Skip to main content

Home/ Groups/ ErgodicPNT
arithwsun arithwsun

Book: Made to Stick - 0 views

  • Solving Mathematical Problems: A personal perspective. 2nd Edition, Terence Tao. Oxford University P ?The Journey of a thousand miles begins with one step? ? Lao Tzu Every so often, you come across a book that really stands out. I have recently been very fortunate to come across several such books, this being one of them. ?Solving mathematical problems? was written by Terence Tao when he was a 15 year old student and has now been slightly revised in this second edition. Like another of the reviewers at Amazon, I also came across this book after reading an article about Terence Tao winning the Fields medal (a bit like the Nobel prize for mathematics). Not only does it give a wonderful insight into the mind of a young Terence Tao, but also into the techniques used to elegantly solve some reasonably difficult problems, such as those posed as questions for the Maths Olympiad contests. [Terence competed in these challenges in his teens, winning bronze, silver and then gold.] Mathematical researchers are not always great e\ucators. Thankfully, Prof. Tao is.Mainly assuming only basic high-school pure mathematics, worked solutions to the problems are clearly and expertly described. Not only does he solve the problems but he also examines the steps, false starts and other solution possibilities that are part of the general approach to problem solving. I was only slightly disappointed that there were a handful of corrections in this second edition (available at Prof Tao?s blog here); one or two could perplex an unwary reader who might expect the work to be flawless. If you have an interest in mathematics, either as a high school student or a hobbyist, I would highly recommended reading this book. In the preface, Prof Tao remarks that if he wrote a book on the subject of competition problem-solving now, it would very different; now that is definitely a book I would like to read!….
  • Made to Stick: Why Some Ideas Survive and Others Die by Chip and Dan Heath helps us understand why our users (or our coworkers) can repeat the latest web hoax, but can’t remember anything about our projects. What we need to do is to create “sticky messages.” Sticky messages are not necessarily creative messages. In fact, there is formula that the brothers Heath have discovered that will help us to create sticky, memorable messages. That formula is:
    • arithwsun arithwsun
       
      I like this book
arithwsun arithwsun

Pierre Deligne and "Dynasty" contests - 0 views

arithwsun arithwsun

Front: [arXiv:0711.3388] Inverse Conjecture for the Gowers norm is false - 0 views

  • Let $p$ be a fixed prime number, and $N$ be a large integer. The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially approximated by a degree $d-1$ polynomial. The conjecture is known to hold for $d=2,3$ and for any prime $p$. In this paper we show the conjecture to be false for $p=2$ and for $d = 4$, by presenting an explicit function whose 4-th Gowers norm is non-negligible, but whose correlation any polynomial of degree 3 is exponentially small.Essentially the same result (with different correlation bounds) was independently obtained by Green and Tao \cite{gt07}. Their analysis uses a modification of a Ramsey-type argument of Alon and Beigel \cite{ab} to show inapproximability of certain functions by low-degree polynomials. We observe that a combination of our results with the argument of Alon and Beigel implies the inverse conjecture to be false for any prime $p$, for $d = p^2$.
arithwsun arithwsun

A paper on the ArXiV « Gowers's Weblog - 0 views

  • The paper itself is called “Hypergraph regularity and the multidimensional Szemerédi theorem.” At the bottom level, the basic idea of the paper is due to Ruzsa, Szemerédi and Rödl. Ruzsa and Szemerédi started the ball rolling with a short and very clever argument that showed that Szemerédi’s famous theorem on arithmetic progressions, in the case of progressions of length 3, could be deduced from Szemerédi’s almost as famous regularity lemma, a remarkable result that allows any graph to be partitioned into a bounded number of pieces, almost all of which “behave randomly.”
arithwsun arithwsun

aa8325.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

[0707.1983] Hidden Life of Riemann's Zeta Function 1. Arrow, Bow, and Targets - 0 views

  • The Riemann Hypothesis is reformulated as statements about eigenvalues of some matrices entries of which are defined via Taylor coefficient of the zeta function. These eigenvalues demonstrate interesting visual patterns allowing one to state a number of conjectures.
arithwsun arithwsun

sol18.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

Exposing Roth's Theorem in the Primes - 0 views

arithwsun arithwsun

FROM HARMONIC ANALYSIS TO ARITHMETIC - 0 views

arithwsun arithwsun

primes.pdf (application/pdf 对象) - 0 views

arithwsun arithwsun

OBSTRUCTIONS TO UNIFORMITY, AND ARITHMETIC - 0 views

arithwsun arithwsun

Ernie Croot's Webpage - 0 views

  •  
    many good notes
arithwsun arithwsun

Structure and randomness in combinatorics « What's new - 0 views

  •  
    I've just uploaded to the arXiv my lecture notes "Structure and randomness in combinatorics" for my tutorial at the upcoming FOCS 2007 conference in October. This tutorial covers similar ground as my ICM paper (or slides), or my first two Simons lectures, but focuses more on the "nuts-and-bolts" of how structure theorems actually work to separate objects into structured pieces and pseudorandom pieces, for various definitions of "structured" and "pseudorandom".  Given that the target audience consists of computer scientists, I have focused exclusively here on the combinatorial aspects of this dichotomy (applied for instance to functions on the Hamming cube) rather than, say, the ergodic theory aspects (which are covered in Bryna Kra's lecture notes from Montreal, or my notes from Montreal for that matter).  While most of the known applications of these decompositions are number-theoretic (e.g. my theorem with Ben Green), the number theory aspects are not covered in detail in these notes.  (For that, you can read Bernard Host's Bourbaki article, Ben Green's http
arithwsun arithwsun

J. London Math. Soc. -- Sign In Page - 0 views

  •  
    Freiman's theorem in an arbitrary abelian group
    Green and Ruzsa J. London Math. Soc..2007; 0: jdl021v1-13
arithwsun arithwsun

Fourier Analysis and Szemerédi's Theorem (ResearchIndex) - 0 views

    • arithwsun arithwsun
       
      there is a seminar on this things, ergodicpnt seminar in Beijing.
arithwsun arithwsun

[math/0512114] The dichotomy between structure and randomness, arithmetic progressions,... - 0 views

  •  
    Rather than give another exposition of this result, we have chosen to take a broader view, surveying the collection of structural theorems which underlie the proof of such results as Theorem 1.1 and Theorem 1.2.
« First ‹ Previous 141 - 160 of 214 Next › Last »
Showing 20 items per page