Skip to main content

Home/ COSEE-West/ Group items tagged composite

Rss Feed Group items tagged

Gwen Noda

Eliminating Land Based Discharges of Marine Debris in California: A Plan of Action from... - 0 views

  •  
    Produced by: Plastic Debris, Rivers to Sea Project Algalita and California Coastal Commission Funding provided by the State Water Resources Control Board June 2006 pdf document, 91 pages Introduction - The California Marine Debris Action Plan of 1990 - A State Mandate to Eliminate Marine Debris is Necessary - The Plastic Debris, Rivers to Sea Project - The Action Plan - The Actions Recommended in this Plan - Process and Prioritization Part I: Marine Debris - Sources, Composition, and Quantities - What is Marine Debris? - Land versus Ocean Sources - Abundance of Plastic in the Marine Environment - Quantities of Plastic Debris Increasing Significantly in Oceans - Sources and Composition of Debris Found on Beaches - Trash and Debris in Stormwater and Urban Runoff - Other Research Characterizing Trash in Urban Runoff - Distribution and Composition of Marine Debris on California's Coast Part II: Marine Debris - Impacts - Ingestion and Entanglement - Ecosystem Impacts - Debris as a Transport Mechanism for Toxics and Invasive Species - Economic Impacts Part III: Current Efforts to Address Land-Based Discharges of Marine Debris - Federal Programs and Initiatives - State Programs and Initiatives - Regional Programs and Initiatives - Local Government Programs and Initiatives - National Public Interest Groups - California Public Interest Groups and Associations - Industry Initiatives
Gwen Noda

The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer - 0 views

  •  
    Nature has evolved efficient strategies to synthesize complex mineralized structures that exhibit exceptional damage tolerance. One such example is found in the hypermineralized hammer-like dactyl clubs of the stomatopods, a group of highly aggressive marine crustaceans. The dactyl clubs from one species, Odontodactylus scyllarus, exhibit an impressive set of characteristics adapted for surviving high-velocity impacts on the heavily mineralized prey on which they feed. Consisting of a multiphase composite of oriented crystalline hydroxyapatite and amorphous calcium phosphate and carbonate, in conjunction with a highly expanded helicoidal organization of the fibrillar chitinous organic matrix, these structures display several effective lines of defense against catastrophic failure during repetitive high-energy loading events.
1 - 4 of 4
Showing 20 items per page