Skip to main content

Home/ Computer Science Knowledge Sharing/ Group items tagged ALife

Rss Feed Group items tagged

Abdelrahman Ogail

Artificial life - Wikipedia, the free encyclopedia - 2 views

  • Artificial life (commonly Alife or alife) is a field of study and an associated art form which examine systems related to life, its processes, and its evolution through simulations using computer models, robotics, and biochemistry.[1] There are three main kinds of alife[2], named for their approaches: soft[3], from software; hard[4], from hardware; and wet, from biochemistry. Artificial life imitates traditional biology by trying to recreate biological phenomena.[5] The term "artificial life" is often used to specifically refer to soft alife
  • The modeling philosophy of alife strongly differs from traditional modeling, by studying not only “life-as-we-know-it”, but also “life-as-it-might-be” [7].
Abdelrahman Ogail

Flocking (behavior) - Wikipedia, the free encyclopedia - 0 views

  • Flocking behavior is the behavior exhibited when a group of birds, called a flock, are foraging or in flight. There are parallels with the shoaling behavior of fish, or the swarming behavior of insects. Computer simulations and mathematical models which have been developed to emulate the flocking behaviors of birds can generally be applied also to the "flocking" behavior of other species. As a result, the term "flocking" is sometimes applied, in computer science, to species other than birds. This article is about the modelling of flocking behavior. From the perceptive of the mathematical modeller, "flocking" is the collective motion of a large number of self-propelled entities and is a collective animal behavior exhibited by many living beings such as birds, fish, bacteria, and insects.[1] It is considered an emergent behaviour arising from simple rules that are followed by individuals and does not involve any central coordination. Flocking behavior was first simulated on a computer in 1986 by Craig Reynolds with his simulation program, Boids. This program simulates simple agents (boids) that are allowed to move according to a set of basic rules. The result is akin to a flock of birds, a school of fish, or a swarm of insects.
  • Flocking behavior is the behavior exhibited when a group of birds, called a flock, are foraging or in flight. There are parallels with the shoaling behavior of fish, or the swarming behavior of insects. Computer simulations and mathematical models which have been developed to emulate the flocking behaviors of birds can generally be applied also to the "flocking" behavior of other species. As a result, the term "flocking" is sometimes applied, in computer science, to species other than birds. This article is about the modelling of flocking behavior. From the perceptive of the mathematical modeller, "flocking" is the collective motion of a large number of self-propelled entities and is a collective animal behavior exhibited by many living beings such as birds, fish, bacteria, and insects.[1] It is considered an emergent behaviour arising from simple rules that are followed by individuals and does not involve any central coordination. Flocking behavior was first simulated on a computer in 1986 by Craig Reynolds with his simulation program, Boids. This program simulates simple agents (boids) that are allowed to move according to a set of basic rules. The result is akin to a flock of birds, a school of fish, or a swarm of insects.
Abdelrahman Ogail

Clockwork universe theory - Wikipedia, the free encyclopedia - 1 views

  • The Clockwork Universe Theory is a theory, established by Isaac Newton, as to the origins of the universe. A "clockwork universe" can be thought of as being a clock wound up by God and ticking along, as a perfect machine, with its gears governed by the laws of physics. What sets this theory apart from others is the idea that God's only contribution to the universe was to set everything in motion, and from there the laws of science took hold and have governed every sequence of events since that time. This idea was very popular during the Enlightenment, when scientists realized that Newton's laws of motion, including the law of universal gravitation, could explain the behavior of the solar system. A notable exclusion from this theory though is free will, since all things have already been set in motion and are just parts of a predictable machine. Newton feared that this notion of "everything is predetermined" would lead to atheism. This theory was undermined by the second law of thermodynamics ( the total entropy of any isolated thermodynamic system tends to increase over time, approaching a maximum value) and quantum physics with its unpredictable random behavior.
  • The Clockwork Universe Theory is a theory, established by Isaac Newton, as to the origins of the universe. A "clockwork universe" can be thought of as being a clock wound up by God and ticking along, as a perfect machine, with its gears governed by the laws of physics. What sets this theory apart from others is the idea that God's only contribution to the universe was to set everything in motion, and from there the laws of science took hold and have governed every sequence of events since that time. This idea was very popular during the Enlightenment, when scientists realized that Newton's laws of motion, including the law of universal gravitation, could explain the behavior of the solar system. A notable exclusion from this theory though is free will, since all things have already been set in motion and are just parts of a predictable machine. Newton feared that this notion of "everything is predetermined" would lead to atheism. This theory was undermined by the second law of thermodynamics ( the total entropy of any isolated thermodynamic system tends to increase over time, approaching a maximum value) and quantum physics with its unpredictable random behavior.
    • Abdelrahman Ogail
       
      "God's only contribution to the universe was to set everything in motion, and from there the laws of science took hold and have governed every sequence of events since that time" <-- ???
1 - 3 of 3
Showing 20 items per page