Skip to main content

Home/ Chem 109H Fall08/ Group items tagged atom

Rss Feed Group items tagged

Becky Kriger

Polymer - Condensation polymers - 1 views

  • Polymers are made up of extremely large, chainlike molecules consisting of numerous, smaller, repeating units called monomers. Polymer chains, which could be compared to paper clips linked together to make a long strand, appear in varying lengths. They can have branches, become intertwined, and can have cross-links. In addition, polymers can be composed of one or more types of monomer units, they can be joined by various kinds of chemical bonds, and they can be oriented in different ways. Monomers can be joined together by addition, in which all the atoms in the monomer are present in the polymer, or by condensation, in which a small molecule byproduct is also formed.
  • The importance of polymers is evident as they occur widely both in the natural world in such materials as wool, hair, silk and sand, and in the world of synthetic materials in nylon, rubber, plastics, Styrofoam, and many other materials.
  • Polymers are extremely large molecules composed of long chains, much like paper clips that are linked together to make a long strand. The individual subunits, which can range from as few as 50 to more than 20,000, are called monomers (from the Greek mono meaning one and meros meaning part). Because of their large size, polymers (from the Greek poly meaning many) are referred to as macromolecules.
  • ...21 more annotations...
  • Most synthetic polymers are made from the non-renewable resource, petroleum, and as such, the "age of plastics" is limited unless other ways are found to make them. Since most polymers have carbon atoms as the basis of their structure, in theory at least, there are numerous materials that could be used as starting points.
  • Disposing of plastics is also a serious problem, both because they contribute to the growing mounds of garbage accumulating everyday and because most are not biodegradable. Researchers are busy trying to find ways to speed-up the decomposition time which, if left to occur naturally, can take decades.
  • n order for monomers to chemically combine with each other and form long chains, there must be a mechanism by which the individual units can join or bond to each other. One method by which this happens is called addition because no atoms are gained or lost in the process. The monomers simply "add" together and the polymer is called an addition polymer.
  • The simplest chemical structure by which this can happen involves monomers that contain double bonds (sharing two pairs of electrons). When the double bond breaks and changes into a single bond, each of the other two electrons are free and available to join with another monomer that has a free electron. This process can continue on and on. Polyethylene is an example of an addition polymer.
  • The polymerization process can be started by using heat and pressure or ultraviolet light or by using another more reactive chemical such as a peroxide. Under these conditions the double bond breaks leaving extremely reactive unpaired electrons called free radicals. These free radicals react readily with other free radicals or with double bonds and the polymer chain starts to form.
  • ifferent catalysts yield polymers with different properties because the size of the molecule may vary and the chains may be linear, branched, or cross-linked. Long linear chains of 10,000 or more monomers can pack very close together and form a hard, rigid, tough plastic known as high-density polyethylene or HDPE
  • Shorter, branched chains of about 500 monomers of ethylene cannot pack as closely together and this kind of polymer is known as low-density polyethylene or LDPE.
  • The ethylene monomer has two hydrogen atoms bonded to each carbon for a total of four hydrogen atoms that are not involved in the formation of the polymer. Many other polymers can be formed when one or more of these hydrogen atoms are replaced by some other atom or group of atoms.
  • Natural and synthetic rubbers are both addition polymers. Natural rubber is obtained from the sap that oozes from rubber trees. It was named by Joseph Priestley who used it to rub out pencil marks, hence, its name, a rubber. Natural rubber can be decomposed to yield monomers of isoprene.
  • It was sticky and smelly when it got too hot and it got hard and brittle in cold weather. These undesirable properties were eliminated when, in 1839, Charles Goodyear accidentally spilled a mixture of rubber and sulfur onto a hot stove and found that it did not melt but rather formed a much stronger but still elastic product. The process, called vulcanization, led to a more stable rubber product that withstood heat (without getting sticky) and cold (without getting hard) as well as being able to recover its original shape after being stretched. The sulfur makes cross-links in the long polymer chain and helps give it strength and resiliency, that is, if stretched, it will spring back to its original shape when the stress is released.
  • A second method by which monomers bond together to form polymers is called condensation.
  • Unlike addition polymers, in which all the atoms of the monomers are present in the polymer, two products result from the formation of condensation polymers, the polymer itself and another small molecule which is often, but not always, water.
  • One of the simplest of the condensation polymers is a type of nylon called nylon 6.
  • All amino acids molecules have an amine group (NH2) at one end and a carboxylic acid (COOH) group at the other end. A polymer forms when a hydrogen atom from the amine end of one molecule and an oxygen-hydrogen group (OH) from the carboxylic acid end of a second molecule split off and form a water molecule. The monomers join together as a new chemical bond forms between the nitrogen and carbon atoms. This new bond is called an amide linkage.
  • The new molecule, just like each of the monomers from which it formed, also has an amine group at one end (that can add to the carboxylic acid group of another monomer) and it has a carboxylic acid group at the other end (that can add to the amine end of another monomer). The chain can continue to grow and form very large polymers.
  • Polymers formed by this kind of condensation reaction are referred to as polyamides.
  • Nylon became a commercial product for Du Pont when their research scientists were able to draw it into long, thin, symmetrical filaments. As these polymer chains line up side-by-side, weak chemical bonds called hydrogen bonds form between adjacent chains. This makes the filaments very strong.
  • Another similar polymer of the polyamide type is the extremely light-weight but strong material known as Kevlar. It is used in bullet-proof vests, aircraft, and in recreational uses such as canoes. Like nylon, one of the monomers from which it is made is terephthalic acid. The other one is phenylenediamine.
  • Polyesters are another type of condensation polymer, so-called because the linkages formed when the monomers join together are called esters.
  • Probably the best known polyester is known by its trade name, Dacron.
  • Dacron is used primarily in fabrics and clear beverage bottles. Films of Dacron can be coated with metallic oxides, rolled into very thin sheets (only about one-thirtieth the thickness of a human hair), magnetized, and used to make audio and video tapes. When used in this way, it is extremely strong and goes by the trade name Mylar. Because it is not chemically reactive, and is not toxic, allergenic, or flammable, and because it does not promote blood-clotting, it can be used to replace human blood vessels when they are severely blocked and damaged or to replace the skin of burn victims.
Becky Kriger

How are polymers made? : Scientific American - 0 views

  • Synthetic polymers are produced by chemical reactions, termed "polymerizations."
  • but such reactions consist of the repetitive chemical bonding of individual molecules, or monomers. Assorted combinations of heat, pressure and catalysis alter the chemical bonds that hold monomers together, causing them to bond with one another. Most often, they do so in a linear fashion, creating chains of monomers called polymers.
  • The monomer ethylene is composed of two carbon atoms, each bonded to two hydrogen atoms and sharing a double bond with one another. Polyethylene consists of a chain of single-bonded carbon atoms, each still carrying its two hydrogen atoms.
  • ...7 more annotations...
  • One way to produce polyethylene is called "free radical polymerization." As in other polymerizations, the process has three stages, known as initiation, propagation and termination. To begin, we need to add a catalyst to our supply of ethylene. A common catalyst is benzoyl peroxide, which when heated has the habit of splitting into two fragments, each with one unpaired electron, or free radical. These fragments are known as initiator fragments.
  • The unpaired electron naturally seeks another and finds a convenient target in the double bond between the carbon atoms in the ethylene molecule. Taking an electron from the carbon bond, the initiator fragment bonds itself to one of the monomer's carbon atoms.
  • The new radical also seeks a partner. And so ethylene monomers begin attaching themselves in a chain, creating new radicals each time and lengthening the chain. This stage is called propagation.
  • Eventually, free radical polymerization stops due to what are called termination reactions. For example, instead of stealing an electron from double-bonded carbons or a nearby propagating chain, the carbon atom with the free radical sometimes steals an entire hydrogen atom from another chain end. The polymer end--robbed of its hydrogen--easily forms a double bond with its adjacent carbon atom, and polymerization stops.
  • Because every part of the ethylene monomer is included in the finished polymer, the free radical polymerization of polyethylene is referred to as an addition polymerization
  • Polymerizations that use only portions of a monomer, however, are known as condensation polymerizations. The monomers that condense with each other must contain at least two reactive groups in order to form a chain.
  • For example, poly(ethyleneterepthalate), a polyester known as PET that is commonly found in soda bottles, forms from a reaction of two monomers: ethylene glycol and terephthoyl chloride. At the reaction's end, an atom of hydrogen and an atom of chlorine are left out of each PET molecular junction, resulting in a by-product of hydrogen chloride (HCl) gas.
Becky Kriger

Is Glass a Polymer? - 0 views

  • The highest quality glass has the chemical formula SiO2. But this is misleading. That formula conjures up ideas of little silicon dioxide molecules, analogous to carbon dioxide molecules. But little silicon dioxide molecules don't exist.
  • Instead, in nature SiO2 is often found as a crystalline solid, with a structure like you see on your right. Every silicon atom is bonded four oxygen atoms, tetrahedrally, of course; and every oxygen atom is bonded to two silicon atoms. When SiO2 is in this crystalline form we call it silica.
  • But this silica isn't glass. We have to do something to it first to make it into glass. We have to heat it up until it melts, and then cool it down really fast. When it melts, the silicon and oxygen atoms break out of their crystal structure. If we cooled it down slowly, the atoms would slowly line back up into their crystalline arrangement as they slowed down.
  • ...3 more annotations...
  • As you can see, there is no order to the arrangement of the atoms. We call materials like this amorphous. This is the glass that is used for telescope lenses and such things. It has very good optical properties, but it's brittle. For everyday uses, we need something tougher. Most glass is made from sand, and when we melt down the sand, we usually add some sodium carbonate. This gives us a tougher glass with a structure that looks like this:
  • So is this a polymer or not? Usually it isn't considered as such. Why? Some may say it's inorganic, and polymers are usually organic. But there are many inorganic polymers out there. For example, what about polysiloxanes? These linear, and yes, inorganic materials have a structure very similar to glass, and they're considered polymers. Take a look at a polysiloxane:
  • So glass could be considered a highly crosslinked polysiloxane. But we usually don't think of it that way. Why not? Probably because even in a highly crosslinked system, you could still trace a polymer chain and see where the crosslinks are. But with glass, it'd be tough to do that.
Becky Kriger

Nucleotides, Polymerization of DNA - 0 views

  • Nucleic acids are linear, unbranched polymers of nucleotides
  • Nucleotides consist of three parts:
  • two purines, called adenine (A) and guanine (G) two pyrimidines, called thymine (T) and cytosine (C) RNA contains: The same purines, adenine (A) and guanine (G). RNA also uses the pyrimidine cytosine (C), but instead of thymine, it uses the pyrimidine uracil (U).
  • ...6 more annotations...
  • A five-carbon sugar (hence a pentose). Two kinds are found: Deoxyribose, which has a hydrogen atom attached to its #2 carbon atom (designated 2') Ribose, which has a hydroxyl group atom there
  • A nitrogen-containing ring structure called a base. The base is attached to the 1' carbon atom of the pentose. In DNA, four different bases are found:
  • The combination of a base and a pentose is called a nucleoside.
  • One (as shown in the first figure), two, or three phosphate groups. These are attached to the 5' carbon atom of the pentose.
  • The nucleic acids, both DNA and RNA, consist of polymers of nucleotides. The nucleotides are linked covalently between the 3' carbon atom of the pentose and the phosphate group attached to the 5' carbon of the adjacent pentose.
  • Most intact DNA molecules are made up of two strands of polymer, forming a "double helix". RNA molecules, while single-stranded, usually contain regions where two portions of the strand twist around each other to form helical regions.
Becky Kriger

Introduction to DNA Structure - 0 views

  • Pyrimidine Bases Cytosine and thymine are pyrimidines. The 6 stoms (4 carbon, 2 nitrogen) are numbered 1-6. Like purines, all pyrimidine ring atoms lie in the same plane. Structure of C and T
  • DNA is a polymer. The monomer units of DNA are nucleotides, and the polymer is known as a "polynucleotide." Each nucleotide consists of a 5-carbon sugar (deoxyribose), a nitrogen containing base attached to the sugar, and a phosphate group. There are four different types of nucleotides found in DNA, differing only in the nitrogenous base.
  • Adenine and guanine are purines. Purines are the larger of the two types of bases found in DNA. Structures are shown below: Structure of A and G
  • ...9 more annotations...
  • The 9 atoms that make up the fused rings (5 carbon, 4 nitrogen) are numbered 1-9. All ring atoms lie in the same plane.
  • The deoxyribose sugar of the DNA backbone has 5 carbons and 3 oxygens. The carbon atoms are numbered 1', 2', 3', 4', and 5' to distinguish from the numbering of the atoms of the purine and pyrmidine rings. The hydroxyl groups on the 5'- and 3'- carbons link to the phosphate groups to form the DNA backbone
  • A nucleoside is one of the four DNA bases covalently attached to the C1' position of a sugar.
  • Nucleosides differ from nucleotides in that they lack phosphate groups. The four different nucleosides of DNA are deoxyadenosine (dA), deoxyguanosine (dG), deoxycytosine (dC), and (deoxy)thymidine (dT, or T).
  • A nucleotide is a nucleoside with one or more phosphate groups covalently attached to the 3'- and/or 5'-hydroxyl group(s).
  • The DNA backbone is a polymer with an alternating sugar-phosphate sequence. The deoxyribose sugars are joined at both the 3'-hydroxyl and 5'-hydroxyl groups to phosphate groups in ester links, also known as "phosphodiester" bonds.
  • DNA is a normally double stranded macromolecule. Two polynucleotide chains, held together by weak thermodynamic forces, form a DNA molecule.
  • Two DNA strands form a helical spiral, winding around a helix axis in a right-handed spiral The two polynucleotide chains run in opposite directions The sugar-phosphate backbones of the two DNA strands wind around the helix axis like the railing of a sprial staircase The bases of the individual nucleotides are on the inside of the helix, stacked on top of each other like the steps of a spiral staircase.
  • Within the DNA double helix, A forms 2 hydrogen bonds with T on the opposite strand, and G forms 3 hyrdorgen bonds with C on the opposite strand.
Becky Kriger

Chemical of the Week -- Polymers - 0 views

  •  Polymers are substances whose molecules have high molar masses and are composed of a large number of repeating units. There are both naturally occurring and synthetic polymers. Among naturally occurring polymers are proteins, starches, cellulose, and latex. Synthetic polymers are produced commercially on a very large scale and have a wide range of properties and uses. The materials commonly called plastics are all synthetic polymers.
  •    Polymers are formed by chemical reactions in which a large number of molecules called monomers are joined sequentially, forming a chain.
  • If all atoms in the monomers are incorporated into the polymer, the polymer is called an addition polymer. If some of the atoms of the monomers are released into small molecules, such as water, the polymer is called a condensation polymer.
  • ...27 more annotations...
  • Polyethylene terephthalate (PET), or polyethylene terephthalic ester (PETE), is a condensation polymer produced from the monomers ethylene glycol, HOCH2CH2OH, a dialcohol, and dimethyl terephthalate, CH3O2C–C6H4–CO2CH3, a diester. By the process of transesterification, these monomers form ester linkages between them, yielding a polyester
  • PETE fibers are manufactured under the trade names of Dacron and Fortrel.
  • Pleats and creases can be permanently heat set in fabrics containing polyester fibers, so-called permanent press fabrics. PETE can also be formed into transparent sheets and castings.
  • Transparent 2-liter carbonated beverage bottles are made from PETE.
  • ne form of PETE is the hardest known polymer and is used in eyeglass lenses.
  •      Polyethylene is perhaps the simplest polymer, composed of chains of repeating –CH2– units. It is produced by the addition polymerization of ethylene, CH2=CH2 (ethene)
  • HDPE is hard, tough, and resilient. Most HDPE is used in the manufacture of containers, such as milk bottles and laundry detergent jugs.
  • LDPE is relatively soft, and most of it is used in the production of plastic films, such as those used in sandwich bags.
  • Polymerization of vinyl chloride, CH2=CHCl (chloroethene), produces a polymer similar to polyethylene, but having chlorine atoms at alternate carbon atoms on the chain.
  • About two-thirds of the PVC produced annually is used in the manufacture of pipe. It is also used in the production of “vinyl” siding for houses and clear plastic bottles.
  • is used to form flexible articles such as raincoats and shower curtains.
  • This polymer is produced by the addition polymerization of propylene, CH2=CHCH3 (propene). Its molecular structure is similar to that of polyethylene, but has a methyl group (–CH3) on alternate carbon atoms of the chain.
  • olypropylene is used extensively in the automotive industry for interior trim, such as instrument panels, and in food packaging, such as yogurt containers. It is formed into fibers of very low absorbance and high stain resistance, used in clothing and home furnishings, especially carpeting.
  • Styrene, CH2=CH–C6H5, polymerizes readily to form polystyrene (PS), a hard, highly transparent polymer.
  • A large portion of production goes into packaging. The thin, rigid, transparent containers in which fresh foods, such as salads, are packaged are made from polystyrene. Polystyrene is readily foamed or formed into beads. These foams and beads are excellent thermal insulators and are used to produce home insulation and containers for hot foods. Styrofoam is a trade name for foamed polystyrene.
  • eflon is a trade name of polytetrafluoroethylene, PTFE. It is formed by the addition polymerization of tetrafluoroethylene, CF2=CF2 (tetrafluoroethene). PTFE is distinguished by its complete resistance to attack by virtually all chemicals and by its slippery surface. It maintains its physical properties over a large temperature range, -270° to 385°C. These properties make it especially useful for components that must operate under harsh chemical conditions and at temperature extremes. Its most familiar household use is as a coating on cooking utensils.
  • his important class of polymers is formed by the addition polymerization of an diisocyanate (whose molecules contain two –NCO groups) and a dialcohol (two –OH groups).
  • Polyurethane is spun into elastic fibers, called spandex, and sold under the trade name Lycra. Polyurethane can also be foamed. Soft polyurethane foams are used in upholstery, and hard foams are used structurally in light aircraft wings and sail boards.
  • Polyamides are a group of condensation polymers commonly known as nylon. Nylon is made from two monomers, one a dichloride and the other a diamine.
  • Nylon can be readily formed into fibers that are strong and long wearing, making them well suited for use in carpeting, upholstery fabric, tire cords, brushes, and turf for athletic fields. Nylon is also formed into rods, bars, and sheets that are easily formed and machined.
  • Polyacrylamide is a condensation polymer with an unusual and useful property.
  • This produces a network of polymer chains, rather like a tiny sponge. The free, unlinked amide groups, because they contain –NH2 groups, can form hydrogen bonds with water. This gives the tiny cross linked sponges a great affinity for water. Polyacrylamide can absorb many times its mass in water. T
  • his property is useful in a variety of applications, such as in diapers and in potting soil. The polyacrylamide will release the absorbed water if a substance that interferes with hydrogen bonding is added. Ionic substances, such as salt, cause polyacrylamide to release its absorbed water.
  • Over the past few decades, the use of polymers in disposable consumer goods has grown tremendously. This growth is proving to be taxing on the waste disposal system, consuming a large fraction of available landfill space.
  • To help sort wastes by type of polymer, most disposable polymeric goods are labeled with a recycling code: three arrows around a number above the polymer's acronym. These are intended to help consumers separate the waste polymers according to type before disposing of them. In the city of Madison, currently only type 1 (PETE) and type 2 (HDPE) polymers are being recycled – see below. The recycling of polymers is not a closed loop, where a material is reformed into new products repeatedly, such as in the case with aluminum. Most polymeric materials are recycled only once, and the product made of recycled polymer is discarded after use
  • General Rules Remove and discard all lids or caps. Rinse all containers. Remove and discard sprayer tops. CRUSH all plastic bottles to save space. No 5 gallon pails. No containers with metal handles.
  • What can be Recycled?Plastic Code Number Recyclable Containers Soda Bottles Water Bottles Juice Bottles Cooking Oil Bottles Soap/Detergent Bottles Shampoo Bottles Clear Liquor Bottles Food Jars (Peanut Butter etc.) Plastic Code Number Recyclable Containers Milk Bottles Water Bottles Juice Bottles Cooking Oil Containers Windshield Washer Fluid Bottles Shampoo Bottles Butter/Margarine Tubs Cottage Cheese Containers Ice Cream Containers Without Metal Handles Baby Wipe Containers Do NOT Recycle This Plastic 1. Automotive Product Containers Including: Motor Oil Bottles Anti-Freeze Containers Gasoline and Oil Additive Bottles 2. Brown Liquor Bottles 3. All Containers Marked With The Following Codes:            
Justin Shorb

Atom - Wikipedia, the free encyclopedia - 0 views

  • atom is the smallest unit
  •  
    This applies to Prof. Moore's lecture on the atom
Becky Kriger

Addition Polymers - 0 views

  • Addition polymers are usually made from molecules that have the following general structure: Different W, X, Y, and Z groups distinguish one addition polymer from another.
  • In the first stage, a substance is split into two identical parts, each with an unpaired electron. (Peroxides, which contain an O-O bond, are often used in this role.) A molecule with an unpaired electron is called a free radical. The free radical then initiates the reaction sequence by forming a bond to one of the carbon atoms in the double bond of the monomer. One electron for this new bond comes from the free radical, and the second electron for the new bond comes from one of the two bonds between the carbon atoms. The remaining electron from the broken bond shifts to the carbon atom on the far side of the molecule, away from the newly formed bond, forming a new free radical. Each half-headed arrow indicates the shift of one electron.
  • The chain begins to grow--propagate, stage two--when the new free radical formed in the initiation stage reacts with another monomer to add two more carbon atoms. This process repeats over and over again
  • ...3 more annotations...
  • It can be terminated--stage three--when any two free radicals combine, thus pairing their unpaired electrons and forming a covalent bond that links two chains together.
  • Polyethylene molecules made with the free radical initiation process tend to form branches that keep the molecules from fitting closely together. Techniques have been developed that use catalysts, like Cr2O3, to make polyethylene molecules with very few branches.
  • yielding a high-density polyethylene, HDPE, that is more opaque, harder, and stronger than the low-density polyethylene, LDPE, made with free radical initiation.
Becky Kriger

Polypeptides and Proteins - 0 views

  • A peptide (def) is two or more amino acids joined together by peptide bonds, and a polypeptide (def) is a chain of many amino acids. A protein contains one or more polypeptides. Therefore, proteins (def) are long chains of amino acids held together by peptide bonds.
  • The secondary structure (def) of the protein is due to hydrogen bonds that form between the oxygen atom of one amino acid and the nitrogen atom of another. This gives the protein or polypeptide the two-dimensional form of an alpha-helix or a beta-pleated sheet (see Fig. 4).
  • Amino acids (def) are the building blocks for proteins. All amino acids contain an amino or NH2 group and a carboxyl (acid) or COOH group. There are 20 different amino acids commonly found in proteins
  • ...5 more annotations...
  • To form polypeptides and proteins, amino acids are joined together by peptide bonds (def), in which the amino or NH2 of one amino acid bonds to the carboxyl (acid) or COOH group of another amino acid as shown in (see Fig. 2). Animation showing the formation of a peptide bond.
  • The actual order of the amino acids in the protein is called its primary structure (def) (see Fig. 3) and is determined by DNA.
  • it is commonly said that the order of deoxyribonucleotide bases (def) in a gene determines the amino acid sequence of a particular protein. Since certain amino acids can interact with other amino acids in the same protein, this primary structure ultimately determines the final shape and therefore the chemical and physical properties of the protein.
  • In globular proteins such as enzymes, the long chain of amino acids becomes folded into a three-dimensional functional shape or tertiary structure (def).
  • In some cases, such as with antibody molecules and hemoglobin, several polypeptides may bond together to form a quaternary structure (def) (see Fig 6).
Becky Kriger

Polymer Structures - 0 views

    • Becky Kriger
       
      To view the annotated contents of this page, click on the highlighted links to the left.
  • Although the fundamental property of bulk polymers is the degree of polymerization, the physical structure of the chain is also an important factor that determines the macroscopic properties.
  • Configuration refers to the order that is determined by chemical bonds. The configuration of a polymer cannot be altered unless chemical bonds are broken and reformed. Conformation refers to order that arises from the rotation of molecules about the single bonds. These two structures are studied below.
  • ...12 more annotations...
  • The two types of polymer configurations are cis and trans. These structures can not be changed by physical means (e.g. rotation). The cis configuration arises when substituent groups are on the same side of a carbon-carbon double bond. Trans refers to the substituents on opposite sides of the double bond.
  • Three distinct structures can be obtained. Isotactic is an arrangement where all substituents are on the same side of the polymer chain. A syndiotactic polymer chain is composed of alternating groups and atactic is a random combination of the groups. The following diagram shows two of the three stereoisomers of polymer chain.
  • The ability of an atom to rotate this way relative to the atoms which it joins is known as an adjustment of the torsional angle. If the two atoms have other atoms or groups attached to them then configurations which vary in torsional angle are known as conformations.
  • different conformation may represent different potential energies of the molecule. There several possible generalized conformations: Anti (Trans), Eclipsed (Cis), and Gauche (+ or -). The following animation illustrates the differences between them.
  • The geometric arrangement of the bonds is not the only way the structure of a polymer can vary. A branched polymer is formed when there are "side chains" attached to a main chain. A simple example of a branched polymer is shown in the following diagram.
  • One of these types is called "star-branching". Star branching results when a polymerization starts with a single monomer and has branches radially outward from this point. Polymers with a high degree of branching are called dendrimers Often in these molecules, branches themselves have branches.
  • A separate kind of chain structure arises when more that one type of monomer is involved in the synthesis reaction. These polymers that incorporate more than one kind of monomer into their chain are called copolymers. There are three important types of copolymers. A random copolymer contains a random arrangement of the multiple monomers. A block copolymer contains blocks of monomers of the same type. Finally, a graft copolymer contains a main chain polymer consisting of one type of monomer with branches made up of other monomers. The following diagram displays the different types of copolymers.
  • In addition to the bonds which hold monomers together in a polymer chain, many polymers form bonds between neighboring chains. These bonds can be formed directly between the neighboring chains, or two chains may bond to a third common molecule.
  • Polymers with a high enough degree of cross-linking have "memory." When the polymer is stretched, the cross-links prevent the individual chains from sliding past each other. The chains may straighten out, but once the stress is removed they return to their original position and the object returns to its original shape.
  • In vulcanization, a series of cross-links are introduced into an elastomer to give it strength. This technique is commonly used to strengthen rubber.
  • Elastomers,or rubbery materials, have a loose cross-linked structure. This type of chain structure causes elastomers to possess memory. Typically, about 1 in 100 molecules are cross-linked
  • Natural and synthetic rubbers are both common examples of elastomers. Plastics are polymers which, under appropriate conditions of temperature and pressure, can be molded or shaped (such as blowing to form a film). In contrast to elastomers, plastics have a greater stiffness and lack reversible elasticity.
Becky Kriger

Plastics - 0 views

  • lastics are synthetic materials, which means that they are artificial, or manufactured.
  • he building blocks for making plastics are small organic molecules - molecules that contain carbon along with other substances. They generally come from oil (petroleum) or natural gas, but they can also come from other organic materials such as wood fibers, corn, or banana peels! Each of these small molecules is known as a monomer ("one part") because it's capable of joining with other monomers to form very long molecule chains called polymers ("many parts")
  • 1. Crude oil, the unprocessed oil that comes out of the ground, contains hundreds of different hydrocarbons, as well as small amounts of other materials. The job of an oil refinery is to separate these materials and also to break down (or "crack) large hydrocarbons into smaller ones. 2. A petrochemical plant receives refined oil containing the small monomers they need and creates polymers through chemical reactions. 3. A plastics factory buys the end products of a petrochemical plant - polymers in the form of resins - introduces additives to modify or obtain desirable properties, then molds or otherwise forms the final plastic products.
  • ...13 more annotations...
  • One such molecule is the ethylene monomer, the starting point for a variety of plastics. Ethylene is a small hydrocarbon consisting of four hydrogen atoms and two carbon atoms.
  • Polymerization is often started by combining the monomers through the use of a catalyst - a substance that aids a chemical reaction without undergoing any permanent chemical change itself. During the chemical reaction, hundreds or thousands of monomers combine to form a polymer chain, and millions of polymer chains are formed at the same time. The mass of polymers that results is known as a resin.
  • Polyethylene is made from just ethylene monomers - but it's also possible to create polymers from two or more different monomers. You can make hundreds of different polymers depending on which monomers and catalysts you use.
  • Cellulose, the basic component of plant cell walls is a polymer, and so are all the proteins produced in your body and the proteins you eat. Another famous example of a polymer is DNA - the long molecule in the nuclei of your cells that carries all the genetic information about you.
  • lastics are classified into two categories according to what happens to them when they're heated to high temperatures. Thermoplastics keep their plastic properties: They melt when heated, then harden again when cooled. Thermosets, on the other hand, are permanently "set" once they're initially formed and can't be melted. If they're exposed to enough heat, they'll crack or become charred.
  • Thermoplastics have long, linear polymer chains that are only weakly chemically bonded, or connected, to each other. When a thermoplastic object is heated, these bonds are easily broken, which makes the polymers able to glide past each other like strands of freshly cooked spaghetti. That's why thermoplastics can readily be remolded. The weak bonds between the polymers reform when the plastic object is cooled, which enable it to keep its new shape.
  • The linear chains are crosslinked - strongly chemically bonded. This prevents a thermoplastic object from being melted and reformed.
  • The most common method for making plastics is molding. To make a thermoplastic object, plastic granules known as resin are forced into a mold under high heat and pressure. When the material has cooled down, the mold is opened and the plastic object is complete. When making plastic fibers, the molten resin is sprayed through a strainer with tiny holes.
  • Thermosets are produced in two steps: 1. Linear polymers are formed. 2. The linear polymers are forced into a mold where "curing" takes place. This may involve heating, pressure, and the addition of catalysts. During this process, a cross-linked or networked structure forms, creating a permanently hard object that is no longer meltable or moldable.
  • For most applications, the ideal polymer is a long, straight chain with a highly regular molecular structure. Early synthetic polymers, however, often exhibited odd little branches and other irregularities. In the 1950s, German chemist Karl Ziegler (1898–1973) discovered that an entirely different type of catalyst - a combination of aluminum compounds with other metallic compounds - could solve some of these annoying problems and increase the length of a polymer chain, producing superior plastics.
  • olymers often have short side chains, which can occur on either side of the main chain. If side branches occur randomly to the left or right, the polymer has an irregular structure. Italian chemist Giulio Natta (1903–1979) discovered that some Ziegler catalysts led to a uniform structure in which all the side branches are on the same side.
  • Firstly, there is an environmental impact from plastics production; however the plastics industry has worked hard to reduce energy and water use, as well as waste generation during the manufacturing processes.
  • Secondly, during their lives, plastic products can save energy and reduce carbon dioxide emissions in a variety of ways. For example, they're lightweight, so transporting them is energy efficient. And plastic parts in cars and airplanes reduce the weight of those vehicles and therefore less energy is needed to operate them and lower emissions are created.
Becky Kriger

Scientific Principles:Polymers - 0 views

  • The chemical reaction in which high molecular mass molecules are formed from monomers is known as polymerization. There are two basic types of polymerization, chain-reaction (or addition) and step-reaction (or condensation) polymerization.
  • One of the most common types of polymer reactions is chain-reaction (addition) polymerization. This type of polymerization is a three step process involving two chemical entities. The first, known simply as a monomer, can be regarded as one link in a polymer chain. It initially exists as simple units. In nearly all cases, the monomers have at least one carbon-carbon double bond. Ethylene is one example of a monomer used to make a common polymer.
  • The other chemical reactant is a catalyst. In chain-reaction polymerization, the catalyst can be a free-radical peroxide added in relatively low concentrations. A free-radical is a chemical component that contains a free electron that forms a covalent bond with an electron on another molecule. The formation of a free radical from an organic peroxide is shown below:
  • ...25 more annotations...
  • The first step in the chain-reaction polymerization process, initiation, occurs when the free-radical catalyst reacts with a double bonded carbon monomer, beginning the polymer chain. The double carbon bond breaks apart, the monomer bonds to the free radical, and the free electron is transferred to the outside carbon atom in this reaction.
  • The next step in the process, propagation, is a repetitive operation in which the physical chain of the polymer is formed. The double bond of successive monomers is opened up when the monomer is reacted to the reactive polymer chain. The free electron is successively passed down the line of the chain to the outside carbon atom.
  • Thermodynamically speaking, the sum of the energies of the polymer is less than the sum of the energies of the individual monomers. Simply put, the single bounds in the polymeric chain are more stable than the double bonds of the monomer.
  • Termination occurs when another free radical (R-O.), left over from the original splitting of the organic peroxide, meets the end of the growing chain. This free-radical terminates the chain by linking with the last CH2. component of the polymer chain. This reaction produces a complete polymer chain. Termination can also occur when two unfinished chains bond together. Both termination types are diagrammed below. Other types of termination are also possible.
  • This exothermic reaction occurs extremely fast, forming individual chains of polyethylene often in less than 0.1 second.
  • Step-reaction (condensation) polymerization is another common type of polymerization. This polymerization method typically produces polymers of lower molecular weight than chain reactions and requires higher temperatures to occur. Unlike addition polymerization, step-wise reactions involve two different types of di-functional monomers or end groups that react with one another, forming a chain. Condensation polymerization also produces a small molecular by-product (water, HCl, etc.).
  • As indicated above, both addition and condensation polymers can be linear, branched, or cross-linked. Linear polymers are made up of one long continuous chain, without any excess appendages or attachments. Branched polymers have a chain structure that consists of one main chain of molecules with smaller molecular chains branching from it. A branched chain-structure tends to lower the degree of crystallinity and density of a polymer. Cross-linking in polymers occurs when primary valence bonds are formed between separate polymer chain molecules. Chains with only one type of monomer are known as homopolymers. If two or more different type monomers are involved, the resulting copolymer can have several configurations or arrangements of the monomers along the chain. The four main configurations are depicted below:
  • They can be found in either crystalline or amorphous forms. Crystalline polymers are only possible if there is a regular chemical structure (e.g., homopolymers or alternating copolymers), and the chains possess a highly ordered arrangement of their segments. Crystallinity in polymers is favored in symmetrical polymer chains, however, it is never 100%. These semi-crystalline polymers possess a rather typical liquefaction pathway, retaining their solid state until they reach their melting point at Tm.
  • Amorphous polymers do not show order. The molecular segments in amorphous polymers or the amorphous domains of semi-crystalline polymers are randomly arranged and entangled. Amorphous polymers do not have a definable Tm due to their randomness
  • At low temperatures, below their glass transition temperature (Tg), the segments are immobile and the sample is often brittle. As temperatures increase close to Tg, the molecular segments can begin to move. Above Tg, the mobility is sufficient (if no crystals are present) that the polymer can flow as a highly viscous liquid.
  • Thermoplastics are generally carbon containing polymers synthesized by addition or condensation polymerization. This process forms strong covalent bonds within the chains and weaker secondary Van der Waals bonds between the chains. Usually, these secondary forces can be easily overcome by thermal energy, making thermoplastics moldable at high temperatures.
  • Thermosets have the same Van der Waals bonds that thermoplastics do. They also have a stronger linkage to other chains. Strong covalent bonds chemically hold different chains together in a thermoset material. The chains may be directly bonded to each other or be bonded through other molecules. This "cross-linking" between the chains allows the material to resist softening upon heating.
  • Compression Molding This type of molding was among the first to be used to form plastics. It involves four steps: Pre-formed blanks, powders or pellets are placed in the bottom section of a heated mold or die. The other half of the mold is lowered and is pressure applied. The material softens under heat and pressure, flowing to fill the mold. Excess is squeezed from the mold. If a thermoset, cross-linking occurs in the mold. The mold is opened and the part is removed. For thermoplastics, the mold is cooled before removal so the part will not lose its shape. Thermosets may be ejected while they are hot and after curing is complete. This process is slow
  • Injection Molding This very common process for forming plastics involves four steps: Powder or pelletized polymer is heated to the liquid state. Under pressure, the liquid polymer is forced into a mold through an opening, called a sprue. Gates control the flow of material. The pressurized material is held in the mold until it solidifies. The mold is opened and the part removed by ejector pins. Advantages of injection molding include rapid processing, little waste, and easy automation.
  • Transfer Molding This process is a modification of compression molding. It is used primarily to produce thermosetting plastics. Its steps are: A partially polymerized material is placed in a heated chamber. A plunger forces the flowing material into molds. The material flows through sprues, runners and gates. The temperature and pressure inside the mold are higher than in the heated chamber, which induces cross-linking. The plastic cures, is hardened, the mold opened, and the part removed. Mold costs are expensive and much scrap material collects in the sprues and runners, but complex parts of varying thickness can be accurately produced.
  • Extrusion This process makes parts of constant cross section like pipes and rods. Molten polymer goes through a die to produce a final shape. It involves four steps: Pellets of the polymer are mixed with coloring and additives. The material is heated to its proper plasticity. The material is forced through a die. The material is cooled.
  • Blow Molding Blow molding produces bottles, globe light fixtures, tubs, automobile gasoline tanks, and drums. It involves: A softened plastic tube is extruded The tube is clamped at one end and inflated to fill a mold. Solid shell plastics are removed from the mold. This process is rapid and relatively inexpensive.
  • In 1989, a billion pounds of virgin PET were used to make beverage bottles of which about 20% was recycled. Of the amount recycled, 50% was used for fiberfill and strapping. The reprocessors claim to make a high quality, 99% pure, granulated PET. It sells at 35 to 60% of virgin PET costs. The major reuses of PET include sheet, fiber, film, and extrusions.
  • Of the plastics that have a potential for recycling, the rigid HDPE container is the one most likely to be found in a landfill. Less than 5% of HDPE containers are treated or processed in a manner that makes recycling easy.
  • There is a great potential for the use of recycled HDPE in base cups, drainage pipes, flower pots, plastic lumber, trash cans, automotive mud flaps, kitchen drain boards, beverage bottle crates, and pallets.
  • LDPE is recycled by giant resin suppliers and merchant processors either by burning it as a fuel for energy or reusing it in trash bags. Recycling trash bags is a big business.
  • There is much controversy concerning the recycling and reuse of PVC due to health and safety issues. When PVC is burned, the effects on the incinerator and quality of the air are often questioned. The Federal Food and Drug Administration (FDA) has ordered its staff to prepare environmental impact statements covering PVC's role in landfills and incineration. The burning of PVC releases toxic dioxins, furans, and hydrogen chloride.
  • PVC is used in food and alcoholic beverage containers with FDA approval. The future of PVC rests in the hands of the plastics industry to resolve the issue of the toxic effects of the incineration of PVC. It is of interest to note that PVC accounts for less than 1% of land fill waste.
  • PS and its manufacturers have been the target of environmentalists for several years. The manufacturers and recyclers are working hard to make recycling of PS as common as that of paper and metals. One company, Rubbermaid, is testing reclaimed PS in service trays and other utility items.
  • Table 3: Major Plastic Resins and Their Uses Resin CodeResin NameCommon UsesExamples of Recycled Products Polyethylene Terephthalate (PET or PETE) Soft drink bottles, peanut butter jars, salad dressing bottles, mouth wash jars Liquid soap bottles, strapping, fiberfill for winter coats, surfboards, paint brushes, fuzz on tennis balls, soft drink bottles, film High density Polyethylene (HDPE) Milk, water, and juice containers, grocery bags, toys, liquid detergent bottles Soft drink based cups, flower pots, drain pipes, signs, stadium seats, trash cans, re-cycling bins, traffic barrier cones, golf bag liners, toys Polyvinyl Chloride or Vinyl (PVC-V) Clear food packaging, shampoo bottles Floor mats, pipes, hoses, mud flaps Low density Polyethylene (LDPE) Bread bags, frozen food bags, grocery bags Garbage can liners, grocery bags, multi purpose bags Polypropylene (PP) Ketchup bottles, yogurt containers, margarine, tubs, medicine bottles Manhole steps, paint buckets, videocassette storage cases, ice scrapers, fast food trays, lawn mower wheels, automobile battery parts. Polystyrene (PS) Video cassette cases, compact disk jackets, coffee cups, cutlery, cafeteria trays, grocery store meat trays, fast-food sandwich container License plate holders, golf course and septic tank drainage systems, desk top accessories, hanging files, food service trays, flower pots, trash cans
Justin Shorb

Trends of the Periodic Table - 0 views

  • Atomic Radius
    • Justin Shorb
       
      For a, b (see below for ion size)
  • Electronegativity
    • Justin Shorb
       
      for (c)
  • Ionic Radius vs. Atomic Radius
    • Justin Shorb
       
      For (b)
  • ...1 more annotation...
    • Justin Shorb
       
      Covalency has to do with how polar/non-polar the bond is. The more equal a partnership, the more covalent the bond is. Thus: compare electronegativities. Metal/non-metal pairs form ionic (extreme of polar covalent to the point of being NOT covalent) bonds.
  •  
    Exam I, #1
  •  
    Short exerpts on many basic Periodic Trends
ChemPaths UW-Madison

Atomic Structure and Isotopes - 0 views

  •  
    Hi!
  •  
    Atomic and Ionic Radii | Boron Family | P-Block Elements | IIT-JEE NEET youtube.com/watch?v=fqK9e_jqKLU
vediphile

Atomic and Ionic Radii | Boron Family | P-Block Elements | IIT-JEE NEET - 0 views

youtube.com/watch?v=fqK9e_jqKLU

atomic structure quantum numbers subatomic particles waves

started by vediphile on 02 Jul 22 no follow-up yet
Becky Kriger

How Plastics Are Made - 0 views

  • The term "plastics" encompasses organic materials, such as the elements carbon (C), hydrogen (H), nitrogen (N), chlorine (Cl) and sulfur (S), which have properties similar to those naturally grown in organic materials such as wood, horn and rosin.
  • The plastic production process begins by heating the hydrocarbons in a "cracking process." Here, in the presence of a catalyst, larger molecules are broken down into smaller ones such as ethylene (ethene) C2H4, propylene (propene) C3H6, and butene C4H8 and other hydrocarbons.
  • Other examples of thermoset plastics and their product applications are: Polyurethanes: mattresses, cushions, insulation, ski boots, toys Unsaturated Polyesters: lacquers, varnishes, boat hulls, furniture,  Epoxies: glues, coating electrical circuits, helicopter blades
  • ...13 more annotations...
  • Other examples of thermoplastics are: Polyethylene: packaging, electrical insulation, milk and water bottles, packaging film, house wrap, agricultural film Polypropylene: carpet fibers, automotive bumpers, microwave containers, external prostheses Polyvinyl chloride (PVC): sheathing for electrical cables, floor and wall coverings, siding, credit cards, automobile instrument panels
  • These monomers are then chemically bonded into chains called polymers.
  • The resulting resins may be molded or formed to produce several different kinds of plastic products with application in many major markets. The variability of resin permits a compound to be tailored to a specific design or performance requirement.
  • Polymers are created by the chemical bonding of many identical or related basic units and those produced from a single monomer type are called homopolymers. These polymers are specifically made of small units bonded into long chains. Carbon makes up the backbone of the molecule and hydrogen atoms are bonded along the carbon backbone.
  • In order to achieve a commercial product, the plastic is subject to further treatment and the inclusion of additives which are selected to give it specified properties
  • Additives are incorporated into polymers to alter and improve their basic mechanical, physical or chemical properties. Additives are also used to protect the polymer from the degrading effects of light, heat, or bacteria; to change such polymer properties as flow; to provide product color; and to provide special characteristics such as improved surface appearance or reduced friction.
  • Types of Additives:     antioxidants: for outside application,      colorants: for colored plastic parts, foaming agents: for Styrofoam cups,      plasticizers: used in toys and food processing equipment
  • A Thermoset is a polymer that solidifies or "sets" irreversibly when heated. Similar to the relationship between a raw and a cooked egg, once heated, a thermoset polymer can't be softened again and once cooked, the egg cannot revert back to its original form.
  • A Thermoplastic is a polymer in which the molecules are held together by weak secondary bonding forces that soften when exposed to heat and return to its original condition when cooled back down to room temperature. When a thermoplastic is softened by heat, it can then be shaped by extrusion, molding or pressing. Ice cubes are a common household item which exemplify the thermoplastic principle. Ice will melt when heated but readily solidifies when cooled.
  • In this method, a separate molding and cooling station on the equipment allows the parison to be continuously formed.  This technique is used mainly for small thin-walled parts ranging up to containers with five gallon capacities.  Parison programming can be used to vary the wall thickness.  Continuous extrusion also allows the use of heat-sensitive materials due to streamlined flow areas and die designs.
  • This technique is performed in three basic ways --reciprocating, ram accumulator, and accumulator head systems.  All three vary in machine design and the flow of molten resin through the die for parison forming.  However, each system is designed to produce larger, heavier, and thicker parts than continuous extrusion.
  • Blow moldable grades of material are initially injection molded into preform shapes.  These preforms are then thermally conditioned and then stretched (utilizing pneumatically operated stretch rods) low pressure air, followed by high pressure air up to 40 bar to form axially oriented parts with molded in necks.  The process is used to manufacture PET bottles.
  • This process utilizes various thermoplastic materials in a solid pelletized state and converts these materials by way of heat, pressure and compressed air into a finished good stat.The pellitized raw material is conveyed to the feed section of a plasticating extruder by way of a vacuum loader or auger screw.  The raw material is then conveyed forward through the extruder and is plastisized to a molten state of between 350 degrees and 500 degrees F. by way of a feed screw and external heating elements.The material in a melt state is then reshaped into a round hollow geometry termed a parison.  This parison is then extruded vertically from the head section of the machine through a round die at various outside and inside diameters.After extrusion of the parison between the two halves of a mold the press section closes encapsulating the parison inside the mold halves.  Upon mold close compressed air is entered into the parison by way of a centrally located air pipe or by piercing air needles.The molds are chilled with cooled water which transfers the hear form the now formed part inside the mold.  Upon complete part cooling the press section opens and the finished product is removed.  The material which is pinched off outside the mold cavity, or the flash, is then fed into a granulator which cops the flash into a granule size which can be fed back to the feed section of the extruder.
Becky Kriger

Special Properties of Polymers - 0 views

shared by Becky Kriger on 08 Dec 08 - Cached
  • why these polymers, these macromolecules, act differently from small molecules.
  • Chain entanglement Summation of intermolecular forces Time scale of motion
  • Remember now that most polymers are linear polymers; that is, they are molecules whose atoms are joined in a long line to form a huge chain. Now most of the time, but not always, this chain is not stiff and straight, but is flexible. It twists and bends around to form a tangled mess.
  • ...4 more annotations...
  • when a polymer is molten, the chains will act like spaghetti tangled up on a plate. If you try to pull out any one strand of spaghetti, it slides right out with no problem. But when polymers are cold and in the solid state, they act more like a ball of string.
  • intermolecular forces affect polymers just like small molecules. But with polymers, these forces are greatly compounded. The bigger the molecule, the more molecule there is to exert an intermolecular force. Even when only weak Van der Waals forces are at play, they can be very strong in binding different polymer chains together. This is another reason why polymers can be very strong as materials. Polyethylene, for example is very nonpolar. It only has Van der Waals forces to play with, but it is so strong it's used to make bullet proof vests.
  • This is a fancy way of saying polymers move more slowly than small molecules do. Imagine you are a first grade teacher, and it's time to go to lunch. Your task is to get your kids from the classroom to the cafeteria, without losing any of them, and to do so with minimal damage to the territory you'll have to cover to get to the cafeteria. Keeping them in line is going to be difficult. Little kids love to run around every which way, jumping and hollering and bouncing this way and that. One way to put a stop to all this chaotic motion is to make all the kids join hands when you're walking them to lunch. This won't be easy rest assured, as there's always going to be a lot of little boys who are too macho to hold the hands of the girls next to them in line, and some who are too insecure in their manhood to hold anyone's hand. But once you get them to do this, their ability to run around is severely limited. Of course, their motion will still be chaotic. The chain of kids will curve and snake this way and that on its way to eat soybean patties disguised as who knows what. But the motion will be a lot slower. You see, if one kid gets a notion to just bolt off in one direction, he or she can't do it because he or she will be bogged down by the weight of all the other kids to which he or she is bound. Sure, the kid can deviate from the straight path, and make a few other kids do so, but the deviation will be far less than you'd bet if the kids weren't all linked together. It's the same way with molecules.
  • So then how does this make a polymeric material different from a material made of small molecules? This slow speed of motion makes polymers do some very unusual things. For one, if you dissolve a polymer in a solvent, the solution will be a lot more viscous than the pure solvent.
ChemPaths UW-Madison

Wave Tutorial - 0 views

  •  
    Walking students from basic wave mechanics on toward the idea of the electron as a confined wave.
Justin Shorb

Construct a Lewis Structure - 0 views

  • Starting with a structure indicating only atom connections
  •  
    Useful for extra help in Lewis Diagrams.
  •  
    Doesn't have the same molecules as Exam I #7, but is useful practice!
Becky Kriger

OChem- Biopolymers - 0 views

  • The red lines connecting the 4th carbon atom of one isoprene unit with the 1st carbon of the next indicate that latex is an addition polymer that results from the 1,4-addition of one isoprene unit to the next. Note the head-to-tail pattern in which the isoprene units are connected. Note, too, that the stereochemistry is the same at each double bond, namely cis.
  • Synthetic Rubber In 1839 Charles Goodyear discovered, literally by accident, that heating natural rubber with elemental sulfur altered the properties of the polymer, most notably making it tougher and more elastic. Goodyear's discovery led to the development of synthetic rubber, a material that found its most profitable application in the manufacture of automobile tires. Investigation of the structure of synthetic rubber revealed that the sulfur had formed disulfide bonds that linked one polyisoprene chain to the next. As Figure 2 demonstrates, these cross-links serve to restore the polymer to its original shape after it has been deformed by the application of a force. Figure 2 Bouncing Back
  • Not surprisingly, the desireable properties of natural as well as synthetic rubber led to investigations of the polymerization of structural analogs of isoprene. One notable success came from the polymerization of 2-chloro-1,3-butadiene, sometimes called chloroprene. Polychloroprene is known commercially as neoprene rubber. It is widely used in the automotive industry for the manufacture of oil-resistant hoses. Neoprene that contains entrapped air has good insulating properties and is used in the production of wet suits.
1 - 20 of 25 Next ›
Showing 20 items per page