Skip to main content

Home/ Larvata/ Group items tagged blue

Rss Feed Group items tagged

張 旭

Intro to deployment strategies: blue-green, canary, and more - DEV Community - 0 views

  • using a service-oriented architecture and microservices approach, developers can design a code base to be modular.
  • Modern applications are often distributed and cloud-based
  • different release cycles for different components
  • ...20 more annotations...
  • the abstraction of the infrastructure layer, which is now considered code. Deployment of a new application may require the deployment of new infrastructure code as well.
  • "big bang" deployments update whole or large parts of an application in one fell swoop.
  • Big bang deployments required the business to conduct extensive development and testing before release, often associated with the "waterfall model" of large sequential releases.
  • Rollbacks are often costly, time-consuming, or even impossible.
  • In a rolling deployment, an application’s new version gradually replaces the old one.
  • new and old versions will coexist without affecting functionality or user experience.
  • Each container is modified to download the latest image from the app vendor’s site.
  • two identical production environments work in parallel.
  • Once the testing results are successful, application traffic is routed from blue to green.
  • In a blue-green deployment, both systems use the same persistence layer or database back end.
  • You can use the primary database by blue for write operations and use the secondary by green for read operations.
  • Blue-green deployments rely on traffic routing.
  • long TTL values can delay these changes.
  • The main challenge of canary deployment is to devise a way to route some users to the new application.
  • Using an application logic to unlock new features to specific users and groups.
  • With CD, the CI-built code artifact is packaged and always ready to be deployed in one or more environments.
  • Use Build Automation tools to automate environment builds
  • Use configuration management tools
  • Enable automated rollbacks for deployments
  • An application performance monitoring (APM) tool can help your team monitor critical performance metrics including server response times after deployments.
crazylion lee

Blue Ocean - 0 views

  •  
    " Blue Ocean is a new project that rethinks the user experience of Jenkins. Designed from the ground up for Jenkins Pipeline and compatible with Freestyle jobs, Blue Ocean reduces clutter and increases clarity for every member of your team through the following key features:"
張 旭

Kubernetes Deployments: The Ultimate Guide - Semaphore - 1 views

  • Continuous integration gives you confidence in your code. To extend that confidence to the release process, your deployment operations need to come with a safety belt.
  • these Kubernetes objects ensure that you can progressively deploy, roll back and scale your applications without downtime.
  • A pod is just a group of containers (it can be a group of one container) that run on the same machine, and share a few things together.
  • ...34 more annotations...
  • the containers within a pod can communicate with each other over localhost
  • From a network perspective, all the processes in these containers are local.
  • we can never create a standalone container: the closest we can do is create a pod, with a single container in it.
  • Kubernetes is a declarative system (by opposition to imperative systems).
  • All we can do, is describe what we want to have, and wait for Kubernetes to take action to reconcile what we have, with what we want to have.
  • In other words, we can say, “I would like a 40-feet long blue container with yellow doors“, and Kubernetes will find such a container for us. If it doesn’t exist, it will build it; if there is already one but it’s green with red doors, it will paint it for us; if there is already a container of the right size and color, Kubernetes will do nothing, since what we have already matches what we want.
  • The specification of a replica set looks very much like the specification of a pod, except that it carries a number, indicating how many replicas
  • What happens if we change that definition? Suddenly, there are zero pods matching the new specification.
  • the creation of new pods could happen in a more gradual manner.
  • the specification for a deployment looks very much like the one for a replica set: it features a pod specification, and a number of replicas.
  • Deployments, however, don’t create or delete pods directly.
  • When we update a deployment and adjust the number of replicas, it passes that update down to the replica set.
  • When we update the pod specification, the deployment creates a new replica set with the updated pod specification. That replica set has an initial size of zero. Then, the size of that replica set is progressively increased, while decreasing the size of the other replica set.
  • we are going to fade in (turn up the volume) on the new replica set, while we fade out (turn down the volume) on the old one.
  • During the whole process, requests are sent to pods of both the old and new replica sets, without any downtime for our users.
  • A readiness probe is a test that we add to a container specification.
  • Kubernetes supports three ways of implementing readiness probes:Running a command inside a container;Making an HTTP(S) request against a container; orOpening a TCP socket against a container.
  • When we roll out a new version, Kubernetes will wait for the new pod to mark itself as “ready” before moving on to the next one.
  • If there is no readiness probe, then the container is considered as ready, as long as it could be started.
  • MaxSurge indicates how many extra pods we are willing to run during a rolling update, while MaxUnavailable indicates how many pods we can lose during the rolling update.
  • Setting MaxUnavailable to 0 means, “do not shutdown any old pod before a new one is up and ready to serve traffic“.
  • Setting MaxSurge to 100% means, “immediately start all the new pods“, implying that we have enough spare capacity on our cluster, and that we want to go as fast as possible.
  • kubectl rollout undo deployment web
  • the replica set doesn’t look at the pods’ specifications, but only at their labels.
  • A replica set contains a selector, which is a logical expression that “selects” (just like a SELECT query in SQL) a number of pods.
  • it is absolutely possible to manually create pods with these labels, but running a different image (or with different settings), and fool our replica set.
  • Selectors are also used by services, which act as the load balancers for Kubernetes traffic, internal and external.
  • internal IP address (denoted by the name ClusterIP)
  • during a rollout, the deployment doesn’t reconfigure or inform the load balancer that pods are started and stopped. It happens automatically through the selector of the service associated to the load balancer.
  • a pod is added as a valid endpoint for a service only if all its containers pass their readiness check. In other words, a pod starts receiving traffic only once it’s actually ready for it.
  • In blue/green deployment, we want to instantly switch over all the traffic from the old version to the new, instead of doing it progressively
  • We can achieve blue/green deployment by creating multiple deployments (in the Kubernetes sense), and then switching from one to another by changing the selector of our service
  • kubectl label pods -l app=blue,version=v1.5 status=enabled
  • kubectl label pods -l app=blue,version=v1.4 status-
  •  
    "Continuous integration gives you confidence in your code. To extend that confidence to the release process, your deployment operations need to come with a safety belt."
crazylion lee

MacGDBp - Blue Static - 1 views

  •  
    "Debugging a live, running PHP application has never been so easy!"
crazylion lee

GitHub - tangchao5206/BleUtils: 安卓低功耗蓝牙ble快速上手 - 0 views

  •  
    "安卓低功耗蓝牙ble快速上手"
張 旭

The Squeaky Blog | Why we don't use a staging environment - 0 views

  • Pre-live environments are never at parity with production
  • multiple people use staging to validate their changes before release.
  • Branches are then constantly out of sync with each other, and problems often surface when you merge, rebase, and backfill hotfixes.
  • ...10 more annotations...
  • Big Bang releases
  • there is a lengthy suite of tests and checks that run before it is deployed to staging. During this period, which could end up being hours, engineers will likely pick up another task. I’ve seen people merge, and then forget that their changes are on staging, more times than I can count.
  • only merge code that is ready to go live
  • written sufficient tests and have validated our changes in development.
  • All branches are cut from main, and all changes get merged back into main.
  • If we ever have an issue in production, we always roll forward.
  • Feature flags can be enabled on a per-user basis so we can monitor performance and gather feedback
  • Experimental features can be enabled by users in their account settings.
  • we have monitoring, logging, and alarms around all of our services. We also blue/green deploy, by draining and replacing a percentage of containers.
  • Dropping your staging environment in favour of true continuous integration and deployment can create a different mindset for shipping software.
  •  
    "Pre-live environments are never at parity with production "
1 - 6 of 6
Showing 20 items per page