Skip to main content

Home/ BeyondwebctFall08/ Group items tagged parents

Rss Feed Group items tagged

Barbara Lindsey

Parents Are a Secret Weapon Just Waiting to Be Discovered | Edutopia - 0 views

  • These high-performing schools, say Henderson and Mapp, focus on building trusting, collaborative relationships among teachers, families, and community members. They recognize, respect, and address families' needs, as well as class and cultural differences. And they embrace a philosophy of partnership in which power and responsibility are shared.
  • partnering with parents isn't the reality in many schools throughout the country.
  • The most recent MetLife Survey of the American Teacher (the insurance company has conducted an annual teachers' survey since 1984) sheds additional light on this issue. According to the study, new teachers consider engaging and working with parents their greatest challenge (beating out obtaining supplies and maintaining order and discipline in the classroom) and the area they are least prepared to manage during their first year of teaching.
  • ...2 more annotations...
  • a less-than-welcoming atmosphere, language and cultural barriers, insufficient training for teachers, and lack of parent education or parenting skills.
  • the fifth type of parent involvement: including parents in the decision-making processes at school. (See "Six Types of Parent Involvement," below, for the full list.) Although such partnerships are difficult and require all parties to move out of their comfort zones, they provide the greatest hope for deep and lasting changes in our schools.
  •  
    These high-performing schools, say Henderson and Mapp, focus on building trusting, collaborative relationships among teachers, families, and community members. They recognize, respect, and address families' needs, as well as class and cultural differences. And they embrace a philosophy of partnership in which power and responsibility are shared.
Barbara Lindsey

NYC school uses collaborative wikis to cut costs and save time - 0 views

  • The wikis include everything from test scheduling (internal) to early dismissal information (external).
  • "We've saved lots of money," Cohen said. "But the real drag of using [expensive collaboration products] was you have these elaborate systems; parents had to get accounts; you had to give vendors the students' names; there was lots of work just to get it to work."
  • With the Wikispaces, Cohen can just set the program up and have users do the work for him. Privacy concerns are minimal because the only publicly accessible information is the student's name and time of meeting,
  • ...4 more annotations...
  • Cohen also likes the project because it was a simple way for teachers to "get their toes wet" with collaborative technology with a shallow learning curve and a high return on investment. For the spring semester, he said, teachers would actually have to sit and field calls for scheduling parent-teacher appointments.
  • Demonstrating the value of collaborative technology, while teaching how to use it, is the hardest challenge in its adoption, said Zeus Kerravala, a Yankee Group analyst. "The success depends more on the utilization of the tools than the tools themselves," Kerravala said. Keeping it simple and easy to access increases the chance of success.
  • Much of the essential documentation for teachers is now on wikis at the school, but Cohen still fields requests for how to do this, or for hard copies of those forms. He regularly denies such requests and points the users to the appropriate wiki page.
  • "Kids only use technology for the things they want to use it for," Cohen said. "They won't necessarily check the website for their homework."
  •  
    Excellent article on why and how a NYC school uses wikis
Barbara Lindsey

Jean Lave, Etienne Wenger and communities of practice - 0 views

  • Supposing learning is social and comes largely from of our experience of participating in daily life? It was this thought that formed the basis of a significant rethinking of learning theory in the late 1980s and early 1990s by two researchers from very different disciplines - Jean Lave and Etienne Wenger. Their model of situated learning proposed that learning involved a process of engagement in a 'community of practice'. 
  • When looking closely at everyday activity, she has argued, it is clear that 'learning is ubiquitous in ongoing activity, though often unrecognized as such' (Lave 1993: 5).
  • Communities of practice are formed by people who engage in a process of collective learning in a shared domain of human endeavour: a tribe learning to survive, a band of artists seeking new forms of expression, a group of engineers working on similar problems, a clique of pupils defining their identity in the school, a network of surgeons exploring novel techniques, a gathering of first-time managers helping each other cope. In a nutshell: Communities of practice are groups of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. (Wenger circa 2007)
  • ...18 more annotations...
  • Over time, this collective learning results in practices that reflect both the pursuit of our enterprises and the attendant social relations. These practices are thus the property of a kind of community created over time by the sustained pursuit of a shared enterprise. It makes sense, therefore to call these kinds of communities communities of practice. (Wenger 1998: 45)
  • The characteristics of communities of practice According to Etienne Wenger (c 2007), three elements are crucial in distinguishing a community of practice from other groups and communities: The domain. A community of practice is is something more than a club of friends or a network of connections between people. 'It has an identity defined by a shared domain of interest. Membership therefore implies a commitment to the domain, and therefore a shared competence that distinguishes members from other people' (op. cit.). The community. 'In pursuing their interest in their domain, members engage in joint activities and discussions, help each other, and share information. They build relationships that enable them to learn from each other' (op. cit.). The practice. 'Members of a community of practice are practitioners. They develop a shared repertoire of resources: experiences, stories, tools, ways of addressing recurring problems—in short a shared practice. This takes time and sustained interaction' (op. cit.).
  • The fact that they are organizing around some particular area of knowledge and activity gives members a sense of joint enterprise and identity. For a community of practice to function it needs to generate and appropriate a shared repertoire of ideas, commitments and memories. It also needs to develop various resources such as tools, documents, routines, vocabulary and symbols that in some way carry the accumulated knowledge of the community.
  • The interactions involved, and the ability to undertake larger or more complex activities and projects though cooperation, bind people together and help to facilitate relationship and trust
  • Rather than looking to learning as the acquisition of certain forms of knowledge, Jean Lave and Etienne Wenger have tried to place it in social relationships – situations of co-participation.
  • It not so much that learners acquire structures or models to understand the world, but they participate in frameworks that that have structure. Learning involves participation in a community of practice. And that participation 'refers not just to local events of engagement in certain activities with certain people, but to a more encompassing process of being active participants in the practices of social communities and constructing identities in relation to these communities' (Wenger 1999: 4).
  • Initially people have to join communities and learn at the periphery. The things they are involved in, the tasks they do may be less key to the community than others.
  • Learning is, thus, not seen as the acquisition of knowledge by individuals so much as a process of social participation. The nature of the situation impacts significantly on the process.
  • What is more, and in contrast with learning as internalization, ‘learning as increasing participation in communities of practice concerns the whole person acting in the world’ (Lave and Wenger 1991: 49). The focus is on the ways in which learning is ‘an evolving, continuously renewed set of relations’ (ibid.: 50). In other words, this is a relational view of the person and learning (see the discussion of selfhood).
  • 'the purpose is not to learn from talk as a substitute for legitimate peripheral participation; it is to learn to talk as a key to legitimate peripheral participation'. This orientation has the definite advantage of drawing attention to the need to understand knowledge and learning in context. However, situated learning depends on two claims: It makes no sense to talk of knowledge that is decontextualized, abstract or general. New knowledge and learning are properly conceived as being located in communities of practice (Tennant 1997: 77).
  • There is a risk, as Jean Lave and Etienne Wenger acknowledge, of romanticizing communities of practice.
  • 'In their eagerness to debunk testing, formal education and formal accreditation, they do not analyse how their omission [of a range of questions and issues] affects power relations, access, public knowledge and public accountability' (Tennant 1997: 79).
  • Perhaps the most helpful of these explorations is that of Barbara Rogoff and her colleagues (2001). They examine the work of an innovative school in Salt Lake City and how teachers, students and parents were able to work together to develop an approach to schooling based around the principle that learning 'occurs through interested participation with other learners'.
  • Learning is in the relationships between people. As McDermott (in Murphy 1999:17) puts it: Learning traditionally gets measured as on the assumption that it is a possession of individuals that can be found inside their heads… [Here] learning is in the relationships between people. Learning is in the conditions that bring people together and organize a point of contact that allows for particular pieces of information to take on a relevance; without the points of contact, without the system of relevancies, there is not learning, and there is little memory. Learning does not belong to individual persons, but to the various conversations of which they are a part.
  • One of the implications for schools, as Barbara Rogoff and her colleagues suggest is that they must prioritize 'instruction that builds on children's interests in a collaborative way'. Such schools need also to be places where 'learning activities are planned by children as well as adults, and where parents and teachers not only foster children's learning but also learn from their own involvement with children' (2001: 3). Their example in this area have particular force as they are derived from actual school practice.
  • learning involves a deepening process of participation in a community of practice
  • Acknowledging that communities of practice affect performance is important in part because of their potential to overcome the inherent problems of a slow-moving traditional hierarchy in a fast-moving virtual economy. Communities also appear to be an effective way for organizations to handle unstructured problems and to share knowledge outside of the traditional structural boundaries. In addition, the community concept is acknowledged to be a means of developing and maintaining long-term organizational memory. These outcomes are an important, yet often unrecognized, supplement to the value that individual members of a community obtain in the form of enriched learning and higher motivation to apply what they learn. (Lesser and Storck 2001)
  • Educators need to reflect on their understanding of what constitutes knowledge and practice. Perhaps one of the most important things to grasp here is the extent to which education involves informed and committed action.
Wessam Abedelaziz

Convenience, Communications, and Control: How Students Use Technology | Resources | EDU... - 0 views

  • They are characterized as preferring teamwork, experiential activities, and the use of technology
  • Doing is more important than knowing, and learning is accomplished through trial and error as opposed to a logical and rule-based approach.2 Similarly, Paul Hagner found that these students not only possess the skills necessary to use these new communication forms, but there is an ever increasing expectation on their part that these new communication paths be used
    • Nicole McClure
       
      This phrase makes me a little uneasy. I recognize that these students are different, but I understand this a difference in learning style, not content. "Doing is more important than knowing" implies, at least to me, that a full understanding of the content. There has to be a little of both.
    • Barbara Lindsey
       
      It's an interesting question. What is 'knowing'? And how do we know what we know?
    • Wessam Abedelaziz
       
      I guess doing is more important than knowing in the sense of actual research. We should have a theoritical background and KNOW what is behind but it is also important to try things out and make mistakes and have a feed back. I would say, it is more of an individual thing and it is up to the type of learners and how they learn things. They might be learners who learn by touching things and try it out or just by having a look at it and they will be fine
    • Wessam Abedelaziz
       
      Sorry, it is in the sense of ' Action Research" not 'actual reseach'
  • Much of the work to date, while interesting and compelling, is intuitive and largely based on qualitative data and observation.
  • ...38 more annotations...
  • There is an inexorable trend among college students to universal ownership, mobility, and access to technology.
  • Students were asked about the applications they used on their electronic devices. They reported that they use technology first for educational purposes, followed by communication.
    • Barbara Lindsey
       
      All self-reported. Would have been powerful if could have actually tracked a representative sample and compared actual use with reported use.
    • Wessam Abedelaziz
       
      I don't believe this line!!
  • presentation software was driven primarily by the requirements of the students' major and the curriculum.
  • Communications and entertainment are very much related to gender and age.
  • From student interviews, a picture emerged of student technology use driven by the demands of the major and the classes that students take. Seniors reported spending more time overall on a computer than do freshmen, and they reported greater use of a computer at a place of employment. Seniors spent more hours on the computer each week in support of their educational activities and also more time on more advanced applications—spreadsheets, presentations, and graphics.
  • Confirming what parents suspect, students with the lowest grade point averages (GPAs) spend significantly more time playing computer games; students with the highest GPAs spend more hours weekly using the computer in support of classroom activities. At the University of Minnesota, Crookston, students spent the most hours on the computer in support of classroom activities. This likely reflects the deliberate design of the curriculum to use a laptop extensively. In summary, the curriculum's technology requirements are major motivators for students to learn to use specialized software.
  • The interviews indicated that students are skilled with basic office suite applications but tend to know just enough technology functionality to accomplish their work; they have less in-depth application knowledge or problem solving skills.
  • According to McEuen, student technology skills can be likened to writing skills: Students come to college knowing how to write, but they are not developed writers. The analogy holds true for information technology, and McEuen suggested that colleges and universities approach information technology in the same way they approach writing.6
  • he major requires the development of higher-level skill sets with particular applications.
    • Barbara Lindsey
       
      Not really quantitative--self-reported data back by selected qualitative interviews
  • The comparative literature on student IT skill self-assessment suggests that students overrate their skills; freshmen overrate their skills more than seniors, and men overrate their skills more than women.7 Our data supports these conclusions. Judy Doherty, director of the Student Technologies Resource Group at Colgate University, remarked on student skill assessment, "Students state in their job applications that they are good if not very good, but when tested their skills are average to poor, and they need a lot of training."8
  • Mary Jane Smetanka of the Minneapolis–St. Paul Star Tribune reported that some students are so conditioned by punch-a-button problem solving on computers that they approach problems with a scattershot impulsiveness instead of methodically working them through. In turn, this leads to problem-solving difficulties.
  • We expected to find that the Net Generation student prefers classes that use technology. What we found instead is a bell curve with a preference for a moderate use of technology in the classroom (see Figure 1).
    • Barbara Lindsey
       
      More information needs to be given to find out why--may be tool and method not engaging.
  • It is not surprising that if technology is used well by the instructor, students will come to appreciate its benefits.
  • A student's major was also an important predictor of preferences for technology in the classroom (see Table 3), with engineering students having the highest preference for technology in the classroom (67.8 percent), followed by business students (64.3 percent).
  • we found that many of the students most skilled in the use of technology had mixed feelings about technology in the classroom.
  • he highest scores were given to improved communications, followed by factors related to the management of classroom activities. Lower impact activities had to do with comprehension of classroom materials (complex concepts).
  • The instructors' use of technology in my classes has increased my interest in the subject matter. 3.25 Classes that use information technology are more likely to focus on real-world tasks and examples.
  • I spend more time engaged in course activities in those courses that require me to use technology.
  • Interestingly, students do not feel that use of information technology in classes greatly increases the amount of time engaged with course activities (3.22 mean).12 This is in direct contrast to faculty perceptions reported in an earlier study, where 65 percent of faculty reported they perceived that students spend more time engaged with course materials
  • Only 12.7 percent said the most valuable benefit was improved learning; 3.7 percent perceived no benefit whatsoever. Note that students could only select one response, so more than 12.7 percent may have felt learning was improved, but it was not ranked highest. These findings compare favorably with a study done by Douglas Havelka at the University of Miami in Oxford, Ohio, who identified the top six benefits of the current implementation of IT as improving work efficiency, affecting the way people behave, improving communications, making life more convenient, saving time, and improving learning ability.14
    • Barbara Lindsey
       
      Would have been good to know exactly what kinds of technologies were meant here.
  • Our data suggest that we are at best at the cusp of technologies being employed to improve learning.
  • The interactive features least used by faculty were the features that students indicated contributed the most to their learning.
  • he students in this study called our attention to performance by noting an uneven diffusion of innovation using this technology. This may be due, in part, to faculty or student skill. It may also be due to a lack of institutional recognition of innovation, especially as the successful use of course management systems affects or does not affect faculty tenure, promotion, and merit decisions
  • Humanities 7.7% 47.9% 40.2
  • What we found was that many necessary skills had to be learned at the college or university and that the motivation for doing so was very much tied to the requirements of the curriculum. Similarly, the students in our survey had not gained the necessary skills to use technology in support of academic work outside the classroom. We found a significant need for further training in the use of information technology in support of learning and problem-solving skills.
  • Course management systems were used most by both faculty and students for communication of information and administrative activities and much less in support of learning.
  • In 1997, Michael Hooker proclaimed, "higher education is on the brink of a revolution." Hooker went on to note that two of the greatest challenges our institutions face are those of "harnessing the power of digital technology and responding to the information revolution."18 Hooker and many others, however, did not anticipate the likelihood that higher education's learning revolution would be a journey of a thousand miles rather than a discrete event. Indeed, a study of learning's last great revolution—the invention of moveable type—reveals, too, a revolution conducted over centuries leading to the emergence of a publishing industry, intellectual property rights law, the augmentation of customized lectures with textbooks, and so forth.
  • Qualitative data were collected by means of focus groups and individual interviews. We interviewed undergraduate students, administrators, and individuals identified as experts in the field of student technology use in the classroom. Student focus groups and interviews of administrators were conducted at six of the thirteen schools participating in the study.
  • The institutions chosen represent a nonrepresentative mix of the different types of higher education institution in the United States, in terms of Carnegie class as well as location, source of funding, and levels of technology emphasis. Note, however, that we consider our findings to be instructive rather than conclusive of student experiences at different types of Carnegie institutions.
  • Both the ECAR study on faculty use of course management systems and this study of student experiences with information technology concluded that, while information technology is indeed making important inroads into classroom and learning activities, to date the effects are largely in the convenience of postsecondary teaching and learning and do not yet constitute a "learning revolution." This should not surprise us. The invention of moveable type enhanced, nearly immediately, access to published information and reduced the time needed to produce new publications. This invention did not itself change literacy levels, teaching styles, learning styles, or other key markers of a learning revolution. These changes, while catalyzed by the new technology, depended on slower social changes to institutions. I believe that is what we are witnessing in higher education today.
  • The qualitative data suggest a slightly different picture. Students have very basic office suite skills as well as e-mail and basic Web surfing skills. Moving beyond basic activities is problematic. It appears that they do not recognize the enhanced functionality of the applications they own and use.
  • It cannot be assumed that they come to college prepared to use advanced software applications.
  • 25.6 percent of the students preferred limited or no use of technology in the classroom.
  • "Information technology is just a tool. Like all tools, if used properly it can be an asset. If it is used improperly, it can become an obstacle to achieving its intended purpose. Never is it a panacea."
Barbara Lindsey

Students as 'Free Agent Learners' : April 2009 : THE Journal - 0 views

  • Among the findings: There's a trend toward students using technology to take hold of their own educational destinies and act as "free agent learners."
  • The survey this year polled more than 281,000 students, 29,000 teachers, 21,000 parents, and 3,100 administrators and involved 4,379 schools from 868 districts in all 50 states.
  • students see significant obstacles to using technology in schools. They reported that school networks block sites that they need to access, that teachers specifically limit their use of technology, and that there are "too many rules," preventing students from using their own devices, accessing their communications tools, and even limiting their use of the technologies that the school provides.
  • ...1 more annotation...
  • students and teachers were asked which technologies they would include in the "ultimate school." More than twice as many students as teachers chose online classes; more than twice as many students as teachers chose gaming; nearly three times as many students chose Internet access; and three times as many students chose mobile devices.
1 - 5 of 5
Showing 20 items per page