Skip to main content

Home/ ErgodicPNT/ Contents contributed and discussions participated by arithwsun arithwsun

Contents contributed and discussions participated by arithwsun arithwsun

arithwsun arithwsun

math.NT/0610050: The primes contain arbitrarily long polynomial progressions - 0 views

  •  
    it is reasonable to conjecture that an analogous result to Theorem 1.3 also holds in higher dimensions.This is however still open even in the linear case, the key difficulty being that the tensor product of pseudorandom measures is not pseudorandom.
arithwsun arithwsun

math.CO/0604456: The ergodic and combinatorial approaches to Szemerédi's theorem - 0 views

  •  
    The combinatorial and ergodic approaches may seem rather different at first glance, but we will try to emphasise the many similarities between them.
arithwsun arithwsun

math.CO/0602037: A correspondence principle between (hyper)graph theory and probability... - 0 views

  •  
    The setting of this paper was deliberately placed at a midpoint between graph theory and ergodic theory, and the author hopes that it illuminates the analogies and interconnections between these two subjects.
arithwsun arithwsun

math.NT/0606088: Linear Equations in Primes - 0 views

  •  
    Denote the Gowers Inverse conjecture by 'GI(s)' and denote the M¨obius and nilsequences conjecture by 'MN(s)', Our results are therefore unconditional in the case s = 2, and in particular we can obtain the expected asymptotics for the number of 4-term
arithwsun arithwsun

math.NT/0610604: New bounds for Szemeredi's theorem, II: A new bound for r_4(N) - 0 views

  •  
    Define r4(N) to be the largest cardinality of a set A ⊆ {1, . . . ,N} which does not contain four elements in arithmetic progression.
arithwsun arithwsun

Linear relations amongst sums of two squares - 0 views

  •  
    DR Heath-Brown - Number theory and algebraic geometry-to Peter Swinnerton-
arithwsun arithwsun

Gowers' note for additive number theory - 0 views

  •  
    I have proposed this course for the academic year 2006-7. The syllabus is Roth's theorem, the geometry of numbers, Freiman's theorem, quasirandomness of graphs and 3-uniform hypergraphs, and Szemerédi's regularity lemmaThe course will be examined as a 24
« First ‹ Previous 161 - 180 of 211 Next › Last »
Showing 20 items per page