Skip to main content

Home/ COSEE-West/ Group items tagged earth

Rss Feed Group items tagged

Gwen Noda

Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen De... - 0 views

  •  
    "Published Online September 22 2011 Science 28 October 2011: Vol. 334 no. 6055 pp. 505-509 DOI: 10.1126/science.1206583 Report Increasing N Abundance in the Northwestern Pacific Ocean Due to Atmospheric Nitrogen Deposition Tae-Wook Kim1, Kitack Lee1,*, Raymond G. Najjar2, Hee-Dong Jeong3, Hae Jin Jeong4 + Author Affiliations 1School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, 790−784, Korea. 2Department of Meteorology, The Pennsylvania State University, University Park, PA 16802, USA. 3East Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Gangneung, 210-861, Korea. 4School of Earth and Environmental Sciences, Seoul National University, Seoul, 151−747, Korea. ↵*To whom correspondence should be addressed. E-mail: ktl@postech.ac.kr Abstract The relative abundance of nitrate (N) over phosphorus (P) has increased over the period since 1980 in the marginal seas bordering the northwestern Pacific Ocean, located downstream of the populated and industrialized Asian continent. The increase in N availability within the study area was mainly driven by increasing N concentrations and was most likely due to deposition of pollutant nitrogen from atmospheric sources. Atmospheric nitrogen deposition had a high temporal correlation with N availability in the study area (r = 0.74 to 0.88), except in selected areas wherein riverine nitrogen load may be of equal importance. The increase in N availability caused by atmospheric deposition and riverine input has switched extensive parts of the study area from being N-limited to P-limited. "
Gwen Noda

Random Sample - 0 views

  •  
    Science 25 November 2011: Vol. 334 no. 6059 p. 1039 DOI: 10.1126/science.334.6059.1039-b * News of the Week Random Sample Mongolia's 'Ice Shield' Figure View larger version: * In this page * In a new window Hot zone. Flanked by desert, Ulan Bator will be cooled in summer by an "ice shield." "CREDIT: BRÜCKE-OSTEUROPA/WIKIPEDIA" As the coldest capital on Earth, you might think the last thing Ulan Bator needs is more ice. But that is just what it's about to get under a geoengineering trial aimed at "storing" freezing winter temperatures to cool and water the city during the summer. At the end of this month, engineers will drill a series of bores through the ice on the Tuul River, pump up water from below, and spray it on the surface where it will freeze. This process will be repeated throughout the winter, adding layer after layer to create a chunk of ice that will be 7 or 8 meters thick by the spring. It's an attempt to artificially create the ultra-thick slabs-known as naleds in Russian-that occur naturally in far northern climes when rivers or springs push through surface cracks. Nomads have long made their summer camps near such phenomena, which melt much later than normal ice. Flanked by desert and plagued by summer temperatures that can rise close to 40°C, Ulan Bator's municipal government hopes the $724,000 experiment will create a cool microclimate and provide fresh water as the naled melts. ECOS & EMI, the Anglo-Mongolian company behind the plan, has still greater ambitions. "Everyone is panicking about melting glaciers and icecaps, but nobody has yet found a cheap, environmentally friendly alternative," says Robin Grayson, a geologist in Ulan Bator for ECOS & EMI. "If you know how to manipulate them, naled ice shields can repair permafrost and build cool parks in cities." The process, Grayson says, can be replicated anywhere where winter temperatures fall below −5°C for at least a couple of months.
Gwen Noda

Communities Under Climate Change - 0 views

  •  
    perspective "The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change. "
Gwen Noda

Once Upon A Tide - 0 views

  •  
    Background: The 10 minute education film is part of Healthy Ocean, Healthy Humans a project of the Center for Health and the Global Environment at Harvard Medical School. The film was produced for aquariums, museums, schools, and theaters - to help people understand that all life on Earth, including our own, depends on the ocean.
Gwen Noda

Oceans | Disneynature - 0 views

  •  
    Disneynature's Oceans Disneynature's big-screen movie, Oceans, will be released on Earth Day, April 22, 2010. Disney is teaming up with The Nature Conservancy for the initiative, See OCEANS, Save Oceans, with a portion of each ticket sold for the film's opening week (April 22-28, 2010) going to help establish new marine protected areas in the Bahamas. An Educational Activity Guide and Educator's Guide are available for downloading from the website.
Gwen Noda

YouTube - NASA: Climate Change And the Global Ocean [720p] - 2 views

  •  
    We know climate change can affect us, but does climate change alter something as vast, deep and mysterious as our oceans? For years, scientists have studied the world's oceans by sending out ships and divers, deploying data-gathering buoys, and by taking aerial measurements from planes. But one of the better ways to understand oceans is to gain an even broader perspective - the view from space. NASA's Earth observing satellites do more than just take pictures of our planet. High-tech sensors gather data, including ocean surface temperature, surface winds, sea level, circulation, and even marine life. Information the satellites obtain help us understand the complex interactions driving the world's oceans today - and gain valuable insight into how the impacts of climate change on oceans might affect us on dry land.
Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

Science On a Sphere - 0 views

  •  
    Science On a Sphere Well-crafted visualizations provide unique and powerful teaching tools Science On a Sphere® is a large visualization system that uses computers and video projectors to display animated data onto the outside of a sphere. Researchers at NOAA developed Science On a Sphere® as an educational tool to help illustrate Earth System science to people of all ages. Animated images of complex processes such as ocean currents, sea level rise, and ocean acidification are used to to enhance the public's understanding of our dynamic environment. Ocean Acidification on Science On a Sphere® The movies below were developed for use on Science On a Sphere® and show computer model simulations of surface ocean pH and carbonate mineral saturation state for the years 1895 to 2094. The first movie shows a computer recreation of surface ocean pH from 1895 to the present, and it forecasts how ocean pH will drop even more between now and 2094. Dark gray dots show cold-water coral reefs. Medium gray dots show warm-water coral reefs. You can see that ocean acidification was slow at the beginning of the movie, but it speeds up as time goes on. This is because humans are releasing carbon dioxide faster than the atmosphere-ocean system can handle.
Gwen Noda

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
‹ Previous 21 - 40 of 96 Next › Last »
Showing 20 items per page