Skip to main content

Home/ GAVNet Collaborative Curation/ Group items tagged life-cycles

Rss Feed Group items tagged

Bill Fulkerson

Anatomy of an AI System - 1 views

shared by Bill Fulkerson on 14 Sep 18 - No Cached
  •  
    "With each interaction, Alexa is training to hear better, to interpret more precisely, to trigger actions that map to the user's commands more accurately, and to build a more complete model of their preferences, habits and desires. What is required to make this possible? Put simply: each small moment of convenience - be it answering a question, turning on a light, or playing a song - requires a vast planetary network, fueled by the extraction of non-renewable materials, labor, and data. The scale of resources required is many magnitudes greater than the energy and labor it would take a human to operate a household appliance or flick a switch. A full accounting for these costs is almost impossible, but it is increasingly important that we grasp the scale and scope if we are to understand and govern the technical infrastructures that thread through our lives. III The Salar, the world's largest flat surface, is located in southwest Bolivia at an altitude of 3,656 meters above sea level. It is a high plateau, covered by a few meters of salt crust which are exceptionally rich in lithium, containing 50% to 70% of the world's lithium reserves. 4 The Salar, alongside the neighboring Atacama regions in Chile and Argentina, are major sites for lithium extraction. This soft, silvery metal is currently used to power mobile connected devices, as a crucial material used for the production of lithium-Ion batteries. It is known as 'grey gold.' Smartphone batteries, for example, usually have less than eight grams of this material. 5 Each Tesla car needs approximately seven kilograms of lithium for its battery pack. 6 All these batteries have a limited lifespan, and once consumed they are thrown away as waste. Amazon reminds users that they cannot open up and repair their Echo, because this will void the warranty. The Amazon Echo is wall-powered, and also has a mobile battery base. This also has a limited lifespan and then must be thrown away as waste. According to the Ay
Bill Fulkerson

New insights into the global silicon cycle - 0 views

  •  
    Silicon is the second-most abundant element in Earth's crust and it plays a vital role in plant life, both on land and in the sea. Silicon is used by plants in tissue building, which helps to ward off herbivorous animals. In the ocean, phytoplankton consume enormous amounts of silicon; they get a constant supply courtesy of rivers and streams. And silicon winds up in rivers and streams due to erosion of silicon-containing rocks. Land plants also use silicon. They get it from the soil. In this new effort, the researchers began by noting that the terrestrial biogeochemical cycling of silicon (how it moves from plants back to the soil and then into plants again) is poorly understood. To gain a better understanding of how it works, they ventured to a part of Western Australia that, unlike other parts of the world, has not been impacted by Pleistocene glaciations. The soil there gave the researchers a look at the silicon cycle going back 2 million years.
Bill Fulkerson

EntropoMetrics - 0 views

  •  
    Any entity or system that we call 'living' will eventually die. This holds at any scale, from cellular level to ecosystems, and even our socio-economic, financial and technological domains. To understand why, it is best to look at a such a system as a infrastructure for a specific saturation process. Large organisms/systems are actually huge ensembles of interacting (and saturating) sub-processes, but here we just consider the 'top-level' saturation process. (At a high, technical abstraction level, this is always the saturation-process of entropy production, and the system is some local maximum of this, but you can read about this in our other publications).
1 - 4 of 4
Showing 20 items per page