Skip to main content

Home/ Haskell/ Group items tagged functors

Rss Feed Group items tagged

Javier Neira

Learning Haskell Notes - 0 views

  • 8. Functors
  • A "functor" is a structured collection (or container) type with a method (fmap) that accepts a method and applies that method to the members of the collection yielding an isomorphic collection of values of a (possibly) new type. Is this right?
  • Every monad is a functor, but not the other way around; a monad is a functor PLUS functions >>= and return satisfying some laws
  • ...4 more annotations...
  • a functor is a type constructor PLUS a function fmap satisfying some laws.
  • I think it's better to use existentials, as they let you define multiple instances for the same type.
  • People tend to forget that the major difference between ADT's and OO-style classes is really only that with a class you can have many instances in the same program simultaneously, whereas with an ADT you can have only one; but the ADT implementation is still interchangeable.
  • sequence :: Monad m => [m a] -> m [a]
Javier Neira

Monads as containers - HaskellWiki - 0 views

  • A monad is a container type together with a few methods defined on it.
  • all the elements which a monadic container holds at any one time must be the same type (it is homogeneous).
  • map (fmap), return and join,
  • ...15 more annotations...
  • map, (but called fmap in Haskell 98) actually comes from the definition of a functor
  • That is, if f is a functor, and we are given a function of type (a -> b), and a container of type (f a), we can get a new container of type (f b). This is expressed in the type of fmap: fmap :: (Functor f) => (a -> b) -> f a -> f b If you will give me a blueberry for each apple I give you (a -> b), and I have a box of apples (f a), then I can get a box of blueberries (f b). Every monad is a functor.
  • The second method, return, is specific to monads. If m is a monad, then return takes an element of type a, and gives a container of type (m a) with that element in it. So, its type in Haskell is return :: (Monad m) => a -> m a If I have an apple (a) then I can put it in a box (m a).
  • takes a container of containers m (m a), and combines them into one m a in some sensible fashion. Its Haskell type is join :: (Monad m) => m (m a) -> m a
  • If I have a box of boxes of apples (m (m a)) then I can take the apples from each, and put them in a new box (m a).
  • bind or extend, which is commonly given the symbol (>>=)
  • The function that does this for any monad in Haskell is called liftM -- it can be written in terms of return and bind as follows:
  • liftM :: (Monad m) => (a -> b) -> m a -> m b liftM f xs = xs >>= (return . f) -- take a container full of a's, to each, apply f, -- put the resulting value of type b in a new container, -- and then join all the containers together.
  • Well, in Haskell, IO is a monad.
  • Lists are most likely the simplest, most illustrative example
  • The reason that bind is so important is that it serves to chain computations on monadic containers together.
  • You might notice a similarity here between bind and function application or composition, and this is no coincidence.
  • What bind does is to take a container of type (m a) and a function of type (a -> m b). It first maps the function over the container, (which would give an m (m b)) and then applies join to the result to get a container of type (m b). Its type and definition in Haskell is the
  • xs >>= f = join (fmap f xs)
  • bind (>>=)
Javier Neira

Applicative-what? Functor-who? « wxfz :: Blog - 0 views

  • Monads Are  a kind of abstract data type used to represent computations (instead of data in the domain model).
1 - 3 of 3
Showing 20 items per page