Skip to main content

Home/ Haskell/ Group items tagged prelude

Rss Feed Group items tagged

Javier Neira

Monads as containers - HaskellWiki - 0 views

  • A monad is a container type together with a few methods defined on it.
  • all the elements which a monadic container holds at any one time must be the same type (it is homogeneous).
  • map (fmap), return and join,
  • ...15 more annotations...
  • map, (but called fmap in Haskell 98) actually comes from the definition of a functor
  • That is, if f is a functor, and we are given a function of type (a -> b), and a container of type (f a), we can get a new container of type (f b). This is expressed in the type of fmap: fmap :: (Functor f) => (a -> b) -> f a -> f b If you will give me a blueberry for each apple I give you (a -> b), and I have a box of apples (f a), then I can get a box of blueberries (f b). Every monad is a functor.
  • The second method, return, is specific to monads. If m is a monad, then return takes an element of type a, and gives a container of type (m a) with that element in it. So, its type in Haskell is return :: (Monad m) => a -> m a If I have an apple (a) then I can put it in a box (m a).
  • takes a container of containers m (m a), and combines them into one m a in some sensible fashion. Its Haskell type is join :: (Monad m) => m (m a) -> m a
  • If I have a box of boxes of apples (m (m a)) then I can take the apples from each, and put them in a new box (m a).
  • bind or extend, which is commonly given the symbol (>>=)
  • The function that does this for any monad in Haskell is called liftM -- it can be written in terms of return and bind as follows:
  • liftM :: (Monad m) => (a -> b) -> m a -> m b liftM f xs = xs >>= (return . f) -- take a container full of a's, to each, apply f, -- put the resulting value of type b in a new container, -- and then join all the containers together.
  • Well, in Haskell, IO is a monad.
  • Lists are most likely the simplest, most illustrative example
  • The reason that bind is so important is that it serves to chain computations on monadic containers together.
  • You might notice a similarity here between bind and function application or composition, and this is no coincidence.
  • What bind does is to take a container of type (m a) and a function of type (a -> m b). It first maps the function over the container, (which would give an m (m b)) and then applies join to the result to get a container of type (m b). Its type and definition in Haskell is the
  • xs >>= f = join (fmap f xs)
  • bind (>>=)
Javier Neira

99 questions/1 to 10 - HaskellWiki - 0 views

  • data NestedList a = Elem a | List [NestedList a]   flatten :: NestedList a -> [a] flatten (Elem x) = [x] flatten (List x) = concatMap flatten x
  • compress :: Eq a => [a] -> [a] compress = map head . group We simply group equal values together (group), then take the head of each. Note that (with GHC) we must give an explicit type to compress otherwise we get:
Javier Neira

Existential type - HaskellWiki - 0 views

  • First of all, it is now impossible for a function to demand a Worker having a specific type of buffer. Second, the type of foo can now be derived automatically without needing an explicit type signature. (No monomorphism restriction.) Thirdly, since code now has no idea what type the buffer function returns, you are more limited in what you can do to it.
  • This illustrates creating a heterogeneous list, all of whose members implement "Show", and progressing through that list to show these items: data Obj = forall a. (Show a) => Obj a   xs :: [Obj] xs = [Obj 1, Obj "foo", Obj 'c']   doShow :: [Obj] -> String doShow [] = "" doShow ((Obj x):xs) = show x ++ doShow xs With output: doShow xs ==> "1\"foo\"'c'"
  • Existential types in conjunction with type classes can be used to emulate the dynamic dispatch mechanism of object oriented programming languages. To illustrate this concept I show how a classic example from object oriented programming can be encoded in Haskell.
Javier Neira

Haskell: The Confusing Parts - 0 views

  • f $ x = f x(f . g) x = f (g x)-- Some quick examples of using these. The following line...putStrLn (take 12 (map foo (bar ++ "ack")))-- ...can be rewritten as...putStrLn $ take 12 $ map foo $ bar ++ "ack"(putStrLn . take 12 . map foo) (bar ++ "ack")putStrLn . take 12 . map foo $ bar ++ "ack" In terms of good Haskell style, the last example above is preferable to the others. By the way, note that ($) has the lowest precedence (zero) of any operator, so you can almost always use arbitrary syntax on either side of it.
  • -- Actual definitions:f $ x = f x(f . g) x = f (g x)-- Some quick examples of using these. The following line...putStrLn (take 12 (map foo (bar ++ "ack")))-- ...can be rewritten as...putStrLn $ take 12 $ map foo $ bar ++ "ack"(putStrLn . take 12 . map foo) (bar ++ "ack")putStrLn . take 12 . map foo $ bar ++ "ack"
  • putStrLn (take 12 (map foo (bar ++ "ack")))-- ...can be rewritten as...putStrLn $ take 12 $ map foo $ bar ++ "ack"(putStrLn . take 12 . map foo) (bar ++ "ack")putStrLn . take 12 . map foo $ bar ++ "ack"
  • ...7 more annotations...
  • putStrLn (take 12 (map foo (bar ++ "ack")))
  • anywhere you might write \x -> foo x [1..10], you should instead write flip foo [1..10], where flip is a standard Prelude function that flips the first two arguments of whatever function you give it
  • two arguments of whatever
  • anywhere you might write \x -> foo x [1..10], you should instead write flip foo [1..10], where flip is a standard Prelude function that flips the first
  • The curry and uncurry functions stand in for \f x y -> f (x, y) and \f (x, y) -> f x y, respectively.
  • The curry and uncurry functions stand in for \f x y -> f (x, y)
  • I will point out that return is, in fact, not a return statement. It’s a function, and an inappropriately named function, at that. Writing return () in your do block will not cause the function to return.
  •  
    If you're used to the C family of languages, or the closely related family of "scripting languages," Haskell's syntax (mainly) is a bit baffling at first. For some people, it can even seem like it's sneaking out from under you every time you think you understand it. This is sort of a FAQ for people who are new to Haskell, or scared away by its syntax.
1 - 6 of 6
Showing 20 items per page