Skip to main content

Home/ Block I ( geometry)/ question 4
Jyoti Pakianathan

question 4 - 26 views

started by Jyoti Pakianathan on 24 Jan 13
  • Jyoti Pakianathan
     
    Two men on opposite sides of a TV tower of height 28 m notice the angle of elevation of the top of this tower to be 45o and 60o respectively. Find the distance (in meters) between the two men.
  • kwonteddy17
     
    120/tan(45)=28

    120/tan(60)= 16.1658

    28-16.1658 = 11.8342 m
  • David Kim
     
    tan(60) = 28/x
    28/tan(60) = x
    x = 16.1658

    tan(45) = 28/y
    28/tan(45) = y
    y = 28

    Distance between the 2 men = 28 + 16.1658
    =44.17
  • Elaine Kim
     
    tan 45 = 28/x
    28/tan 45 = x
    x = 28

    tan 60 = 28/x
    28/tan 60 = x
    x = 16.1658

    Distance between
    28 - 16.1658
    = 11.8342
  • Alex Kim
     
    Opposite Side so 44.1

    28 + 16.1
  • Haley Park
     
    tan 45= 28/x
    28/ tan 45= x
    x=28

    tan 60= 28/y
    28/tan 60= y
    y=16.16

    28+ 16.16=44.16
  • backchanyel17
     
    28/tan(60)+ 28/tan(45)= Find the distance (in meters) between the two men.
    answer= 44.1658
  • Nam Hyun Kim
     
    120/tan(45)=28
    120/tan(60)=16.16508
    =11.8342
  • Sally Rho
     
    tan60=28/x
    x=28/tan60
    x=16.16

    tan45=28/y
    y=28/tan45
    y=28

    28+16.16
    =44.16
  • Harine Choi
     
    tan45 = x/28
    28 (tan45) = x = 28

    tan30 = 28/y
    y (tan30) = 28
    y = 28 / tan30 = 48.4974

    28 + 48.4974 = 76.4974
  • choandy17
     
    28/Tan(60)
    28/Tan(45)

    opposite side
    28 + 16.1 = 44.1
  • anonymous
     
    Tan (45) = 28/x
    28/Tan (45) = x
    x= 28

    Tan 60 = 28/y
    28/Tan(60) = y
    y= 16.16

    answer:
    = 44.16
  • trey noh
     
    Tan (45) = 28/x
    28/Tan (45) = x
    x= 28
    Tan 60 = 28/y
    28/Tan(60) = y
    y= 16.16
    = 44.16
  • Jyoti Pakianathan
     
    44. 17m is the right answer here
  • Harshit Sharma
     
    Tan 60= 28/y
    16.1658= y

    Tan 45= 28/x
    x= 28m

    28m+16.1658= 44.1658

To Top

Start a New Topic » « Back to the Block I ( geometry) group