDAP for an instance of the CircleCI application that is installed on your private server or cloud
  • The first user to log into a private installation of CircleCI
  • Contexts provide a mechanism for securing and sharing environment variables across projects.
  • ...22 more annotations...
  • The environment variables are defined as name/value pairs and are injected at runtime.
  • The CircleCI Docker Layer Caching feature allows builds to reuse Docker image layers
  • from previous builds.
  • Image layers are stored in separate volumes in the cloud and are not shared between projects.
  • Layers may only be used by builds from the same project.
  • Environment variables store customer data that is used by a project.
  • Defines the underlying technology to run a job.
  • machine to run your job inside a full virtual machine.
  • docker to run your job inside a Docker container with a specified image
  • A job is a collection of steps.
  • The first image listed in config.yml
  • A CircleCI project shares the name of the code repository for which it automates workflows, tests, and deployment.
  • must be added with the Add Project button
  • Following a project enables a user to subscribe to email notifications for the project build status and adds the project to their CircleCI dashboard.
  • A step is a collection of executable commands
  • Users must be added to a GitHub or Bitbucket org to view or follow associated CircleCI projects.
  • Users may not view project data that is stored in environment variables. &nbsp;
  • A Workflow is a set of rules for defining a collection of jobs and their run order.
  • Workflows are implemented as a directed acyclic graph (DAG) of jobs for greatest flexibility.
  • referred to as Pipelines
  • A workspace is a workflows-aware storage mechanism.
  • A workspace stores data unique to the job, which may be needed in downstream jobs.
crazylion lee

What Google Learned From Its Quest to Build the Perfect Team - The New York Times - 0 views

  •  
    "What Google Learned From Its Quest to Build the Perfect Team"
1 - 20 of 107 Next › Last »
Showing 20 items per page