Skip to main content

Home/ Larvata/ Group items tagged assembly

Rss Feed Group items tagged

張 旭

Active Record Associations - Ruby on Rails Guides - 0 views

  • With Active Record associations, we can streamline these - and other - operations by declaratively telling Rails that there is a connection between the two models.
  • belongs_to has_one has_many has_many :through has_one :through has_and_belongs_to_many
  • an association is a connection between two Active Record models
  • ...195 more annotations...
  • Associations are implemented using macro-style calls, so that you can declaratively add features to your models
  • A belongs_to association sets up a one-to-one connection with another model, such that each instance of the declaring model "belongs to" one instance of the other model.
  • belongs_to associations must use the singular term.
  • belongs_to
  • A has_one association also sets up a one-to-one connection with another model, but with somewhat different semantics (and consequences).
  • This association indicates that each instance of a model contains or possesses one instance of another model
  • belongs_to
  • A has_many association indicates a one-to-many connection with another model.
  • This association indicates that each instance of the model has zero or more instances of another model.
  • belongs_to
  • A has_many :through association is often used to set up a many-to-many connection with another model
  • This association indicates that the declaring model can be matched with zero or more instances of another model by proceeding through a third model.
  • through:
  • through:
  • The collection of join models can be managed via the API
  • new join models are created for newly associated objects, and if some are gone their rows are deleted.
  • The has_many :through association is also useful for setting up "shortcuts" through nested has_many associations
  • A has_one :through association sets up a one-to-one connection with another model. This association indicates that the declaring model can be matched with one instance of another model by proceeding through a third model.
  • A has_and_belongs_to_many association creates a direct many-to-many connection with another model, with no intervening model.
  • id: false
  • The has_one relationship says that one of something is yours
  • using t.references :supplier instead.
  • declare a many-to-many relationship is to use has_many :through. This makes the association indirectly, through a join model
  • set up a has_many :through relationship if you need to work with the relationship model as an independent entity
  • set up a has_and_belongs_to_many relationship (though you'll need to remember to create the joining table in the database).
  • use has_many :through if you need validations, callbacks, or extra attributes on the join model
  • With polymorphic associations, a model can belong to more than one other model, on a single association.
  • belongs_to :imageable, polymorphic: true
  • a polymorphic belongs_to declaration as setting up an interface that any other model can use.
    • 張 旭
       
      _id 記錄的是不同類型的外連鍵 id;_type 記錄的是不同類型的表格名稱。
  • In designing a data model, you will sometimes find a model that should have a relation to itself
  • add a references column to the model itself
  • Controlling caching Avoiding name collisions Updating the schema Controlling association scope Bi-directional associations
  • All of the association methods are built around caching, which keeps the result of the most recent query available for further operations.
  • it is a bad idea to give an association a name that is already used for an instance method of ActiveRecord::Base. The association method would override the base method and break things.
  • You are responsible for maintaining your database schema to match your associations.
  • belongs_to associations you need to create foreign keys
  • has_and_belongs_to_many associations you need to create the appropriate join table
  • If you create an association some time after you build the underlying model, you need to remember to create an add_column migration to provide the necessary foreign key.
  • Active Record creates the name by using the lexical order of the class names
  • So a join between customer and order models will give the default join table name of "customers_orders" because "c" outranks "o" in lexical ordering.
  • For example, one would expect the tables "paper_boxes" and "papers" to generate a join table name of "papers_paper_boxes" because of the length of the name "paper_boxes", but it in fact generates a join table name of "paper_boxes_papers" (because the underscore '' is lexicographically _less than 's' in common encodings).
  • id: false
  • pass id: false to create_table because that table does not represent a model
  • By default, associations look for objects only within the current module's scope.
  • will work fine, because both the Supplier and the Account class are defined within the same scope.
  • To associate a model with a model in a different namespace, you must specify the complete class name in your association declaration:
  • class_name
  • class_name
  • Active Record provides the :inverse_of option
    • 張 旭
       
      意思是說第一次比較兩者的 first_name 是相同的;但透過 c 實體修改 first_name 之後,再次比較就不相同了,因為兩個是記憶體裡面兩個不同的物件。
  • preventing inconsistencies and making your application more efficient
  • Every association will attempt to automatically find the inverse association and set the :inverse_of option heuristically (based on the association name)
  • In database terms, this association says that this class contains the foreign key.
  • In all of these methods, association is replaced with the symbol passed as the first argument to belongs_to.
  • (force_reload = false)
  • The association method returns the associated object, if any. If no associated object is found, it returns nil.
  • the cached version will be returned.
  • The association= method assigns an associated object to this object.
  • Behind the scenes, this means extracting the primary key from the associate object and setting this object's foreign key to the same value.
  • The build_association method returns a new object of the associated type
  • but the associated object will not yet be saved.
  • The create_association method returns a new object of the associated type
  • once it passes all of the validations specified on the associated model, the associated object will be saved
  • raises ActiveRecord::RecordInvalid if the record is invalid.
  • dependent
  • counter_cache
  • :autosave :class_name :counter_cache :dependent :foreign_key :inverse_of :polymorphic :touch :validate
  • finding the number of belonging objects more efficient.
  • Although the :counter_cache option is specified on the model that includes the belongs_to declaration, the actual column must be added to the associated model.
  • add a column named orders_count to the Customer model.
  • :destroy, when the object is destroyed, destroy will be called on its associated objects.
  • deleted directly from the database without calling their destroy method.
  • Rails will not create foreign key columns for you
  • The :inverse_of option specifies the name of the has_many or has_one association that is the inverse of this association
  • set the :touch option to :true, then the updated_at or updated_on timestamp on the associated object will be set to the current time whenever this object is saved or destroyed
  • specify a particular timestamp attribute to update
  • If you set the :validate option to true, then associated objects will be validated whenever you save this object
  • By default, this is false: associated objects will not be validated when this object is saved.
  • where includes readonly select
  • make your code somewhat more efficient
  • no need to use includes for immediate associations
  • will be read-only when retrieved via the association
  • The select method lets you override the SQL SELECT clause that is used to retrieve data about the associated object
  • using the association.nil?
  • Assigning an object to a belongs_to association does not automatically save the object. It does not save the associated object either.
  • In database terms, this association says that the other class contains the foreign key.
  • the cached version will be returned.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • Setting the :as option indicates that this is a polymorphic association
  • :nullify causes the foreign key to be set to NULL. Callbacks are not executed.
  • It's necessary not to set or leave :nullify option for those associations that have NOT NULL database constraints.
  • The :source_type option specifies the source association type for a has_one :through association that proceeds through a polymorphic association.
  • The :source option specifies the source association name for a has_one :through association.
  • The :through option specifies a join model through which to perform the query
  • more efficient by including representatives in the association from suppliers to accounts
  • When you assign an object to a has_one association, that object is automatically saved (in order to update its foreign key).
  • If either of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_one association) is unsaved (that is, new_record? returns true) then the child objects are not saved.
  • If you want to assign an object to a has_one association without saving the object, use the association.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}, ...) collection.create(attributes = {}) collection.create!(attributes = {})
  • In all of these methods, collection is replaced with the symbol passed as the first argument to has_many, and collection_singular is replaced with the singularized version of that symbol.
  • The collection<< method adds one or more objects to the collection by setting their foreign keys to the primary key of the calling model
  • The collection.delete method removes one or more objects from the collection by setting their foreign keys to NULL.
  • objects will be destroyed if they're associated with dependent: :destroy, and deleted if they're associated with dependent: :delete_all
  • The collection.destroy method removes one or more objects from the collection by running destroy on each object.
  • The collection_singular_ids method returns an array of the ids of the objects in the collection.
  • The collection_singular_ids= method makes the collection contain only the objects identified by the supplied primary key values, by adding and deleting as appropriate
  • The default strategy for has_many :through associations is delete_all, and for has_many associations is to set the foreign keys to NULL.
  • The collection.clear method removes all objects from the collection according to the strategy specified by the dependent option
  • uses the same syntax and options as ActiveRecord::Base.find
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.build method returns one or more new objects of the associated type. These objects will be instantiated from the passed attributes, and the link through their foreign key will be created, but the associated objects will not yet be saved.
  • The collection.create method returns a new object of the associated type. This object will be instantiated from the passed attributes, the link through its foreign key will be created, and, once it passes all of the validations specified on the associated model, the associated object will be saved.
  • :as :autosave :class_name :dependent :foreign_key :inverse_of :primary_key :source :source_type :through :validate
  • :delete_all causes all the associated objects to be deleted directly from the database (so callbacks will not execute)
  • :nullify causes the foreign keys to be set to NULL. Callbacks are not executed.
  • where includes readonly select
  • :conditions :through :polymorphic :foreign_key
  • By convention, Rails assumes that the column used to hold the primary key of the association is id. You can override this and explicitly specify the primary key with the :primary_key option.
  • The :source option specifies the source association name for a has_many :through association.
  • You only need to use this option if the name of the source association cannot be automatically inferred from the association name.
  • The :source_type option specifies the source association type for a has_many :through association that proceeds through a polymorphic association.
  • The :through option specifies a join model through which to perform the query.
  • has_many :through associations provide a way to implement many-to-many relationships,
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • If you use a hash-style where option, then record creation via this association will be automatically scoped using the hash
  • The extending method specifies a named module to extend the association proxy.
  • Association extensions
  • The group method supplies an attribute name to group the result set by, using a GROUP BY clause in the finder SQL.
  • has_many :line_items, -> { group 'orders.id' },                        through: :orders
  • more efficient by including line items in the association from customers to orders
  • The limit method lets you restrict the total number of objects that will be fetched through an association.
  • The offset method lets you specify the starting offset for fetching objects via an association
  • The order method dictates the order in which associated objects will be received (in the syntax used by an SQL ORDER BY clause).
  • Use the distinct method to keep the collection free of duplicates.
  • mostly useful together with the :through option
  • -> { distinct }
  • .all.inspect
  • If you want to make sure that, upon insertion, all of the records in the persisted association are distinct (so that you can be sure that when you inspect the association that you will never find duplicate records), you should add a unique index on the table itself
  • unique: true
  • Do not attempt to use include? to enforce distinctness in an association.
  • multiple users could be attempting this at the same time
  • checking for uniqueness using something like include? is subject to race conditions
  • When you assign an object to a has_many association, that object is automatically saved (in order to update its foreign key).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added
  • All unsaved members of the association will automatically be saved when the parent is saved.
  • assign an object to a has_many association without saving the object, use the collection.build method
  • collection(force_reload = false) collection<<(object, ...) collection.delete(object, ...) collection.destroy(object, ...) collection=(objects) collection_singular_ids collection_singular_ids=(ids) collection.clear collection.empty? collection.size collection.find(...) collection.where(...) collection.exists?(...) collection.build(attributes = {}) collection.create(attributes = {}) collection.create!(attributes = {})
  • If the join table for a has_and_belongs_to_many association has additional columns beyond the two foreign keys, these columns will be added as attributes to records retrieved via that association.
  • Records returned with additional attributes will always be read-only
  • If you require this sort of complex behavior on the table that joins two models in a many-to-many relationship, you should use a has_many :through association instead of has_and_belongs_to_many.
  • aliased as collection.concat and collection.push.
  • The collection.delete method removes one or more objects from the collection by deleting records in the join table
  • not destroy the objects
  • The collection.destroy method removes one or more objects from the collection by running destroy on each record in the join table, including running callbacks.
  • not destroy the objects.
  • The collection.clear method removes every object from the collection by deleting the rows from the joining table.
  • not destroy the associated objects.
  • The collection.find method finds objects within the collection. It uses the same syntax and options as ActiveRecord::Base.find.
  • The collection.where method finds objects within the collection based on the conditions supplied but the objects are loaded lazily meaning that the database is queried only when the object(s) are accessed.
  • The collection.exists? method checks whether an object meeting the supplied conditions exists in the collection.
  • The collection.build method returns a new object of the associated type.
  • the associated object will not yet be saved.
  • the associated object will be saved.
  • The collection.create method returns a new object of the associated type.
  • it passes all of the validations specified on the associated model
  • :association_foreign_key :autosave :class_name :foreign_key :join_table :validate
  • The :foreign_key and :association_foreign_key options are useful when setting up a many-to-many self-join.
  • Rails assumes that the column in the join table used to hold the foreign key pointing to the other model is the name of that model with the suffix _id added.
  • If you set the :autosave option to true, Rails will save any loaded members and destroy members that are marked for destruction whenever you save the parent object.
  • By convention, Rails assumes that the column in the join table used to hold the foreign key pointing to this model is the name of this model with the suffix _id added.
  • By default, this is true: associated objects will be validated when this object is saved.
  • where extending group includes limit offset order readonly select uniq
  • set conditions via a hash
  • In this case, using @parts.assemblies.create or @parts.assemblies.build will create orders where the factory column has the value "Seattle"
  • If you use a hash-style where, then record creation via this association will be automatically scoped using the hash
  • using a GROUP BY clause in the finder SQL.
  • Use the uniq method to remove duplicates from the collection.
  • assign an object to a has_and_belongs_to_many association, that object is automatically saved (in order to update the join table).
  • If any of these saves fails due to validation errors, then the assignment statement returns false and the assignment itself is cancelled.
  • If the parent object (the one declaring the has_and_belongs_to_many association) is unsaved (that is, new_record? returns true) then the child objects are not saved when they are added.
  • If you want to assign an object to a has_and_belongs_to_many association without saving the object, use the collection.build method.
  • Normal callbacks hook into the life cycle of Active Record objects, allowing you to work with those objects at various points
  • define association callbacks by adding options to the association declaration
  • Rails passes the object being added or removed to the callback.
  • stack callbacks on a single event by passing them as an array
  • If a before_add callback throws an exception, the object does not get added to the collection.
  • if a before_remove callback throws an exception, the object does not get removed from the collection
  • extend these objects through anonymous modules, adding new finders, creators, or other methods.
  • order_number
  • use a named extension module
  • proxy_association.owner returns the object that the association is a part of.
crazylion lee

GitHub - fonoster/fonos: - 0 views

shared by crazylion lee on 29 Oct 20 - No Cached
  •  
    "Project Fonos is open-source telecommunications for the cloud. It helps VoIP integrators quickly deploy new networks and benefit from value-added services such as Programmable Voice, Messaging, and Video. This repository assembles the various components needed to deploy a telephony system at scale."
張 旭

鳥哥的 Linux 私房菜 -- 第一章、Linux是什麼與如何學習 - 0 views

  • Linux就是核心與系統呼叫介面那兩層
  • 核心與硬體的關係非常的強烈
  • Linux提供了一個完整的作業系統當中最底層的硬體控制與資源管理的完整架構, 這個架構是沿襲Unix良好的傳統來的,所以相當的穩定而功能強大
  • ...31 more annotations...
  • Linux的核心是由Linus Torvalds在1991年的時候給他開發出來的, 並且丟到網路上提供大家下載,後來大家覺得這個小東西(Linux Kernel)相當的小而精巧, 所以慢慢的就有相當多的朋友投入這個小東西的研究領域裡面去
  • 1960年代初期麻省理工學院(MIT)發展了所謂的: 『相容分時系統(Compatible Time-Sharing System, CTSS)』, 它可以讓大型主機透過提供數個終端機(terminal)以連線進入主機,來利用主機的資源進行運算工作
  • 為了更加強化大型主機的功能,以讓主機的資源可以提供更多使用者來利用,所以在1965年前後, 由貝爾實驗室(Bell)、麻省理工學院(MIT)及奇異公司(GE, 或稱為通用電器)共同發起了Multics的計畫
  • 以組合語言(Assembler)寫出了一組核心程式,同時包括一些核心工具程式, 以及一個小小的檔案系統。那個系統就是Unix的原型! 當時Thompson將Multics龐大的複雜系統簡化了不少,於是同實驗室的朋友都戲稱這個系統為:Unics。(當時尚未有Unix的名稱)
  • 所有的程式或系統裝置都是檔案
  • 不管建構編輯器還是附屬檔案,所寫的程式只有一個目的,且要有效的完成目標。
  • Dennis Ritchie (註3) 將B語言重新改寫成C語言,再以C語言重新改寫與編譯Unics的核心, 最後正名與發行出Unix的正式版本!
  • 由於Unix是以較高階的C語言寫的,相對於組合語言需要與硬體有密切的配合, 高階的C語言與硬體的相關性就沒有這麼大了!所以,這個改變也使得Unix很容易被移植到不同的機器上面喔!
  • AT&T此時對於Unix是採取較開放的態度,此外,Unix是以高階的C語言寫成的, 理論上是具有可移植性的!亦即只要取得Unix的原始碼,並且針對大型主機的特性加以修訂原有的原始碼(Source Code), 就可能將Unix移植到另一部不同的主機上頭了。
  • 柏克萊大學的Bill Joy (註4)在取得了Unix的核心原始碼後,著手修改成適合自己機器的版本, 並且同時增加了很多工具軟體與編譯程式,最終將它命名為Berkeley Software Distribution (BSD)。
  • 每一家公司自己出的Unix雖然在架構上面大同小異,但是卻真的僅能支援自身的硬體, 所以囉,早先的Unix只能與伺服器(Server)或者是大型工作站(Workstation)劃上等號!
  • AT&T在1979年發行的第七版Unix中,特別提到了 『不可對學生提供原始碼』的嚴格限制!
  • 純種的Unix指的就是System V以及BSD
  • AT&T自家的System V
  • 既然1979年的Unix第七版可以在Intel的x86架構上面進行移植, 那麼是否意味著可以將Unix改寫並移植到x86上面了呢?在這個想法上, 譚寧邦教授於是乎自己動手寫了Minix這個Unix Like的核心程式!
  • 『既然作業系統太複雜,我就先寫可以在Unix上面運行的小程式,這總可以了吧?』
  • 如果能夠寫出一個不錯的編譯器,那不就是大家都需要的軟體了嗎? 因此他便開始撰寫C語言的編譯器,那就是現在相當有名的GNU C Compiler(gcc)!
  • 他還撰寫了更多可以被呼叫的C函式庫(GNU C library),以及可以被使用來操作作業系統的基本介面BASH shell! 這些都在1990年左右完成了!
  • 有鑑於圖形使用者介面(Graphical User Interface, GUI) 的需求日益加重,在1984年由MIT與其他協力廠商首次發表了X Window System ,並且更在1988年成立了非營利性質的XFree86這個組織。所謂的XFree86其實是 X Window System + Free + x86的整合名稱呢!
  • 譚寧邦教授為了教育需要而撰寫的Minix系統! 他在購買了最新的Intel 386的個人電腦後,就立即安裝了Minix這個作業系統。 另外,上個小節當中也談到,Minix這個作業系統是有附上原始碼的, 所以托瓦茲也經由這個原始碼學習到了很多的核心程式設計的設計概念喔!
  • 托瓦茲自己也說:『我始終是個性能癖』^_^。 為了徹底發揮386的效能,於是托瓦茲花了不少時間在測試386機器上! 他的重要測試就是在測試386的多功性能。首先,他寫了三個小程式,一個程式會持續輸出A、一個會持續輸出B, 最後一個會將兩個程式進行切換。他將三個程式同時執行,結果,他看到螢幕上很順利的一直出現ABABAB...... 他知道,他成功了! ^_^
  • 為了讓所有的軟體都可以在Linux上執行,於是托瓦茲開始參考標準的POSIX規範。
  • POSIX是可攜式作業系統介面(Portable Operating System Interface)的縮寫,重點在規範核心與應用程式之間的介面, 這是由美國電器與電子工程師學會(IEEE)所發佈的一項標準喔
  • 因為托瓦茲放置核心的那個FTP網站的目錄為:Linux, 從此,大家便稱這個核心為Linux了。(請注意,此時的Linux就是那個kernel喔! 另外,托瓦茲所丟到該目錄下的第一個核心版本為0.02呢!)
  • Linux其實就是一個作業系統最底層的核心及其提供的核心工具。 他是GNU GPL授權模式,所以,任何人均可取得原始碼與可執行這個核心程式,並且可以修改。
  • Linux參考POSIX設計規範,於是相容於Unix作業系統,故亦可稱之為Unix Like的一種
  • 為了讓使用者能夠接觸到Linux,於是很多的商業公司或非營利團體, 就將Linux Kernel(含tools)與可運行的軟體整合起來,加上自己具有創意的工具程式, 這個工具程式可以讓使用者以光碟/DVD或者透過網路直接安裝/管理Linux系統。 這個『Kernel + Softwares + Tools + 可完整安裝程序』的咚咚,我們稱之為Linux distribution, 一般中文翻譯成可完整安裝套件,或者Linux發佈商套件等。
  • 在1994年終於完成的Linux的核心正式版!version 1.0。 這一版同時還加入了X Window System的支援呢!且於1996年完成了2.0版、2011 年釋出 3.0 版,更於 2015 年 4 月釋出了 4.0 版哩! 發展相當迅速喔!此外,托瓦茲指明了企鵝為Linux的吉祥物。
  • Linux本身就是個最陽春的作業系統,其開發網站設立在http://www.kernel.org,我們亦稱Linux作業系統最底層的資料為『核心(Kernel)』。
  • 常見的 Linux distributions 分類有『商業、社群』分類法,或『RPM、DPKG』分類法
  • 事實上鳥哥認為distributions主要分為兩大系統,一種是使用RPM方式安裝軟體的系統,包括Red Hat, Fedora, SuSE等都是這類; 一種則是使用Debian的dpkg方式安裝軟體的系統,包括Debian, Ubuntu, B2D等等。
1 - 4 of 4
Showing 20 items per page