Skip to main content

Home/ EDUC 300/ Group items tagged intellectual

Rss Feed Group items tagged

Tiffany King

learning_theories_full_version - 1 views

  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • ...22 more annotations...
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • The following tutorial consists of five learning modules. Each module describes a learning theory and how that learning theory can be applied to improving online teaching and training materials. Each module features: a description of a well known learning theory; a practical example of how the theory and related strategies can be applied to a particular instructional objective or web-design problem; and a list of related pedagogical and web-design strategies as researched in the literature. This tutorial has been designed for MDDE 621 students studying in the Masters of Distance Education program at Athabasca University.
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learn
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles.
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles
  • EXAMPLE The following example applies Gagne's nine instructional events: Instructional Objective: Recognize an equilateral triangle (example from Kearsley 1994a). Methodology: Gain attention - show a variety of computer generated triangles Identify objective - pose question: "What is an equilateral triangle?" Recall prior learning - review definitions of triangles Present stimulus - give definition of equilateral triangle Guide learning - show example of how to create equilateral Elicit performance - ask students to create 5 different examples Provide feedback - check all examples as correct/incorrect Assess performance - provide scores and remediation Enhance retention/transfer - show pictures of objects and ask students to identify equilateral triangles.
  • The primary significance of this hierarchy is to provide direction for instructors so that they can "identify prerequisites that should be completed to facilitate learning at each level" (Kearsley 1994a). This learning hierarchy also provides a basis for sequencing instruction. Gagne outlines the following nine instructional events and corresponding cognitive processes (as cited in Kearsley 1994a): gaining attention (reception) informing learners of the objective (expectancy) stimulating recall of prior learning (retrieval) presenting the stimulus (selective perception) providing learning guidance (semantic encoding) eliciting performance (responding) providing feedback (reinforcement) assessing performance (retrieval) enhancing retention and transfer (generalization)
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Gagne also contends that learning tasks for intellectual skills can be organized in a hierarchy according to complexity: stimulus recognition response generation procedure following use of terminology discriminations concept formation rule application problem solving
  • Simplify navigation.
  • Create effective menus.
  • Include indexes, table of contents, and search capabilities.
  • Pedagogical Practices and Practical Web-Design Strategies
  • Clearly identify content with appropriate headings and titles.
  • Place most important information on the top-left. Important information should go to the top-left.
  • Web is (Fahy 1999, 181-182): Easy to get lost in (users can get confused bouncing around from one link to the next) Unstructured Non-interactive (although this is changing) Complex (the amount of information on the Web is mind-boggling) Time-consuming (because it is non-linear and invites exploration. NOTE: Research by Thaler [1997, as cited in Fahy 1999, 181] shows that "employees in a 1997 survey reported spending an average of 90 minutes per day visiting sites unrelated to their jobs").
Diane Gusa

William Peirce Strategies for Teaching Thinking and Promoting Intellectual Development ... - 0 views

  • Strategies for Teaching Thinking and Promoting Intellectual Development in Online Classes
  • utline I. Online Strategies for Teaching Thinking II. Online Strategies for Promoting Interactivity III. Transforming Students’ Minds: Promoting Intellectual development
Diane Gusa

Learning-Centered Syllabi - 0 views

  • Learning-Centered Syllabi Workshop
  • Creating and using a learner-centered syllabus is integral to the process of creating learning communities.
  • students should progress from a primarily instructor-led approach to a primarily student-initiated approach to learning.
  • ...22 more annotations...
  • students and their ability to learn are at the center of what we do
  • facilitate student learning rather than to act as "gatekeepers" of knowledge
  • A necessary first step in creating a learning-centered syllabus, according to most sources, is to spend some time thinking about the "big questions" related to why, what, who and how we teach.
  • thoughtful discussions with ourselves and our colleagues about our teaching philosophy and what it means to be an educated person in our discipline
  • We also need to think about how we encourage responsibility for learning in our students.
  • we focus on the process of learning rather than the content, that the content and the teacher adapt to the students rather than expecting the students to adapt to the content, that responsibility is placed on students to learn rather than on professors to teach.
  • participate in planning the course content and activities; clarify their own goals and objectives for the course; monitor and assess their own progress; and establish criteria for judging their own performance within the goals that they have set for themselves, certification or licensing requirements, time constraints, etc.
  • Your first objective is to facilitate learning, not cover a certain block of materia
  • According to Johnson, "course objectives should consist of explicit statements about the ways in which students are expected to change as a result of your teaching and the course activities. These should include changes in thinking skills, feelings, and actions" (p. 3)
  • An effective learning-centered syllabus should accomplish certain basic goals (Diamond, p. ix): define students' responsibilities; define instructor's role and responsibility to students; provide a clear statement of intended goals and student outcomes; establish standards and procedures for evaluation; acquaint students with course logistics; establish a pattern of communication between instructor and students; and include difficult-to-obtain materials such as readings, complex charts, and graphs.
  • here are three primary domains of development for students in a course
  • The Cognitive Domain is associated with knowledge and intellectual skills. The Affective Domain is associated with changes in interests, attitudes, values, applications, and adjustments. And the Psychomotor Domain is associated with manipulative and motor skills
  • "A learning-centered syllabus requires that you shift from what you, the instructor, are going to cover in your course to a concern for what information and tools you can provide for your students to promote learning and intellectual development" (Diamond, p. xi).
  • Don't use words that are open to many interpretations and which are difficult to measure. Make sure that all students understand the same interpretation.
  • Clarify the conceptual structure used to organize the course.
  • Students need to know why topics are arranged in a given order and the logic of the themes and concepts as they relate to the course structure
  • Does the course involve mostly inductive or deductive reasoning? Is it oriented to problem-solving or theory building? Is it mostly analytical or applied? In answering these questions, acknowledge that they reflect predominant modes in most cases rather than either/or dichotomies.
  • Use a variety of methods.
  • "Any student who feels s/he may need an accommodation based on the impact of a disability should contact me privately to discuss your specific needs. Please contact the Disability Resources Office at 515-294-6624 or TTY 515-294-6635 in Room 1076 of the Student Services Building to submit your documentation and coordinate necessary and reasonable accommodation."
  • Identify additional equipment or materials needed and sources.
  • Critical Thinking
  • Critical thinking is a learned skill. The instructor, fellow students, and possibly others are resources. Problems, questions, issues, values, beliefs are the point of entry to a subject and source of motivation for sustained inquiry. Successful courses balance the challenge of critical thinking with the supportive foundation of core principles, theories, etc., tailored to students' developmental needs. Courses are focused on assignments using processes that apply content rather than on lectures and simply acquiring content. Students are required to express ideas in a non-judgmental environment which encourages synthesis and creative applications. Students collaborate to learn and stretch their thinking. Problem-solving exercises nurture students' metacognitive abilities. The development needs of students are acknowledged and used in designing courses. Standards are made explicit and students are helped to learn how to achieve them.
Diane Gusa

Where is reflection in the learning process? | User Generated Education - 0 views

    • Diane Gusa
       
      This is a good resource as you reflect and prepare your first synthesizing blog.
  • What was your significant learning this past week
  • What did you learn or what was reinforced about yourself? What can you take from the class activities to use in your life outside of class?
  • ...2 more annotations...
  • Critical reflection is an important part of any learning process. Without reflection, learning becomes only an activity — like viewing a reality TV show — which was never meant to have meaning, but was only meant to occupy time.
  • Critical reflection is not meditation, rather it is mediation — an active, conversive, dialectical exercise that requires as much intellectual work as does every other aspect of the learning process, from analysis to synthesis to evaluation. But in reflection, all the learned material can be gathered about, sorted and resorted, and searched through for greater understanding and inspiration
Diane Gusa

The Pedagogics: Learning Centered Pedagogy - 0 views

  • this new literacy, beyond text and image, is one of information navigation
  • Today's students get on the web and link, lurk, and watch how other people are doing things, then try it themselves.
  • the web becomes not only an informational and social resource but also a learning medium where understandings are socially constructed and shared. In that medium, learning becomes a part of action and knowledge creation.
  • ...1 more annotation...
  • The Web helps build a rich fabric that combines the small efforts of the many with the large efforts of the few. By enriching the diversity of available information and expertise, it enables the culture and sensibilities of a region to evolve. It increases the intellectual density of cross-linkages. It allows anyone to lurk and learn
Doris Stockton

AJET 26(3) Drexler (2010) - The networked student model for construction of personal le... - 0 views

  • Personal learning suggests learner autonomy and increased self regulation (Atwell, 2007; Aviram et al., 2008). However, increased responsibility and control on the part of the learner do not necessarily equate to learner motivation (Dede, 1996). Students engaging in networked learning research must be more self-directed. Not only are they navigating a number of web-based applications for the first time, they are also required to take an active role in the learning process by making decisions about how to search, where to search, and why certain content meets a learning objective.
  • Teachers, on the other hand, are challenged to provide an appropriate balance between structure and learner autonomy in order to facilitate self-directed, personalised learning (Beaudoin, 1990; McLoughlin & Lee, 2010).
  • The role of a teacher within a student-centered approach to instruction is that of a facilitator or coach (Wang, 2006). "He or she supports the students in their search and supply of relevant material, coordinates the students' presentations of individual milestones of their projects, moderates discussions, consults in all kinds of problem-solving and seeking for solutions, lectures on topics that are selected in plenary discussions with the students and conforms to the curriculum" (Motschnig-Pitrik & Holzinger, 2002, p. 166).
  • ...17 more annotations...
  • Figure 1: The Networked Teacher (Couros, 2008)
  • ouros (2008) developed a model of the networked teacher that represents an educator's professional personal learning environment (PLE). A teacher is better equipped to facilitate networked learning if he or she has experienced the construction of such a model first hand. The significant connections in Couros' view of the network include colleagues, popular media, print and digital resources, the local community, blogs, wikis, video conferencing, chat/IRC, social networking services, online communities, social bookmarking, digital photo sharing, and content development communities (Couros, 2008).
  • Networked teacher model
  • Developing a model of the networked student The Networked Student Model adapts Couros' vision for teacher professional development in a format that is applicable to the K-12 student. It includes four primary categories, each with many components evident in the networked teacher version (Figure 2).
  • Figure 2: The Networked Student
  • The networked student follows a constructivist approach to learning. He or she constructs knowledge based on experiences and social interactions (Jonassen et al., 2003). Constructivism encourages "greater participation by students in their appropriation of scholarly knowledge" (Larochelle et al., 1998).
  • Technology supports this appropriation as a collection of tools that promote knowledge construction, an information vehicle for exploring knowledge, an active learning tool, a social medium to promote conversing, and an intellectual partner to facilitate reflection (Jonassen et al., 2003)
  • In a traditional classroom setting, the teacher has primary control over the content. He or she selects or designs the curriculum. Networked learning gives students the ability and the control to connect with subject matter experts in virtually any field.
  • That connection expands to include access to resources and creative artifacts. Computers and mobile devices continue to broaden access to all types of information and learning sources. As quickly as content becomes available, web applications are released to assist in the management of that content
  • The networked student constructs a personal learning environment one node at a time. Once these connections are formed, they must be revisited and built upon to facilitate further learning. The personal learning environment lives beyond time spent in a classroom
  • With so much information to manage, it is increasingly difficult to stay abreast of changes in a given field, much less track implications arising from related fields. Really Simple Syndication (RSS) allows learners to subscribe to changing content and makes tracking changes easier.
  • Ultimately, meaningful learning occurs with knowledge construction, not reproduction; conversation, not reception; articulation, not repetition; collaboration, not competition; and reflection, not prescription (Jonassen et al., 2003).
  • Construction of a personal learning environment does not necessarily facilitate comprehension or deep understanding. Learning potential exists in what the student does with the compilation of content and how it is synthesised. The networked student model is one of inquiry, or the process of "exploring problems, asking questions, making discoveries, achieving new understanding and fulfilling personal curiosity" (National Science Foundation, as quoted by Chang & Wang, 2009, p. 169).
  • Principles of connectivism equate to fundamentals of learning in a networked world. The design of the teacher-facilitated, student-created personal learning environment in this study adheres to constructivist and connectivist principles with the goal of developing a networked student who will take more responsibility for his or her learning while navigating an increasingly complex content base.
  • Nine out of 15 students indicated that time management was the most difficult aspect of the course. Yet, of the fifteen students participating in the project, thirteen were able to manage weekly assignments per the schedule. Two students fell behind and expressed frustration at the amount of work required to catch up. Teacher intervention was required to facilitate their successful completion of the course. They were given a daily list of tasks designed to scaffold the time management aspects of the project. Time management issues were less associated with construction of the personal learning environment and more concerned with the blended format of the delivery. It was an adjustment for students to manage work outside of class even though they enjoyed the freedom of attending a formal class meeting only 3 out of 5 days a week.
  • Achieving the delicate balance between teacher control and student autonomy is an ongoing challenge when facilitating student use of new technologies for self-regulated learning (McLoughlin & Lee, 2010). Motivation, self direction, and technical aptitude are key considerations for implementing a networked student design. The students constructing personal learning environments in this test case were successful in the contemporary issues course.
  • spite of the challenges highlighted above, the Networked Student Model offers a design and framework through which teachers can explore a student-centered, 21st century approach to learning. It further provides a foundation for constructing a personal learning environment with potential to expand as new learning avenues emerge. The student is challenged to synthesise diverse and extensive digital materials, connect to others interacting in respectful and meaningful ways, self-regulate an active approach to learning, and develop an option for life long learning that applies to virtually any curricular area. Once a student has learned how to construct a personal learning environment, he or she is left with a model of learning that extends beyond the classroom walls, one in which the learner assumes full control. Regardless of teacher control, the students' success will depend on how well they have been prepared in the processes that support learning in an ever changing, increasingly networked world.
  •  
    I have highlighted many sections that pertain to student centered online learning.
1 - 6 of 6
Showing 20 items per page