Skip to main content

Home/ Larvata/ Group items tagged HA

Rss Feed Group items tagged

張 旭

Replication - Redis - 0 views

  • leader follower (master-slave) replication
  • slave Redis instances to be exact copies of master instances.
  • The slave will automatically reconnect to the master every time the link breaks, and will attempt to be an exact copy of it regardless of what happens to the master.
  • ...2 more annotations...
  • the master keeps the slave updated by sending a stream of commands to the slave
  • When a partial resynchronization is not possible, the slave will ask for a full resynchronization.
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Kubernetes - Traefik - 0 views

  • allow fine-grained control of Kubernetes resources and API.
  • authorize Traefik to use the Kubernetes API.
  • namespace-specific RoleBindings
  • ...29 more annotations...
  • a single, global ClusterRoleBinding.
  • RoleBindings per namespace enable to restrict granted permissions to the very namespaces only that Traefik is watching over, thereby following the least-privileges principle.
  • The scalability can be much better when using a Deployment
  • you will have a Single-Pod-per-Node model when using a DaemonSet,
  • DaemonSets automatically scale to new nodes, when the nodes join the cluster
  • DaemonSets ensure that only one replica of pods run on any single node.
  • DaemonSets can be run with the NET_BIND_SERVICE capability, which will allow it to bind to port 80/443/etc on each host. This will allow bypassing the kube-proxy, and reduce traffic hops.
  • start with the Daemonset
  • The Deployment has easier up and down scaling possibilities.
  • The DaemonSet automatically scales to all nodes that meets a specific selector and guarantees to fill nodes one at a time.
  • Rolling updates are fully supported from Kubernetes 1.7 for DaemonSets as well.
  • provide the TLS certificate via a Kubernetes secret in the same namespace as the ingress.
  • If there are any errors while loading the TLS section of an ingress, the whole ingress will be skipped.
  • create secret generic
  • Name-based Routing
  • Path-based Routing
  • Traefik will merge multiple Ingress definitions for the same host/path pair into one definition.
  • specify priority for ingress routes
  • traefik.frontend.priority
  • When specifying an ExternalName, Traefik will forward requests to the given host accordingly and use HTTPS when the Service port matches 443.
  • By default Traefik will pass the incoming Host header to the upstream resource.
  • traefik.frontend.passHostHeader: "false"
  • type: ExternalName
  • By default, Traefik processes every Ingress objects it observes.
  • It is also possible to set the ingressClass option in Traefik to a particular value. Traefik will only process matching Ingress objects.
  • It is possible to split Ingress traffic in a fine-grained manner between multiple deployments using service weights.
  • use case is canary releases where a deployment representing a newer release is to receive an initially small but ever-increasing fraction of the requests over time.
  • annotations: traefik.ingress.kubernetes.io/service-weights: | my-app: 99% my-app-canary: 1%
  • Over time, the ratio may slowly shift towards the canary deployment until it is deemed to replace the previous main application, in steps such as 5%/95%, 10%/90%, 50%/50%, and finally 100%/0%.
張 旭

Pods - Kubernetes - 0 views

  • Pods are the smallest deployable units of computing
  • A Pod (as in a pod of whales or pea pod) is a group of one or more containersA lightweight and portable executable image that contains software and all of its dependencies. (such as Docker containers), with shared storage/network, and a specification for how to run the containers.
  • A Pod’s contents are always co-located and co-scheduled, and run in a shared context.
  • ...32 more annotations...
  • A Pod models an application-specific “logical host”
  • application containers which are relatively tightly coupled
  • being executed on the same physical or virtual machine would mean being executed on the same logical host.
  • The shared context of a Pod is a set of Linux namespaces, cgroups, and potentially other facets of isolation
  • Containers within a Pod share an IP address and port space, and can find each other via localhost
  • Containers in different Pods have distinct IP addresses and can not communicate by IPC without special configuration. These containers usually communicate with each other via Pod IP addresses.
  • Applications within a Pod also have access to shared volumesA directory containing data, accessible to the containers in a pod. , which are defined as part of a Pod and are made available to be mounted into each application’s filesystem.
  • a Pod is modelled as a group of Docker containers with shared namespaces and shared filesystem volumes
    • 張 旭
       
      類似 docker-compose 裡面宣告的同一坨?
  • Pods are considered to be relatively ephemeral (rather than durable) entities.
  • Pods are created, assigned a unique ID (UID), and scheduled to nodes where they remain until termination (according to restart policy) or deletion.
  • it can be replaced by an identical Pod
  • When something is said to have the same lifetime as a Pod, such as a volume, that means that it exists as long as that Pod (with that UID) exists.
  • uses a persistent volume for shared storage between the containers
  • Pods serve as unit of deployment, horizontal scaling, and replication
  • The applications in a Pod all use the same network namespace (same IP and port space), and can thus “find” each other and communicate using localhost
  • flat shared networking space
  • Containers within the Pod see the system hostname as being the same as the configured name for the Pod.
  • Volumes enable data to survive container restarts and to be shared among the applications within the Pod.
  • Individual Pods are not intended to run multiple instances of the same application
  • The individual containers may be versioned, rebuilt and redeployed independently.
  • Pods aren’t intended to be treated as durable entities.
  • Controllers like StatefulSet can also provide support to stateful Pods.
  • When a user requests deletion of a Pod, the system records the intended grace period before the Pod is allowed to be forcefully killed, and a TERM signal is sent to the main process in each container.
  • Once the grace period has expired, the KILL signal is sent to those processes, and the Pod is then deleted from the API server.
  • grace period
  • Pod is removed from endpoints list for service, and are no longer considered part of the set of running Pods for replication controllers.
  • When the grace period expires, any processes still running in the Pod are killed with SIGKILL.
  • By default, all deletes are graceful within 30 seconds.
  • You must specify an additional flag --force along with --grace-period=0 in order to perform force deletions.
  • Force deletion of a Pod is defined as deletion of a Pod from the cluster state and etcd immediately.
  • StatefulSet Pods
  • Processes within the container get almost the same privileges that are available to processes outside a container.
張 旭

ProxySQL Experimental Feature: Native ProxySQL Clustering - Percona Database Performanc... - 0 views

  • several ProxySQL instances to communicate with and share configuration updates with each other.
  • 4 tables where you can make changes and propagate the configuration
  • When you make a change like INSERT/DELETE/UPDATE on any of these tables, after running the command LOAD … TO RUNTIME , ProxySQL creates a new checksum of the table’s data and increments the version number in the table runtime_checksums_values
  • ...2 more annotations...
  • all nodes are monitoring and communicating with all the other ProxySQL nodes. When another node detects a change in the checksum and version (both at the same time), each node will get a copy of the table that was modified, make the same changes locally, and apply the new config to RUNTIME to refresh the new config, make it visible to the applications connected and automatically save it to DISK for persistence.
  • a “synchronous cluster” so any changes to these 4 tables on any ProxySQL server will be replicated to all other ProxySQL nodes.
張 旭

DNS Records: An Introduction - 0 views

  • Domain names are best understood by reading from right to left.
  • the top-level domain, or TLD
  • Every term to the left of the TLD is separated by a period and considered a more specific subdomain
  • ...40 more annotations...
  • Name servers host a domain’s DNS information in a text file called a zone file.
  • Start of Authority (SOA) records
  • specifying DNS records, which match domain names to IP addresses.
  • Every domain’s zone file contains the domain administrator’s email address, the name servers, and the DNS records.
  • Your ISP’s DNS resolver queries a root nameserver for the proper TLD nameserver. In other words, it asks the root nameserver, *Where can I find the nameserver for .com domains?*
  • In actuality, ISPs cache a lot of DNS information after they’ve looked it up the first time.
  • caching is a good thing, but it can be a problem if you’ve recently made a change to your DNS information
  • An A record points your domain or subdomain to your Linode’s IP address,
  • use an asterisk (*) as your subdomain
  • An AAAA record is just like an A record, but for IPv6 IP addresses.
  • An AXFR record is a type of DNS record used for DNS replication
  • DNS Certification Authority Authorization uses DNS to allow the holder of a domain to specify which certificate authorities are allowed to issue certificates for that domain.
  • A CNAME record or Canonical Name record matches a domain or subdomain to a different domain.
  • Some mail servers handle mail oddly for domains with CNAME records, so you should not use a CNAME record for a domain that gets email.
  • MX records cannot reference CNAME-defined hostnames.
  • Chaining or looping CNAME records is not recommended.
  • a CNAME record does not function the same way as a URL redirect.
  • A DKIM record or DomainKeys Identified Mail record displays the public key for authenticating messages that have been signed with the DKIM protocol
  • DKIM records are implemented as text records.
  • An MX record or mail exchanger record sets the mail delivery destination for a domain or subdomain.
  • An MX record should ideally point to a domain that is also the hostname for its server.
  • Priority allows you to designate a fallback server (or servers) for mail for a particular domain. Lower numbers have a higher priority.
  • NS records or name server records set the nameservers for a domain or subdomain.
  • You can also set up different nameservers for any of your subdomains
  • Primary nameservers get configured at your registrar and secondary subdomain nameservers get configured in the primary domain’s zone file.
  • The order of NS records does not matter. DNS requests are sent randomly to the different servers
  • A PTR record or pointer record matches up an IP address to a domain or subdomain, allowing reverse DNS queries to function.
  • opposite service an A record does
  • PTR records are usually set with your hosting provider. They are not part of your domain’s zone file.
  • An SOA record or Start of Authority record labels a zone file with the name of the host where it was originally created.
  • Minimum TTL: The minimum amount of time other servers should keep data cached from this zone file.
  • An SPF record or Sender Policy Framework record lists the designated mail servers for a domain or subdomain.
  • An SPF record for your domain tells other receiving mail servers which outgoing server(s) are valid sources of email so they can reject spoofed mail from your domain that has originated from unauthorized servers.
  • Make sure your SPF records are not too strict.
  • An SRV record or service record matches up a specific service that runs on your domain or subdomain to a target domain.
  • Service: The name of the service must be preceded by an underscore (_) and followed by a period (.)
  • Protocol: The name of the protocol must be proceeded by an underscore (_) and followed by a period (.)
  • Port: The TCP or UDP port on which the service runs.
  • Target: The target domain or subdomain. This domain must have an A or AAAA record that resolves to an IP address.
  • A TXT record or text record provides information about the domain in question to other resources on the internet.
  •  
    "Domain names are best understood by reading from right to left."
張 旭

MySQL on Docker: Running ProxySQL as Kubernetes Service | Severalnines - 0 views

  • Using Kubernetes ConfigMap approach, ProxySQL can be clustered with immutable configuration.
  • Kubernetes handles ProxySQL recovery and balance the connections to the instances automatically.
  • Can be used with external applications outside Kubernetes.
  • ...11 more annotations...
  • load balancing, connection failover and decoupling of the application tier from the underlying database topologies.
  • ProxySQL as a Kubernetes service (centralized deployment)
  • running as a service makes ProxySQL pods live independently from the applications and can be easily scaled and clustered together with the help of Kubernetes ConfigMap.
  • ProxySQL's multi-layer configuration system makes pod clustering possible with ConfigMap.
  • create ProxySQL pods and attach a Kubernetes service to be accessed by the other pods within the Kubernetes network or externally.
  • Default to 6033 for MySQL load-balanced connections and 6032 for ProxySQL administration console.
  • separated by "---" delimiter
  • deploy two ProxySQL pods as a ReplicaSet that matches containers labelled with "app=proxysql,tier=frontend".
  • A Kubernetes service is an abstraction layer which defines the logical set of pods and a policy by which to access them
  • The range of valid ports for NodePort resource is 30000-32767.
  • ConfigMap - To store ProxySQL configuration file as a volume so it can be mounted to multiple pods and can be remounted again if the pod is being rescheduled to the other Kubernetes node.
張 旭

Helm | - 0 views

  • Helm will figure out where to install Tiller by reading your Kubernetes configuration file (usually $HOME/.kube/config). This is the same file that kubectl uses.
  • kubectl cluster-info
  • Role-Based Access Control (RBAC) enabled
  • ...133 more annotations...
  • initialize the local CLI
  • install Tiller into your Kubernetes cluster
  • helm install
  • helm init --upgrade
  • By default, when Tiller is installed, it does not have authentication enabled.
  • helm repo update
  • Without a max history set the history is kept indefinitely, leaving a large number of records for helm and tiller to maintain.
  • helm init --upgrade
  • Whenever you install a chart, a new release is created.
  • one chart can be installed multiple times into the same cluster. And each can be independently managed and upgraded.
  • helm list function will show you a list of all deployed releases.
  • helm delete
  • helm status
  • you can audit a cluster’s history, and even undelete a release (with helm rollback).
  • the Helm server (Tiller).
  • The Helm client (helm)
  • brew install kubernetes-helm
  • Tiller, the server portion of Helm, typically runs inside of your Kubernetes cluster.
  • it can also be run locally, and configured to talk to a remote Kubernetes cluster.
  • Role-Based Access Control - RBAC for short
  • create a service account for Tiller with the right roles and permissions to access resources.
  • run Tiller in an RBAC-enabled Kubernetes cluster.
  • run kubectl get pods --namespace kube-system and see Tiller running.
  • helm inspect
  • Helm will look for Tiller in the kube-system namespace unless --tiller-namespace or TILLER_NAMESPACE is set.
  • For development, it is sometimes easier to work on Tiller locally, and configure it to connect to a remote Kubernetes cluster.
  • even when running locally, Tiller will store release configuration in ConfigMaps inside of Kubernetes.
  • helm version should show you both the client and server version.
  • Tiller stores its data in Kubernetes ConfigMaps, you can safely delete and re-install Tiller without worrying about losing any data.
  • helm reset
  • The --node-selectors flag allows us to specify the node labels required for scheduling the Tiller pod.
  • --override allows you to specify properties of Tiller’s deployment manifest.
  • helm init --override manipulates the specified properties of the final manifest (there is no “values” file).
  • The --output flag allows us skip the installation of Tiller’s deployment manifest and simply output the deployment manifest to stdout in either JSON or YAML format.
  • By default, tiller stores release information in ConfigMaps in the namespace where it is running.
  • switch from the default backend to the secrets backend, you’ll have to do the migration for this on your own.
  • a beta SQL storage backend that stores release information in an SQL database (only postgres has been tested so far).
  • Once you have the Helm Client and Tiller successfully installed, you can move on to using Helm to manage charts.
  • Helm requires that kubelet have access to a copy of the socat program to proxy connections to the Tiller API.
  • A Release is an instance of a chart running in a Kubernetes cluster. One chart can often be installed many times into the same cluster.
  • helm init --client-only
  • helm init --dry-run --debug
  • A panic in Tiller is almost always the result of a failure to negotiate with the Kubernetes API server
  • Tiller and Helm have to negotiate a common version to make sure that they can safely communicate without breaking API assumptions
  • helm delete --purge
  • Helm stores some files in $HELM_HOME, which is located by default in ~/.helm
  • A Chart is a Helm package. It contains all of the resource definitions necessary to run an application, tool, or service inside of a Kubernetes cluster.
  • it like the Kubernetes equivalent of a Homebrew formula, an Apt dpkg, or a Yum RPM file.
  • A Repository is the place where charts can be collected and shared.
  • Set the $HELM_HOME environment variable
  • each time it is installed, a new release is created.
  • Helm installs charts into Kubernetes, creating a new release for each installation. And to find new charts, you can search Helm chart repositories.
  • chart repository is named stable by default
  • helm search shows you all of the available charts
  • helm inspect
  • To install a new package, use the helm install command. At its simplest, it takes only one argument: The name of the chart.
  • If you want to use your own release name, simply use the --name flag on helm install
  • additional configuration steps you can or should take.
  • Helm does not wait until all of the resources are running before it exits. Many charts require Docker images that are over 600M in size, and may take a long time to install into the cluster.
  • helm status
  • helm inspect values
  • helm inspect values stable/mariadb
  • override any of these settings in a YAML formatted file, and then pass that file during installation.
  • helm install -f config.yaml stable/mariadb
  • --values (or -f): Specify a YAML file with overrides.
  • --set (and its variants --set-string and --set-file): Specify overrides on the command line.
  • Values that have been --set can be cleared by running helm upgrade with --reset-values specified.
  • Chart designers are encouraged to consider the --set usage when designing the format of a values.yaml file.
  • --set-file key=filepath is another variant of --set. It reads the file and use its content as a value.
  • inject a multi-line text into values without dealing with indentation in YAML.
  • An unpacked chart directory
  • When a new version of a chart is released, or when you want to change the configuration of your release, you can use the helm upgrade command.
  • Kubernetes charts can be large and complex, Helm tries to perform the least invasive upgrade.
  • It will only update things that have changed since the last release
  • $ helm upgrade -f panda.yaml happy-panda stable/mariadb
  • deployment
  • If both are used, --set values are merged into --values with higher precedence.
  • The helm get command is a useful tool for looking at a release in the cluster.
  • helm rollback
  • A release version is an incremental revision. Every time an install, upgrade, or rollback happens, the revision number is incremented by 1.
  • helm history
  • a release name cannot be re-used.
  • you can rollback a deleted resource, and have it re-activate.
  • helm repo list
  • helm repo add
  • helm repo update
  • The Chart Development Guide explains how to develop your own charts.
  • helm create
  • helm lint
  • helm package
  • Charts that are archived can be loaded into chart repositories.
  • chart repository server
  • Tiller can be installed into any namespace.
  • Limiting Tiller to only be able to install into specific namespaces and/or resource types is controlled by Kubernetes RBAC roles and rolebindings
  • Release names are unique PER TILLER INSTANCE
  • Charts should only contain resources that exist in a single namespace.
  • not recommended to have multiple Tillers configured to manage resources in the same namespace.
  • a client-side Helm plugin. A plugin is a tool that can be accessed through the helm CLI, but which is not part of the built-in Helm codebase.
  • Helm plugins are add-on tools that integrate seamlessly with Helm. They provide a way to extend the core feature set of Helm, but without requiring every new feature to be written in Go and added to the core tool.
  • Helm plugins live in $(helm home)/plugins
  • The Helm plugin model is partially modeled on Git’s plugin model
  • helm referred to as the porcelain layer, with plugins being the plumbing.
  • helm plugin install https://github.com/technosophos/helm-template
  • command is the command that this plugin will execute when it is called.
  • Environment variables are interpolated before the plugin is executed.
  • The command itself is not executed in a shell. So you can’t oneline a shell script.
  • Helm is able to fetch Charts using HTTP/S
  • Variables like KUBECONFIG are set for the plugin if they are set in the outer environment.
  • In Kubernetes, granting a role to an application-specific service account is a best practice to ensure that your application is operating in the scope that you have specified.
  • restrict Tiller’s capabilities to install resources to certain namespaces, or to grant a Helm client running access to a Tiller instance.
  • Service account with cluster-admin role
  • The cluster-admin role is created by default in a Kubernetes cluster
  • Deploy Tiller in a namespace, restricted to deploying resources only in that namespace
  • Deploy Tiller in a namespace, restricted to deploying resources in another namespace
  • When running a Helm client in a pod, in order for the Helm client to talk to a Tiller instance, it will need certain privileges to be granted.
  • SSL Between Helm and Tiller
  • The Tiller authentication model uses client-side SSL certificates.
  • creating an internal CA, and using both the cryptographic and identity functions of SSL.
  • Helm is a powerful and flexible package-management and operations tool for Kubernetes.
  • default installation applies no security configurations
  • with a cluster that is well-secured in a private network with no data-sharing or no other users or teams.
  • With great power comes great responsibility.
  • Choose the Best Practices you should apply to your helm installation
  • Role-based access control, or RBAC
  • Tiller’s gRPC endpoint and its usage by Helm
  • Kubernetes employ a role-based access control (or RBAC) system (as do modern operating systems) to help mitigate the damage that can be done if credentials are misused or bugs exist.
  • In the default installation the gRPC endpoint that Tiller offers is available inside the cluster (not external to the cluster) without authentication configuration applied.
  • Tiller stores its release information in ConfigMaps. We suggest changing the default to Secrets.
  • release information
  • charts
  • charts are a kind of package that not only installs containers you may or may not have validated yourself, but it may also install into more than one namespace.
  • As with all shared software, in a controlled or shared environment you must validate all software you install yourself before you install it.
  • Helm’s provenance tools to ensure the provenance and integrity of charts
  •  
    "Helm will figure out where to install Tiller by reading your Kubernetes configuration file (usually $HOME/.kube/config). This is the same file that kubectl uses."
張 旭

Introduction to GitLab Flow | GitLab - 0 views

  • GitLab flow as a clearly defined set of best practices. It combines feature-driven development and feature branches with issue tracking.
  • In Git, you add files from the working copy to the staging area. After that, you commit them to your local repo. The third step is pushing to a shared remote repository.
  • branching model
  • ...68 more annotations...
  • The biggest problem is that many long-running branches emerge that all contain part of the changes.
  • It is a convention to call your default branch master and to mostly branch from and merge to this.
  • Nowadays, most organizations practice continuous delivery, which means that your default branch can be deployed.
  • Continuous delivery removes the need for hotfix and release branches, including all the ceremony they introduce.
  • Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
  • GitHub flow assumes you can deploy to production every time you merge a feature branch.
  • You can deploy a new version by merging master into the production branch. If you need to know what code is in production, you can just checkout the production branch to see.
  • Production branch
  • Environment branches
  • have an environment that is automatically updated to the master branch.
  • deploy the master branch to staging.
  • To deploy to pre-production, create a merge request from the master branch to the pre-production branch.
  • Go live by merging the pre-production branch into the production branch.
  • Release branches
  • work with release branches if you need to release software to the outside world.
  • each branch contains a minor version
  • After announcing a release branch, only add serious bug fixes to the branch.
  • merge these bug fixes into master, and then cherry-pick them into the release branch.
  • Merging into master and then cherry-picking into release is called an “upstream first” policy
  • Tools such as GitHub and Bitbucket choose the name “pull request” since the first manual action is to pull the feature branch.
  • Tools such as GitLab and others choose the name “merge request” since the final action is to merge the feature branch.
  • If you work on a feature branch for more than a few hours, it is good to share the intermediate result with the rest of the team.
  • the merge request automatically updates when new commits are pushed to the branch.
  • If the assigned person does not feel comfortable, they can request more changes or close the merge request without merging.
  • In GitLab, it is common to protect the long-lived branches, e.g., the master branch, so that most developers can’t modify them.
  • if you want to merge into a protected branch, assign your merge request to someone with maintainer permissions.
  • After you merge a feature branch, you should remove it from the source control software.
  • Having a reason for every code change helps to inform the rest of the team and to keep the scope of a feature branch small.
  • If there is no issue yet, create the issue
  • The issue title should describe the desired state of the system.
  • For example, the issue title “As an administrator, I want to remove users without receiving an error” is better than “Admin can’t remove users.”
  • create a branch for the issue from the master branch
  • If you open the merge request but do not assign it to anyone, it is a “Work In Progress” merge request.
  • Start the title of the merge request with [WIP] or WIP: to prevent it from being merged before it’s ready.
  • When they press the merge button, GitLab merges the code and creates a merge commit that makes this event easily visible later on.
  • Merge requests always create a merge commit, even when the branch could be merged without one. This merge strategy is called “no fast-forward” in Git.
  • Suppose that a branch is merged but a problem occurs and the issue is reopened. In this case, it is no problem to reuse the same branch name since the first branch was deleted when it was merged.
  • At any time, there is at most one branch for every issue.
  • It is possible that one feature branch solves more than one issue.
  • GitLab closes these issues when the code is merged into the default branch.
  • If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.
  • use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
  • you should never rebase commits you have pushed to a remote server.
  • Rebasing creates new commits for all your changes, which can cause confusion because the same change would have multiple identifiers.
  • if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.
  • never rebase commits authored by other people.
  • it is a bad idea to rebase commits that you have already pushed.
  • If you revert a merge commit and then change your mind, revert the revert commit to redo the merge.
  • Often, people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch.
  • Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
  • every time you rebase, you have to resolve similar conflicts.
  • Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
  • A good way to prevent creating many merge commits is to not frequently merge master into the feature branch.
  • keep your feature branches short-lived.
  • Most feature branches should take less than one day of work.
  • If your feature branches often take more than a day of work, try to split your features into smaller units of work.
  • You could also use feature toggles to hide incomplete features so you can still merge back into master every day.
  • you should try to prevent merge commits, but not eliminate them.
  • Your codebase should be clean, but your history should represent what actually happened.
  • If you rebase code, the history is incorrect, and there is no way for tools to remedy this because they can’t deal with changing commit identifiers
  • Commit often and push frequently
  • You should push your feature branch frequently, even when it is not yet ready for review.
  • A commit message should reflect your intention, not just the contents of the commit.
  • each merge request must be tested before it is accepted.
  • test the master branch after each change.
  • If new commits in master cause merge conflicts with the feature branch, merge master back into the branch to make the CI server re-run the tests.
  • When creating a feature branch, always branch from an up-to-date master.
  • Do not merge from upstream again if your code can work and merge cleanly without doing so.
張 旭

Warnings, Notes, & Tips - 0 views

  • AS3 manages topology records globally in /Common, it is required that records only be managed through AS3, as it will treat the records declaratively.
  • If a record is added outside of AS3, it will be removed if it is not included in the next AS3 declaration for topology records (AS3 completely overwrites non-AS3 topologies when a declaration is submitted).
  • using AS3 to delete a tenant (for example, sending DELETE to the /declare/<TENANT> endpoint) that contains GSLB topologies will completely remove ALL GSLB topologies from the BIG-IP.
  • ...12 more annotations...
  • When posting a large declaration (hundreds of application services in a single declaration), you may experience a 500 error stating that the save sys config operation failed.
  • Even if you have asynchronous mode set to false, after 45 seconds AS3 sets asynchronous mode to true (API swap), and returns an async response.
  • When creating a new tenant using AS3, it must not use the same name as a partition you separately create on the target BIG-IP system.
  • If you use the same name and then post the declaration, AS3 overwrites (or removes) the existing partition completely, including all configuration objects in that partition.
  • use AS3 to create a tenant (which creates a BIG-IP partition), manually adding configuration objects to the partition created by AS3 can have unexpected results
  • When you delete the Tenant using AS3, the system deletes both virtual servers.
  • if a Firewall_Address_List contains zero addresses, a dummy IPv6 address of ::1:5ee:bad:c0de is added in order to maintain a valid Firewall_Address_List. If an address is added to the list, the dummy address is removed.
  • use /mgmt/shared/appsvcs/declare?async=true if you have a particularly large declaration which will take a long time to process.
  • reviewing the Sizing BIG-IP Virtual Editions section (page 7) of Deploying BIG-IP VEs in a Hyper-Converged Infrastructure
  • To test whether your system has AS3 installed or not, use GET with the /mgmt/shared/appsvcs/info URI.
  • You may find it more convenient to put multi-line texts such as iRules into AS3 declarations by first encoding them in Base64.
  • no matter your BIG-IP user account name, audit logs show all messages from admin and not the specific user name.
張 旭

Rails Environment Variables · RailsApps - 1 views

  • You can pass local configuration settings to an application using environment variables.
  • Operating systems (Linux, Mac OS X, Windows) provide mechanisms to set local environment variables, as does Heroku and other deployment platforms.
  • In general, you shouldn’t save email account credentials or private API keys to a shared git repository.
  • ...10 more annotations...
  • You could “hardcode” your Gmail username and password into the file but that would expose it to everyone who has access to your git repository.
  • It’s important to learn to use the Unix shell if you’re commited to improving your skills as a developer.
  • The gem reads a config/application.yml file and sets environment variables before anything else is configured in the Rails application.
  • make sure this file is listed in the .gitignore file so it isn’t checked into the git repository
  • Rails provides a config.before_configuration
  • YAML.load(File.open(env_file)).each do |key, value| ENV[key.to_s] = value end if File.exists?(env_file)
  • Heroku is a popular choice for low cost, easily configured Rails application hosting.
  • heroku config:add
  • the dotenv Ruby gem
  • Foreman is a tool for starting and configuring multiple processes in a complex application
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 20.4 Getting Started with InnoDB Cluster - 0 views

  • InnoDB cluster instances are created and managed through the MySQL Shell.
  • To create a new InnoDB cluster, the MySQL Shell must be connected to the MySQL Server instance. By default, this MySQL Server instance is the seed instance of the new InnoDB cluster and hold the initial data set.
  • Sandbox instance are only suitable for deploying and running on your local machine.
  • ...3 more annotations...
  • A minimum of three instances are required to create an InnoDB cluster
  • reverts to read-only mode
  • MySQL Shell provides two scripting languages: JavaScript and Python.
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 19.1 Group Replication Background - 0 views

  • the component can be removed and the system should continue to operate as expected
  • network partitioning
  • split brain scenarios
  • ...8 more annotations...
  • the ultimate challenge is to fuse the logic of the database and data replication with the logic of having several servers coordinated in a consistent and simple way
  • MySQL Group Replication provides distributed state machine replication with strong coordination between servers.
  • Servers coordinate themselves automatically when they are part of the same group
  • The group can operate in a single-primary mode with automatic primary election, where only one server accepts updates at a time.
  • For a transaction to commit, the majority of the group have to agree on the order of a given transaction in the global sequence of transactions
  • Deciding to commit or abort a transaction is done by each server individually, but all servers make the same decision
  • group communication protocols
  • the Paxos algorithm. It acts as the group communication systems engine.
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 19.2.1.2 Configuring an Instance for Group Repli... - 0 views

  • store replication metadata in system tables instead of files
  • collect the write set and encode it as a hash using the XXHASH64 hashing algorithm
  • not start operations automatically when the server starts
  • ...10 more annotations...
  • for incoming connections from other members in the group
  • The server listens on this port for member-to-member connections. This port must not be used for user applications at all
  • The loose- prefix used for the group_replication variables above instructs the server to continue to start if the Group Replication plugin has not been loaded at the time the server is started.
  • For example, if each server instance is on a different machine use the IP and port of the machine, such as 10.0.0.1:33061. The recommended port for group_replication_local_address is 33061
  • does not need to list all members in the group
  • The server that starts the group does not make use of this option, since it is the initial server and as such, it is in charge of bootstrapping the group
  • start the bootstrap member first, and let it create the group
  • Creating a group and joining multiple members at the same time is not supported.
  • must only be used on one server instance at any time
  • Disable this option after the first server instance comes online
張 旭

Deploying Rails Apps, Part 6: Writing Capistrano Tasks - Vladi Gleba - 0 views

  • we can write our own tasks to help us automate various things.
  • organizing all of the tasks here under a namespace
  • upload a file from our local computer.
  • ...27 more annotations...
  • learn about is SSHKit and the various methods it provides
  • SSHKit was actually developed and released with Capistrano 3, and it’s basically a lower-level tool that provides methods for connecting and interacting with remote servers
  • on(): specifies the server to run on
  • within(): specifies the directory path to run in
  • with(): specifies the environment variables to run with
  • run on the application server
  • within the path specified
  • with certain environment variables set
  • execute(): the workhorse that runs the commands on your server
  • upload(): uploads a file from your local computer to your remote server
  • capture(): executes a command and returns its output as a string
    • 張 旭
       
      capture 是跑在遠端伺服器上
  • upload() has the bang symbol (!) because that’s how it’s defined in SSHKit, and it’s just a convention letting us know that the method will block until it finishes.
  • But in order to ensure rake runs with the proper environment variables set, we have to use rake as a symbol and pass db:seed as a string
  • This format will also be necessary whenever you’re running any other Rails-specific commands that rely on certain environment variables being set
  • I recommend you take a look at SSHKit’s example page to learn more
  • make sure we pushed all our local changes to the remote master branch
  • run this task before Capistrano runs its own deploy task
  • actually creates three separate tasks
  • I created a namespace called deploy to contain these tasks since that’s what they’re related to.
  • we’re using the callbacks inside a namespace to make sure Capistrano knows which tasks the callbacks are referencing.
  • custom recipe (a Capistrano term meaning a series of tasks)
  • /shared: holds files and directories that persist throughout deploys
  • When you run cap production deploy, you’re actually calling a Capistrano task called deploy, which then sequentially invokes other tasks
  • your favorite browser (I hope it’s not Internet Explorer)
  • Deployment is hard and takes a while to sink in.
  • the most important thing is to not get discouraged
  • I didn’t want other people going through the same thing
張 旭

MongoDB Performance Tuning: Everything You Need to Know - Stackify - 0 views

  • db.serverStatus().globalLock
  • db.serverStatus().locks
  • globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it’s consistently high. This can happen if a lot of requests are waiting for a lock to be released.
  • ...35 more annotations...
  • globalLock.totalTime: If this is higher than the total database uptime, the database has been in a lock state for too long.
  • Unlike relational databases such as MySQL or PostgreSQL, MongoDB uses JSON-like documents for storing data.
  • Databases operate in an environment that consists of numerous reads, writes, and updates.
  • When a lock occurs, no other operation can read or modify the data until the operation that initiated the lock is finished.
  • locks.deadlockCount: Number of times the lock acquisitions have encountered deadlocks
  • Is the database frequently locking from queries? This might indicate issues with the schema design, query structure, or system architecture.
  • For version 3.2 on, WiredTiger is the default.
  • MMAPv1 locks whole collections, not individual documents.
  • WiredTiger performs locking at the document level.
  • When the MMAPv1 storage engine is in use, MongoDB will use memory-mapped files to store data.
  • All available memory will be allocated for this usage if the data set is large enough.
  • db.serverStatus().mem
  • mem.resident: Roughly equivalent to the amount of RAM in megabytes that the database process uses
  • If mem.resident exceeds the value of system memory and there’s a large amount of unmapped data on disk, we’ve most likely exceeded system capacity.
  • If the value of mem.mapped is greater than the amount of system memory, some operations will experience page faults.
  • The WiredTiger storage engine is a significant improvement over MMAPv1 in performance and concurrency.
  • By default, MongoDB will reserve 50 percent of the available memory for the WiredTiger data cache.
  • wiredTiger.cache.bytes currently in the cache – This is the size of the data currently in the cache.
  • wiredTiger.cache.tracked dirty bytes in the cache – This is the size of the dirty data in the cache.
  • we can look at the wiredTiger.cache.bytes read into cache value for read-heavy applications. If this value is consistently high, increasing the cache size may improve overall read performance.
  • check whether the application is read-heavy. If it is, increase the size of the replica set and distribute the read operations to secondary members of the set.
  • write-heavy, use sharding within a sharded cluster to distribute the load.
  • Replication is the propagation of data from one node to another
  • Replication sets handle this replication.
  • Sometimes, data isn’t replicated as quickly as we’d like.
  • a particularly thorny problem if the lag between a primary and secondary node is high and the secondary becomes the primary
  • use the db.printSlaveReplicationInfo() or the rs.printSlaveReplicationInfo() command to see the status of a replica set from the perspective of the secondary member of the set.
  • shows how far behind the secondary members are from the primary. This number should be as low as possible.
  • monitor this metric closely.
  • watch for any spikes in replication delay.
  • Always investigate these issues to understand the reasons for the lag.
  • One replica set is primary. All others are secondary.
  • it’s not normal for nodes to change back and forth between primary and secondary.
  • use the profiler to gain a deeper understanding of the database’s behavior.
  • Enabling the profiler can affect system performance, due to the additional activity.
  •  
    "globalLock.currentQueue.total: This number can indicate a possible concurrency issue if it's consistently high. This can happen if a lot of requests are waiting for a lock to be released."
張 旭

[Elasticsearch] 分散式特性 & 分散式搜尋的機制 | 小信豬的原始部落 - 0 views

  • 水平擴展儲存空間
  • Data HA:若有 node 掛掉,資料不會遺失
  • 若是要查詢 cluster 中的 node 狀態,可以使用 GET /_cat/nodes API
  • ...39 more annotations...
  • 決定每個 shard 要被分配到哪個 data node 上
  • 為 cluster 設置多個 master node
  • 一旦發現被選中的 master node 出現問題,就會選出新的 master node
  • 每個 node 啟動時就預設是一個 master eligible node,可以透過設定 node.master: false 取消此預設設定
  • 處理 request 的 node 稱為 Coordinating Node,其功能是將 request 轉發到合適的 node 上
  • 所有的 node 都預設是 Coordinating Node
  • coordinating node 可以直接接收 search request 並處理,不需要透過 master node 轉過來
  • 可以保存資料的 node,每個 node 啟動後都會預設是 data node,可以透過設定 node.data: false 停用 data node 功能
  • 由 master node 決定如何把分片分發到不同的 data node 上
  • 每個 node 上都保存了 cluster state
  • 只有 master 才可以修改 cluster state 並負責同步給其他 node
  • 每個 node 都會詳細紀錄本身的狀態資訊
  • shard 是 Elasticsearch 分散式儲存的基礎,包含 primary shard & replica shard
  • 每一個 shard 就是一個 Lucene instance
  • primary shard 功能是將一份被索引後的資料,分散到多個 data node 上存放,實現儲存方面的水平擴展
  • primary shard 的數量在建立 index 時就會指定,後續是無法修改的,若要修改就必須要進行 reindex
  • 當 primary shard 遺失時,replica shard 就可以被 promote 成 primary shard 來保持資料完整性
  • replica shard 數量可以動態調整,讓每個 data node 上都有完整的資料
  • ES 7.0 開始,primary shard 預設為 1,replica shard 預設為 0
  • replica shard 若設定過多,會降低 cluster 整體的寫入效能
  • replica shard 必須和 primary shard 被分配在不同的 data node 上
  • 所有的 primary shard 可以在同一個 data node 上
  • 透過 GET _cluster/health/<target> 可以取得目前 cluster 的健康狀態
  • Yellow:表示 primary shard 可以正常分配,但 replica shard 分配有問題
  • 透過 GET /_cat/shards/<target> 可以取得目前的 shard 狀態
  • replica shard 無法被分配,因此 cluster 健康狀態為黃色
  • 若是擔心 reboot 機器造成 failover 動作開始執行,可以設定將 replication 延遲一段時間後再執行(透過調整 settings 中的 index.unassigned.node_left.delayed_timeout 參數),避免無謂的 data copy 動作 (此功能稱為 delay allocation)
  • 集群變紅,代表有 primary shard 丟失,這個時候會影響讀寫。
  • 如果 node 重新回來,會從 translog 中恢復沒有寫入的資料
  • 設定 index settings 之後,primary shard 數量無法隨意變更
  • 不建議直接發送請求到master節點,雖然也會工作,但是大量請求發送到 master,會有潛在的性能問題
  • shard 是 ES 中最小的工作單元
  • shard 是一個 Lucene 的 index
  • 將 Index Buffer 中的內容寫入 Segment,而這寫入的過程就稱為 Refresh
  • 當 document 被 refresh 進入到 segment 之後,就可以被搜尋到了
  • 在進行 refresh 時先將 segment 寫入 cache 以開放查詢
  • 將 document 進行索引時,同時也會寫入 transaction log,且預設都會寫入磁碟中
  • 每個 shard 都會有對應的 transaction log
  • 由於 transaction log 都會寫入磁碟中,因此當 node 從故障中恢復時,就會優先讀取 transaction log 來恢復資料
張 旭

Custom Resources | Kubernetes - 0 views

  • Custom resources are extensions of the Kubernetes API
  • A resource is an endpoint in the Kubernetes API that stores a collection of API objects of a certain kind
  • Custom resources can appear and disappear in a running cluster through dynamic registration
  • ...30 more annotations...
  • Once a custom resource is installed, users can create and access its objects using kubectl
  • When you combine a custom resource with a custom controller, custom resources provide a true declarative API.
  • A declarative API allows you to declare or specify the desired state of your resource and tries to keep the current state of Kubernetes objects in sync with the desired state.
  • Custom controllers can work with any kind of resource, but they are especially effective when combined with custom resources.
  • The Operator pattern combines custom resources and custom controllers.
  • the API represents a desired state, not an exact state.
  • define configuration of applications or infrastructure.
  • The main operations on the objects are CRUD-y (creating, reading, updating and deleting).
  • The client says "do this", and then gets an operation ID back, and has to check a separate Operation object to determine completion of the request.
  • The natural operations on the objects are not CRUD-y.
  • High bandwidth access (10s of requests per second sustained) needed.
  • Use a ConfigMap if any of the following apply
  • You want to put the entire config file into one key of a configMap.
  • You want to perform rolling updates via Deployment, etc., when the file is updated.
  • Use a secret for sensitive data, which is similar to a configMap but more secure.
  • You want to build new automation that watches for updates on the new object, and then CRUD other objects, or vice versa.
  • You want the object to be an abstraction over a collection of controlled resources, or a summarization of other resources.
  • CRDs are simple and can be created without any programming.
  • Aggregated APIs are subordinate API servers that sit behind the primary API server
  • CRDs allow users to create new types of resources without adding another API server
  • Defining a CRD object creates a new custom resource with a name and schema that you specify.
  • The name of a CRD object must be a valid DNS subdomain name
  • each resource in the Kubernetes API requires code that handles REST requests and manages persistent storage of objects.
  • The main API server delegates requests to you for the custom resources that you handle, making them available to all of its clients.
  • The new endpoints support CRUD basic operations via HTTP and kubectl
  • Custom resources consume storage space in the same way that ConfigMaps do.
  • Aggregated API servers may use the same storage as the main API server
  • CRDs always use the same authentication, authorization, and audit logging as the built-in resources of your API server.
  • most RBAC roles will not grant access to the new resources (except the cluster-admin role or any role created with wildcard rules).
  • CRDs and Aggregated APIs often come bundled with new role definitions for the types they add.
張 旭

Logging Architecture | Kubernetes - 0 views

  • Application logs can help you understand what is happening inside your application
  • container engines are designed to support logging.
  • The easiest and most adopted logging method for containerized applications is writing to standard output and standard error streams.
  • ...26 more annotations...
  • In a cluster, logs should have a separate storage and lifecycle independent of nodes, pods, or containers. This concept is called cluster-level logging.
  • Cluster-level logging architectures require a separate backend to store, analyze, and query logs
  • Kubernetes does not provide a native storage solution for log data.
  • use kubectl logs --previous to retrieve logs from a previous instantiation of a container.
  • A container engine handles and redirects any output generated to a containerized application's stdout and stderr streams
  • The Docker JSON logging driver treats each line as a separate message.
  • By default, if a container restarts, the kubelet keeps one terminated container with its logs.
  • An important consideration in node-level logging is implementing log rotation, so that logs don't consume all available storage on the node
  • You can also set up a container runtime to rotate an application's logs automatically.
  • The two kubelet flags container-log-max-size and container-log-max-files can be used to configure the maximum size for each log file and the maximum number of files allowed for each container respectively.
  • The kubelet and container runtime do not run in containers.
  • On machines with systemd, the kubelet and container runtime write to journald. If systemd is not present, the kubelet and container runtime write to .log files in the /var/log directory.
  • System components inside containers always write to the /var/log directory, bypassing the default logging mechanism.
  • Kubernetes does not provide a native solution for cluster-level logging
  • Use a node-level logging agent that runs on every node.
  • implement cluster-level logging by including a node-level logging agent on each node.
  • the logging agent is a container that has access to a directory with log files from all of the application containers on that node.
  • the logging agent must run on every node, it is recommended to run the agent as a DaemonSet
  • Node-level logging creates only one agent per node and doesn't require any changes to the applications running on the node.
  • Containers write stdout and stderr, but with no agreed format. A node-level agent collects these logs and forwards them for aggregation.
  • Each sidecar container prints a log to its own stdout or stderr stream.
  • It is not recommended to write log entries with different formats to the same log stream
  • writing logs to a file and then streaming them to stdout can double disk usage.
  • If you have an application that writes to a single file, it's recommended to set /dev/stdout as the destination
  • it's recommended to use stdout and stderr directly and leave rotation and retention policies to the kubelet.
  • Using a logging agent in a sidecar container can lead to significant resource consumption. Moreover, you won't be able to access those logs using kubectl logs because they are not controlled by the kubelet.
« First ‹ Previous 101 - 120 of 147 Next › Last »
Showing 20 items per page