Skip to main content

Home/ BeyondwebctFall08/ Group items tagged groups

Rss Feed Group items tagged

Barbara Lindsey

Open for Learning: The CMS and the Open Learning Network | in education - 0 views

  • Through a series of comparative studies--in which students of different age groups studied different subject matters under different instructional conditions--Bloom established that the average student instructed individually by a tutor outperformed 98% of students instructed in a conventional classroom setting.
  • Bloom, B. S. (1984). The 2-Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One tutoring. Educational Researcher, 13(6), 4–16.
  • To be clear, our assertions about the weaknesses of the CMS paradigm should also be taken as critiques of the predominant pedagogical model in higher education
  • ...59 more annotations...
  • The OLN model is aimed at leveraging these affordances in ways that the CMS does not. For example, discussions that last longer than 50 minutes can be conducted online without prompting or intervention by the instructor. And such discussions can include more voices than those of the students formally enrolled in the class. Whatever connections students make with each other can be maintained via social networking applications of their choosing. And students can capture, annotate, and archive the content they assemble and create in their courses as well as in their less formal learning experiences. And since they are using their tools, they maintain control of and access to the content as long as they choose.
  • Given the ever increasing rate of change and improvement in learning technologies and approaches, committed teachers should be anxious to find and employ new, more effective tools to help their students learn more effectively.
  • The OLN also has the significant advantage of being time-persistent. Compared with the frequent starts and stops in the CMS (see Figure 2), much of what happens in the OLN allows learners to build their learning networks over time, since it is not bound to semesters, terms, or even the institution. And the artificial boundaries of the CMS are removed thereby allowing the learner to benefit from participation in a broader community of networked learners, further removing the limitations on learner network growth (see Figure 4).  
  • One of the primary aims of the OLN model is to reestablish teachers and learners at the center of learning activity (both inside and outside of courses).
  • By combining several functions into one application, the CMS has forced us to make a tradeoff that is suboptimal for learning. Because there is some confidential and proprietary data in the CMS, we have traditionally locked all course data behind a login screen, viewable only by an instructor and the officially enrolled members of his or her class - and then only for the duration of the semester or term. This is perhaps the most debilitating example of CMS technology being used to reinvent the past. The traditional classroom has always been a private, physically, and temporally bounded space. The natural inclination was to replicate that model within the CMS. However, doing so has imposed the limits of the old space in a new space where such limitations do not exist.
  • there are several key components of the OLN that should be private and secure, situated within an institution's intranet. These include student information systems (SISs), identity and role repositories, proprietary content stores, and secure online assessment applications. These are and should remain core components of the institutional IT infrastructure. Beyond these, however, there are several OLN components that need not be private. Faculty and student blogs, wikis, portfolios, and open courseware and open educational resource repositories can be open (at the option and discretion of individual faculty members and students). These functions can exist, spread across multiple applications and websites, in the cloud. Some applications might even be mashups of intranet and cloud-based applications.
  • Light's examination of the impact of group study among students at Harvard is particularly compelling. In Making the Most of College, Light presents evidence that "students who study outside of class in small groups of four to six students, even just once a week, benefit enormously. Group meetings are organized around discussions of the homework, and as a result of their study group discussion, students are far more engaged and better prepared for class, learning significantly more" (2001, 52).
  • Learning is not a simple acquisition activity. A large body of critical analysis and research concur that learning is at least as much a function of social discourse as it is solitary cognition (e.g., Vygotsky, 1962, 1978, or Schon, Brown, et al., 1989).
  • The same is true for the best educational content—it draws people into arguments, explorations, discussions, and relationships that add depth, meaning, and value to that content.
  • Brown & Adler have argued that, "The most profound impact of the Internet, an impact that has yet to be fully realized, is its ability to support and expand the various aspects of social learning" (2008, 18). This is in contrast to the prevailing "traditional Cartesian view" of instruction that focuses primarily on the transfer of knowledge—as if it were a substance—from teacher to learner (18). Educational theorists have long argued against the didactic approach. Freire critiqued what he called "banking education," a model in which student activity is limited to "receiving, filing, and storing the deposits" of information apportioned them by the instructor (1970, 72).
  • We may fruitfully update Freire's metaphor of "banking education" to a metaphor of "downloading learning." So much of what passes for innovative uses of instructional technology today, like the OpenCourseWare collections available from MIT and other universities, restricts learners to downloading files.
  • If "hyperlinks subvert hierarchy" (Levine, et al., 1999), Web 2.0 tools are making the learning space fundamentally and permanently flat. CIOs, academic leaders, and individual faculty members might argue that they need the structure and security of the CMS. We agree that some elements of the CMS should be maintained. But students, and a growing number of instructors, are engaging in rich, meaningful dialog, content creation, and sharing outside the CMS.
  • When students enter the walled garden of the CMS, they are largely "acted upon." Efficacious, self-regulating learners, on the other hand, "act" as they participate in and take ownership of their own learning activities and ultimately what they learn and how they employ that new learning in pursuit of their various life projects.
  • The center of gravity in the CMS is decidedly on institutional and instructor efficiency and convenience, not student participation and learning. This should not be surprising given Cuban's findings that educational technology is used largely to "maintain existing practices" rather than to "revolutionize," or even change in any substantial way, teaching and learning practices (2001).
  • But the CMS paradigm actually works against such a transformation of the relationship between teachers and learners because it privileges the role of the instructor and technically restricts individual students from contributing and to shaping courses in any meaningful way. Sclater has argued that the term "learning management system" itself suggests "disempowerment—an attempt to manage and control the activities of the student by the university" (2008, p. 2). The tendencies of the CMS are not, he argues, just "minor irritations" but rather forces that "may overtly or subtly align the institutional processes with the software rather than having the system serve the requirements of the institution" (p. 3).
  • Most (if not all) of these sorts of activities are absent from the typical CMS-based course. This is true primarily because there is no space provided for students to publish such content and engage in such activities of their own creation. Moreover, students engaged in such activities are unlikely to make the CMS the base of their activities because they would be walled off from the rest of the world, destined for deletion at the end of the semester.
  • 12-year-old home schooled girl, Heather Lawver, who created an online, fan-authored version of The Daily Prophet, the fictional newspaper in the Harry Potter series (see http://dprophet.com).
  • Jenkins argues that Lawver's activities, and those of the reporters she recruited, went far beyond a creative outlet for fans—participants acquired knowledge creation, knowledge pooling, and knowledge sharing skills, gained experiences sharing and comparing value systems, learned how to express and interpret feelings about a literary work, and developed Internet publishing skills (p. 185). Gee has argued that similarly transferable skills can be acquired in online role-playing games, where players learn to work well with team members, collaborate to solve problems, and hone individual skills in the context while understanding and appreciating others' skills, etc. (2009).
  • Learners as Co-Instructors, Instructors as Co-Learners
  • the overwhelming usage patterns of instructors indicate that the CMS has been used primarily to mimic the traditional, semester-based, lecture-driven, content-centric model of instruction - one of bestowing "course info" on students.
  • the CMS was designed primarily to support and enhance traditional teaching. It is not coincidental that the first incarnation of Blackboard was branded "CourseInfo."
  • While perhaps a bit stylized, the typical CMS-delivered, content-centric, lecture-driven course complete with multiple-choice midterm and final exams, does little to prepare students to succeed in a world in which there will always be more new knowledge created every day than they can possibly access, much less assimilate, master, and apply. Given the overwhelming flow of data all around us, our job should be increasingly less focussed on making our students "knowledgeable" and focused instead more on making them "knowledge-able" (Wesch, 2009).
  • When a student at Ryerson University convened a chemistry study group inside Facebook in 2007, the University threatened to expel him for academic misconduct. In his defense, the student observed that he was simply replicating online what was common practice in face-to-face study group and tutorial sessions (Schaffhauser, 2008). The difference between these face-to-face sessions and the groups the student created in Facebook, however, was that the online versions of the study groups would persist over time, perhaps far beyond the students' time at Ryerson. Access to Facebook, unlike access to live study sessions or to the CMS, does not expire when a student graduates.
  • mposing artificial time limits on learner access to course content and other learners, privileging the role of the instructor at the expense of the learner, and limiting the power of the network effect in the learning process.
  • Bush & Mott (2009) have argued that the failure of technology to transform learning stems from a preoccupation with "the tactical implementation of specific technologies which often simply automate the past" (p. 17).
  • such software has generally been focused primarily on helping teachers increase the efficiency of the administrative tasks of instruction (e.g., distribute documents, make assignments, give quizzes, initiate discussion boards, assign students to working groups, etc.).
  • tendency to use the CMS to improve instructional efficiency rather than effectiveness.
  • Self-Reported Function Usage in Blackboard by BYU Faculty Members (2004-2009)
  • CMS are "fundamentally a conservative technology ... [for] managing groups, providing tools, and delivering content" (2006, 1).
  • course content distribution and teacher-student communication platform
  • Cuban concluded that "teachers used technology to maintain existing practices" rather than to "revolutionize" the way they teach their students (p. 138).
  • course managment software leads universities to "think they are in the information industry" (356).
  • he industrial, course management model has its center of gravity in teachers generating content, teachers gathering resources, teachers grouping and sequencing information, and teachers giving the information to students (356). This is so, they argue, because teachers "often yield to the seductive appeal of a course management system, where it is easy enough to populate a weekly schedule with static resources and decontextualized tasks" which results in a "focus on content ... rather than the process of educating the student" (357).
  • the CMS continues to artificially situate instruction and learning inside walled gardens that are disconnected from the rich and vibrant networks of learners and content in the wider world.
  • the changes necessary to bridge the 2 sigma gap are at least as much cultural and pedagogical as they are technological.  
  • an unintended consequence of CMS deployment by artificially limiting the potential of the Web to keep students connected to each other and their content. While the CMS facilitates substantial interaction and community building around content within courses, the resulting learning communities are almost always limited to those formally enrolled in the course and those communities exist only for the duration of a particular semester or term. When each period of instruction draws to a close, CMS courses are routinely deactivated and sometimes even deleted to make way for the next semester's courses.
  • course-centric, content-driven model of instruction that dominates higher education.
  • no record left behind of the activity and learning that occurred within them. This is a pattern that repeats from semester to semester, throughout a student's learning career at a particular institution.
    • Barbara Lindsey
       
      Do you agree with this statement? Do you see any issues with this current situation?
  • These learning network disruptions are even more jarring for students who transfer from one institution to another or those who take courses from multiple institutions. Unless students fastidiously copy the content from their CMS courses and save the contact information of their classmates, the learning network connections they have made (both content and social) are essentially lost.
  • flocking to time-persistent social networking and media sharing sites like Facebook, Flickr, YouTube, GMail, and Google Docs.
  • blogs, and wikis
    • Barbara Lindsey
       
      What is your intial reaction to our public blog and wiki?
  • While we know of no formal research on the topic, we believe that knowing that the fruits of their efforts will be categorically deleted at the end of term is a significant negative motivation for students to contribute meaningfully within the CMS, particularly when the same effort invested elsewhere would persist indefinitely.
  • By eliminating access to the courses a student participates in within a CMS, an institution not only hampers them during their formal learning careers, but it takes away a potentially invaluable knowledge-able tool for continued success as a lifelong learner.
  • The old paradigm of making our students "knowingly prepared" is rapidly losing its value. We should instead help our students be "unknowingly prepared—to be unknowing but to possess the tools and skills to rapidly become 'knowing' at the moment-of-need" (p. 3).
  • No longer do students sit passively in the classroom, restricted only to the authority of the instructor and their textbook for the final word on the subject matter of a lecture. Now they can Google terms, concepts, and events mentioned by the instructor, they txt, Facebook, and Twitter each other about what's being said, and they carry their notes and even the lecture itself out of class with them, recorded on laptops, MP3 recorders, and digital pens to be reviewed and shared.
    • Barbara Lindsey
       
      Your reaction to this?
  • Between 2000 and 2008, the average licensing cost per campus for commercial CMS skyrocketed  500% (Delta Initiative, 2009; slide 11).
  • includes such factors as hosting, faculty development, curriculum and instructional course design, multimedia support, and help desk support while making literally no mention of student learning or student activity within the CMS (slide 21).
  • Where once the instructor was the sole (or at lease substantially privileged) possessor of content expertise and certainly the exclusive provider of course materials, learners are now instantaneously able to Google virtually any information about the content of a course (often during the lectures themselves), independently publish their thoughts about it, and interact with others (both inside and outside of the official course roster) about the course and it's subject matter.
  • instructors have largely employed the CMS to automate the past,
    • Barbara Lindsey
       
      What is so bad about 'automating the past'?
  • In a learning context, he argues that no educational information and communication technology can be "universally good." Rather, he asserts, "the best way to invest in instructional technologies is an instrumental approach that analyzes the natures of the curriculum, students, and teachers to select the appropriate tools, applications, media and environments" (59).
  • which learners select as they engage in their educational experiences (p. 59).
    • Barbara Lindsey
       
      Pretty radical approach, no?
  • we prefer to think of educational content as a campfire around which learners gather.
  • When combined with tools and environments that afford opportunities for social interaction, educational resources become semiotic tools that influence learners' actions and mediate the learning process.
    • Barbara Lindsey
       
      This is a key statement.
  • it seems paradoxical that we would we put hundreds, thousands, or millions of learners in front of advanced communications technology so that they can simply retrieve data instead of interacting with each other around that data.
  • We contend that its inadequacy stems from three specific weaknesses of the CMS—(1) the organization of learning experiences into discrete, artificially time-bound units, (2) the predominance of instructor-focused and content-centric tools in the CMS, and (3) the lack of persistent connections between learners, instructors, content, and the broader community across semesters and across class, program, and institutional boundaries.
  • these disruptions are likely to come from educational technologists and leaders exploring new tools and new approaches to learning.
  • while opening the space necessary for learners to act as co-instructors and for teachers to act as co-learners in a dynamically generated space (9).
  • Most institutions of higher education appear focused on . . . content coverage, course structure, and pre-existing time arrangments such as semesters and hours of credit than . . . issues such as learning and performance (
  • This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License.
Barbara Lindsey

Digitally Speaking / Social Bookmarking and Annotating - 0 views

  • intellectual philanthropy and collective intelligence
  • While these early interactions are simplistic processes that by themselves aren't enough to drive meaningful change in teaching and learning, they are essential because they provide team members with low risk opportunities to interact with one another around the topics, materials and instructional practices that should form the foundation of classroom learning experiences.
  • A tagging language is nothing more than a set of categories that all members of a group agree to use when bookmarking websites for shared projects.
  • ...6 more annotations...
  • In Shirky's terms, teams that embrace social bookmarking decrease the "cost" of  group transactions.  No longer do members resist sharing because it's too time consuming or difficult to be valuable. Instead, with a little bit of thought and careful planning, groups can make sharing resources---a key process that all learning teams have to learn to manage---remarkably easy and instant.
  • Imagine the collective power of an army of readers engaged in ongoing conversation about provocative ideas, challenging one another's thought, publicly debating, and polishing personal beliefs.  Imagine the cultural understandings that could develop between readers from opposite sides of the earth sharing thought together.  Imagine the potential for brainstorming global solutions, for holding government agencies accountable, or for gathering feedback from disparate stakeholder groups when reading moves from a "fundamentally private activity" to a "community event."
  • Understanding that there are times when users want their shared reading experiences to be more focused, however, Diigo makes it possible to keep highlights and annotations private or available to members of predetermined and self-selected groups.  For professional learning teams exploring instructional practices or for student research groups exploring content for classroom projects, this provides a measure of targeted exploration between likeminded thinkers.
  • Diigo takes the idea of collective exploration of content one step further by providing groups with the opportunity to create shared discussion forums
  • Many of today's teachers make a critical mistake when introducing digital tools by assuming that armed with a username and a password, students will automatically find meaningful ways to learn together.  The results can be disastrous.  Motivation wanes when groups using new services fail to meet reasonable standards of performance.  "Why did I bother to plug my students in for this project?" teachers wonder.  "They could have done better work with a piece of paper and a pencil!"
  • With shared annotation services like Diigo, powerful learning depends on much more than understanding the technical details behind adding highlights and comments for other members of a group to see.  Instead, powerful learning depends on the quality of the conversation that develops around the content being studied together.  That means teachers must systematically introduce students to a set of collaborative dialogue behaviors that can be easily implemented online.
Barbara Lindsey

From Participation to Creation - 2020 Forecast: Creating the Future of Learning - 0 views

  • The primary story within our last forecast, the 2006 KWF/IFTF Map of Future Forces Affecting Education, was about participation. Specifically, that forecast showed how individuals and groups were taking advantage of participatory media, creating “smart networks” to form groups, and creating value through bottom-up collaboration in “grassroots economies.” Participants were beginning to exchange learning resources, form smart education mobs, and release education from traditional institutions. All this participation was converging with a host of other external forces to effect real changes in the learning enterprise.
  • The 2020 Forecast depicts a set of forces that are pushing us to create the future of learning as an ecosystem, in which we have yet to determine the role of education institutions as we know them today.
  •  
    "The primary story within our last forecast, the 2006 KWF/IFTF Map of Future Forces Affecting Education, was about participation. Specifically, that forecast showed how individuals and groups were taking advantage of participatory media, creating "smart networks" to form groups, and creating value through bottom-up collaboration in "grassroots economies." Participants were beginning to exchange learning resources, form smart education mobs, and release education from traditional institutions. All this participation was converging with a host of other external forces to effect real changes in the learning enterprise."
Nicole McClure

Wiggio - Makes it easy to work in groups. - 0 views

  •  
    New site to host group work.
Barbara Lindsey

A Sense of Purpose (EDUCAUSE Review) | EDUCAUSE - 0 views

  • Bayne: You are one of the most active practitioners of teaching in the cloud. How can teaching in the cloud foster collaborative learning and collective intelligence?Wesch: I often like to think of the quote from Kevin Kelly, who says: "Nobody is as smart as everybody." That hangs in my head every time I go into a classroom. I look at the classroom. I look at the students. I start to think about who they are. Throughout the semester, I learn more and more about who they are, and it becomes increasingly evident to me that with all the intelligence and life experiences that they have, they are collectively much smarter than I am alone. Then the goal becomes trying to somehow harness all of that. And I think I've finally found the "secret sauce." It basically comes down to approaching the students as collaborators, co producers, co researchers, or whatever you want to call them — but not as students. So you take away that hierarchy.
  • pointing out to them that whatever we do is going to contribute to the real world. We're not just going to be hiding behind the classroom walls and doing our own thing.
  • "What does the world need from us? What can we do?" Given the topic at hand, we start mining the literature, trying to find holes in the literature or debates in the literature, things that we can help resolve, some way that we can contribute to the discourse. The main point is that we do it. It's all about the doing of it. While we're doing this, while we're going out and researching together and learning together, it's almost as if the learning happens accidentally.
  • ...1 more annotation...
  • It struck me the other day when we were in class: we spent the whole class, like we do every class, on the edge of our seats; everybody was leaning forward, brainstorming, trying to solve various problems in our current project. Everybody is deeply engaged in all of it. And at the end of the class, somebody mentioned: "Isn't it funny that we get three credits for this?" I go into this classroom thinking: "This is an exciting research group. We're doing really exciting research right now." It is a class, but you almost forget that it's a class.Bayne: That speaks to a certain sort of naturalism.Wesch: That's exactly what it's about, right? When it's completely real and relevant and when what we're doing matters, the learning becomes authentic and natural. It's so much fun to do that. It creates an environment in which the students themselves are thinking about harnessing collective intelligence, because they also recognize their peers as collaborators.Bayne: Your students tend to work in groups a lot, working as a team. How do you assess individual students?Wesch: To me, the art of encouraging collaboration is like trying to find that balance between assigning individual responsibility and also finding a way to leverage all the individual contributions in a way that the endpoint is greater than the sum of its parts. The way I do that — sort of the secret behind it all — is that even though it looks like group work, every student has his or her own, very specific role and assignment in that group. A lot of that is self-constructed, so that the students are developing their own project within the larger project. That self-guided piece creates more motivation and also ultimately creates a better product, because they know better than I do what their expertise is and how they can contribute.In all of my projects, there is an individually graded piece. Every student keeps his or her own research blog. All of those blogs are aggregated into a single feed that anybody can check out. It becomes like a learning diary. I can see what they've learned and what they've contributed over time. It's the same on the wiki: the wiki is a collaborative tool, but the wiki also tracks exactly what every individual contributes.The final video project that we create will be a fifty-minute documentary, but it will be made up of sixteen projects, each one of which will be about five minutes long. Each will be individually graded. Then I'll pick the best or the most relevant to create the final fifty-minute documentary. So every student walks an individual path while at the same time contributing to the whole.
  •  
    An interview with Asst. Prof Michael Wesch
Nicole McClure

Planning for Neomillennial Learning Styles: Implications for Investments in Technology ... - 0 views

  • Research indicates that each of these media, when designed for education, fosters particular types of interactions that enable—and undercut—various learning styles.
    • Barbara Lindsey
       
      How much do we know about our students' learning styles? How do we know this?
  • Over the next decade, three complementary interfaces will shape how people learn
  • The familiar "world to the desktop." Provides access to distant experts and archives and enables collaborations, mentoring relationships, and virtual communities of practice. This interface is evolving through initiatives such as Internet2. "Alice in Wonderland" multiuser virtual environments (MUVEs). Participants' avatars (self-created digital characters) interact with computer-based agents and digital artifacts in virtual contexts. The initial stages of studies on shared virtual environments are characterized by advances in Internet games and work in virtual reality. Ubiquitous computing. Mobile wireless devices infuse virtual resources as we move through the real world. The early stages of "augmented reality" interfaces are characterized by research on the role of "smart objects" and "intelligent contexts" in learning and doing.
  • ...48 more annotations...
  • But what is so special about the egocentric perspectives and situated learning now enabled by emerging media? After all, each of us lives with an egocentric perspective in the real world and has many opportunities for situated learning without using technology. One attribute that makes mediated immersion different and powerful is the ability to access information resources and psychosocial community distributed across distance and time, broadening and deepening experience. A second important attribute is the ability to create interactions and activities in mediated experience not possible in the real world, such as teleporting within a virtual environment, enabling a distant person to see a real-time image of your local environment, or interacting with a (simulated) chemical spill in a busy public setting. Both of these attributes are actualized in the Alice-in-Wonderland interface.
  • Net Generation learning styles stem primarily from the world-to-the-desktop interface; however, the growing prevalence of interfaces to virtual environments and augmented realities is beginning to foster so-called neomillennial learning styles in users of all ages.
    • Barbara Lindsey
       
      What is the timeline?
    • Nicole McClure
       
      That's an interesting question - sometimes I think we are already on the other side of this, meaning we've already passed it in some ways. Last night I was out for dinner at the Main Street and I saw something that was a little crazy. My husband and I were using my cellphone to look up words that would help trigger a creative name for his new company - a UConn professor (who shall remain unnamed :)) was using his iPhone for something other than a phone call - and the women at the table across from me were also engaged in half converstation - half text message/email, etc. The reason that I bring this up is that all of these people, myself included, are NOT part of the millenial generation (way past I'm afraid!) and we were using this stuff. As history goes - if the "grown-ups" are using it, the kids are over it and on to something else.
  • Immersion is the subjective impression that one is participating in a comprehensive, realistic experience.
  • Beyond actional and symbolic immersion, advances in interface technology are now creating virtual environments and augmented realities that induce a psychological sense of sensory and physical immersion.
  • Inducing a participant's symbolic immersion involves triggering powerful semantic associations via the content of an experience.
    • Barbara Lindsey
       
      Felice's Utopian City
  • The research on virtual reality Salzman and I conducted on frames of reference found that the exocentric and the egocentric FORs have different strengths for learning. Our studies established that learning ideally involves a "bicentric" perspective alternating between egocentric and exocentric FORs.
  • The capability of computer interfaces to foster psychological immersion enables technology-intensive educational experiences that draw on a powerful pedagogy: situated learning.
  • The major schools of thought cited are behaviorist theories of learning (presentational instruction), cognitivist theories of learning (tutoring and guided learning by doing), and situated theories of learning (mentoring and apprenticeships in communities of practice).
    • Barbara Lindsey
       
      What kinds of learning environments do you prefer and what kinds do you create for your students?
  • Situated learning requires authentic contexts, activities, and assessment coupled with guidance from expert modeling, mentoring, and "legitimate peripheral participation."8 As an example of legitimate peripheral participation, graduate students work within the laboratories of expert researchers, who model the practice of scholarship. These students interact with experts in research as well as with other members of the research team who understand the complex processes of scholarship to varying degrees. While in these laboratories, students gradually move from novice researchers to more advanced roles, with the skills and expectations for them evolving.
  • Potentially quite powerful, situated learning is much less used for instruction than behaviorist or cognitivist approaches. This is largely because creating tacit, relatively unstructured learning in complex real-world settings is difficult.
    • Barbara Lindsey
       
      Not too far in the future!
  • Initial research on Environmental Detectives and other AR-based educational simulations demonstrates that this type of immersive, situated learning can effectively engage students in critical thinking about authentic scenarios.
  • However, virtual environments and ubiquitous computing can draw on the power of situated learning by creating immersive, extended experiences with problems and contexts similar to the real world.9 In particular, MUVEs and real-world settings augmented with virtual information provide the capability to create problem-solving communities in which participants can gain knowledge and skills through interacting with other participants who have varied levels of skills, enabling legitimate peripheral participation driven by intrinsic sociocultural forces.
    • Barbara Lindsey
       
      One of the most difficult skills to master.
  • Situated learning is important in part because of the crucial issue of transfer. Transfer is defined as the application of knowledge learned in one situation to another situation and is demonstrated if instruction on a learning task leads to improved performance on a transfer task, typically a skilled performance in a real-world setting
  • Moreover, the evolution of an individual's or group's identity is an important type of learning for which simulated experiences situated in virtual environments or augmented realities are well suited. Reflecting on and refining an individual identity is often a significant issue for higher education students of all ages, and learning to evolve group and organizational identity is a crucial skill in enabling innovation and in adapting to shifting contexts.
  • Immersion is important in this process of identity exploration because virtual identity is unfettered by physical attributes such as gender, race, and disabilities.
    • Barbara Lindsey
       
      Don't agree with this. We come to any environment with our own baggage and we do not interact in a neutral social context.
  • Thanks to out-of-game trading of in-game items, Norrath, the virtual setting of the MMOG EverQuest, is the seventy-seventh largest economy in the real world, with a GNP per capita between that of Russia and Bulgaria. One platinum piece, the unit of currency in Norrath, trades on real world exchange markets higher than both the Yen and the Lira (Castronova, 2001).14
  • Multiple teams of students can access the MUVE simultaneously, each individual manipulating an avatar which is "sent back in time" to this virtual environment. Students must collaborate to share the data each team collects. Beyond textual conversation, students can project to each other "snapshots" of their current individual point of view (when someone has discovered an item of general interest) and also can "teleport" to join anyone on their team for joint investigation. Each time a team reenters the world, several months of time have passed in River City, so learners can track the dynamic evolution of local problems.
  • In our research on this educational MUVE based on situated learning, we are studying usability, student motivation, student learning, and classroom implementation issues. The results thus far are promising: All learners are highly motivated, including students typically unengaged in classroom settings. All students build fluency in distributed modes of communication and expression and value using multiple media because each empowers different types of communication, activities, experiences, and expressions. Even typically low-performing students can master complex inquiry skills and sophisticated content. Shifts in the pedagogy within the MUVE alter the pattern of student performance.
    • Barbara Lindsey
       
      Would like to see research on this.
  • Research shows that many participants value this functionality and choose to access the Web page after leaving the museum.
    • Barbara Lindsey
       
      More could be done with this.
  • Participants in these distributed simulations use location-aware handheld computers (with GPS technology), allowing users to physically move throughout a real-world location while collecting place-dependent simulated field data, interviewing virtual characters, and collaboratively investigating simulated scenarios.
    • Barbara Lindsey
       
      Much better
  • he defining quality of a learning community is that there is a culture of learning, in which everyone is involved in a collective effort of understanding. There are four characteristics that such a culture must have: (1) diversity of expertise among its members, who are valued for their contributions and given support to develop, (2) a shared objective of continually advancing the collective knowledge and skills, (3) an emphasis on learning how to learn, and (4) mechanisms for sharing what is learned. If a learning community is presented with a problem, then the learning community can bring its collective knowledge to bear on the problem. It is not necessary that each member assimilate everything that the community knows, but each should know who within the community has relevant expertise to address any problem. This is a radical departure from the traditional view of schooling, with its emphasis on individual knowledge and performance, and the expectation that students will acquire the same body of knowledge at the same time.26
  • This immersion in virtual environments and augmented realities shapes participants' learning styles beyond what using sophisticated computers and telecommunications has fostered thus far, with multiple implications for higher education.
  • Students were most effective in learning and problem-solving when they collectively sought, sieved, and synthesized experiences rather than individually locating and absorbing information from some single best source.
    • Barbara Lindsey
       
      How does this 'fit' learning goals and teaching styles in our program?
  • Rheingold's forecasts draw on lifestyles seen at present among young people who are high-end users of new media
  • Notion of place is layered/blended/multiple; mobility and nomadicity prevalent among dispersed, fragmented, fluctuating habitats (for example, coffeehouses near campus)
  • Rather than having core identities defined through a primarily local set of roles and relationships, people would express varied aspects of their multifaceted identities through alternate extended experiences in distributed virtual environments and augmented realities.
    • Barbara Lindsey
       
      How is this different from current experiences for individuals working within/across different social groups and boundaries?
  • one-third of U.S. households now have broadband access to the Internet. In the past three years, 14 million U.S. families have linked their computers with wireless home networks. Some 55 percent of Americans now carry cell phones
  • Mitchell's forecasts25 are similar to Rheingold's in many respects. He too envisions largely tribal lifestyles distributed across dispersed, fragmented, fluctuating habitats: electronic nomads wandering among virtual campfires. People's senses and physical agency are extended outward and into the intangible, at considerable cost to individual privacy. Individual identity is continuously reformed via an ever-shifting series of networking with others and with tools. People express themselves through nonlinear, associational webs of representations rather than linear "stories" and co-design services rather than selecting a precustomized variant from a menu of possibilities.
  • More and more, though, people of all ages will have lifestyles involving frequent immersion in both virtual and augmented reality. How might distributed, immersive media be designed specifically for education, and what neomillennial learning styles might they induce?
  • Guided social constructivism and situated learning as major forms of pedagogy
  • Peer-developed and peer-rated forms of assessment complement faculty grading, which is often based on individual accomplishment in a team performance context  Assessments provide formative feedback on instructional effectiveness
  • Mediated immersion creates distributed learning communities, which have different strengths and limits than location-bound learning communities confined to classroom settings and centered on the teacher and archival materials.27
  • Multipurpose habitats—creating layered/blended/personalizable places rather than specialized locations (such as computer labs)
  • Neomillenial Versus Millennial Learning Styles
  • Emphasis is placed on implications for strategic investments in physical plant, technology infrastructure, and professional development.
  • o the extent that some of these ideas about neomillennial learning styles are accurate, campuses that make strategic investments in physical plant, technical infrastructure, and professional development along the dimensions suggested will gain a considerable competitive advantage in both recruiting top students and teaching them effectively.
  • such as textbooks linked to course ratings by students)
  • Mirroring": Immersive virtual environments provide replicas of distant physical settings
  • Middleware, interoperability, open content, and open source
  • Finding information Sequential assimilation of linear information stream
  • Student products generally tests or papers Grading centers on individual performance
  • These ideas are admittedly speculative rather than based on detailed evidence and are presented to stimulate reaction and dialogue about these trends.
  • f we accept much of the analysis above
    • Barbara Lindsey
       
      But have they made the case for its educational value?
  • students of all ages with increasingly neomillennial learning styles will be drawn to colleges and universities that have these capabilities. Four implications for investments in professional development also are apparent. Faculty will increasingly need capabilities in:
  • Some of these shifts are controversial for many faculty; all involve "unlearning" almost unconscious beliefs, assumptions, and values about the nature of teaching, learning, and the academy. Professional development that requires unlearning necessitates high levels of emotional/social support in addition to mastering the intellectual/technical dimensions involved. The ideal form for this type of professional development is distributed learning communities so that the learning process is consistent with the knowledge and culture to be acquired. In other words, faculty must themselves experience mediated immersion and develop neomillennial learning styles to continue teaching effectively as the nature of students alters.
  • Differences among individuals are greater than dissimilarities between groups, so students in any age cohort will present a mixture of neomillennial, millennial, and traditional learning styles
  • The technologies discussed are emerging rather than mature, so their final form and influences on users are not fully understood. A substantial number of faculty and administrators will likely dismiss and resist some of the ideas and recommendations presented here.
Wessam Abedelaziz

Convenience, Communications, and Control: How Students Use Technology | Resources | EDU... - 0 views

  • They are characterized as preferring teamwork, experiential activities, and the use of technology
  • Doing is more important than knowing, and learning is accomplished through trial and error as opposed to a logical and rule-based approach.2 Similarly, Paul Hagner found that these students not only possess the skills necessary to use these new communication forms, but there is an ever increasing expectation on their part that these new communication paths be used
    • Nicole McClure
       
      This phrase makes me a little uneasy. I recognize that these students are different, but I understand this a difference in learning style, not content. "Doing is more important than knowing" implies, at least to me, that a full understanding of the content. There has to be a little of both.
    • Barbara Lindsey
       
      It's an interesting question. What is 'knowing'? And how do we know what we know?
    • Wessam Abedelaziz
       
      I guess doing is more important than knowing in the sense of actual research. We should have a theoritical background and KNOW what is behind but it is also important to try things out and make mistakes and have a feed back. I would say, it is more of an individual thing and it is up to the type of learners and how they learn things. They might be learners who learn by touching things and try it out or just by having a look at it and they will be fine
    • Wessam Abedelaziz
       
      Sorry, it is in the sense of ' Action Research" not 'actual reseach'
  • Much of the work to date, while interesting and compelling, is intuitive and largely based on qualitative data and observation.
  • ...38 more annotations...
  • There is an inexorable trend among college students to universal ownership, mobility, and access to technology.
  • Students were asked about the applications they used on their electronic devices. They reported that they use technology first for educational purposes, followed by communication.
    • Barbara Lindsey
       
      All self-reported. Would have been powerful if could have actually tracked a representative sample and compared actual use with reported use.
    • Wessam Abedelaziz
       
      I don't believe this line!!
  • presentation software was driven primarily by the requirements of the students' major and the curriculum.
  • Communications and entertainment are very much related to gender and age.
  • From student interviews, a picture emerged of student technology use driven by the demands of the major and the classes that students take. Seniors reported spending more time overall on a computer than do freshmen, and they reported greater use of a computer at a place of employment. Seniors spent more hours on the computer each week in support of their educational activities and also more time on more advanced applications—spreadsheets, presentations, and graphics.
  • Confirming what parents suspect, students with the lowest grade point averages (GPAs) spend significantly more time playing computer games; students with the highest GPAs spend more hours weekly using the computer in support of classroom activities. At the University of Minnesota, Crookston, students spent the most hours on the computer in support of classroom activities. This likely reflects the deliberate design of the curriculum to use a laptop extensively. In summary, the curriculum's technology requirements are major motivators for students to learn to use specialized software.
  • The interviews indicated that students are skilled with basic office suite applications but tend to know just enough technology functionality to accomplish their work; they have less in-depth application knowledge or problem solving skills.
  • According to McEuen, student technology skills can be likened to writing skills: Students come to college knowing how to write, but they are not developed writers. The analogy holds true for information technology, and McEuen suggested that colleges and universities approach information technology in the same way they approach writing.6
  • he major requires the development of higher-level skill sets with particular applications.
    • Barbara Lindsey
       
      Not really quantitative--self-reported data back by selected qualitative interviews
  • The comparative literature on student IT skill self-assessment suggests that students overrate their skills; freshmen overrate their skills more than seniors, and men overrate their skills more than women.7 Our data supports these conclusions. Judy Doherty, director of the Student Technologies Resource Group at Colgate University, remarked on student skill assessment, "Students state in their job applications that they are good if not very good, but when tested their skills are average to poor, and they need a lot of training."8
  • Mary Jane Smetanka of the Minneapolis–St. Paul Star Tribune reported that some students are so conditioned by punch-a-button problem solving on computers that they approach problems with a scattershot impulsiveness instead of methodically working them through. In turn, this leads to problem-solving difficulties.
  • We expected to find that the Net Generation student prefers classes that use technology. What we found instead is a bell curve with a preference for a moderate use of technology in the classroom (see Figure 1).
    • Barbara Lindsey
       
      More information needs to be given to find out why--may be tool and method not engaging.
  • It is not surprising that if technology is used well by the instructor, students will come to appreciate its benefits.
  • A student's major was also an important predictor of preferences for technology in the classroom (see Table 3), with engineering students having the highest preference for technology in the classroom (67.8 percent), followed by business students (64.3 percent).
  • we found that many of the students most skilled in the use of technology had mixed feelings about technology in the classroom.
  • he highest scores were given to improved communications, followed by factors related to the management of classroom activities. Lower impact activities had to do with comprehension of classroom materials (complex concepts).
  • The instructors' use of technology in my classes has increased my interest in the subject matter. 3.25 Classes that use information technology are more likely to focus on real-world tasks and examples.
  • I spend more time engaged in course activities in those courses that require me to use technology.
  • Interestingly, students do not feel that use of information technology in classes greatly increases the amount of time engaged with course activities (3.22 mean).12 This is in direct contrast to faculty perceptions reported in an earlier study, where 65 percent of faculty reported they perceived that students spend more time engaged with course materials
  • Only 12.7 percent said the most valuable benefit was improved learning; 3.7 percent perceived no benefit whatsoever. Note that students could only select one response, so more than 12.7 percent may have felt learning was improved, but it was not ranked highest. These findings compare favorably with a study done by Douglas Havelka at the University of Miami in Oxford, Ohio, who identified the top six benefits of the current implementation of IT as improving work efficiency, affecting the way people behave, improving communications, making life more convenient, saving time, and improving learning ability.14
    • Barbara Lindsey
       
      Would have been good to know exactly what kinds of technologies were meant here.
  • Our data suggest that we are at best at the cusp of technologies being employed to improve learning.
  • The interactive features least used by faculty were the features that students indicated contributed the most to their learning.
  • he students in this study called our attention to performance by noting an uneven diffusion of innovation using this technology. This may be due, in part, to faculty or student skill. It may also be due to a lack of institutional recognition of innovation, especially as the successful use of course management systems affects or does not affect faculty tenure, promotion, and merit decisions
  • Humanities 7.7% 47.9% 40.2
  • What we found was that many necessary skills had to be learned at the college or university and that the motivation for doing so was very much tied to the requirements of the curriculum. Similarly, the students in our survey had not gained the necessary skills to use technology in support of academic work outside the classroom. We found a significant need for further training in the use of information technology in support of learning and problem-solving skills.
  • Course management systems were used most by both faculty and students for communication of information and administrative activities and much less in support of learning.
  • In 1997, Michael Hooker proclaimed, "higher education is on the brink of a revolution." Hooker went on to note that two of the greatest challenges our institutions face are those of "harnessing the power of digital technology and responding to the information revolution."18 Hooker and many others, however, did not anticipate the likelihood that higher education's learning revolution would be a journey of a thousand miles rather than a discrete event. Indeed, a study of learning's last great revolution—the invention of moveable type—reveals, too, a revolution conducted over centuries leading to the emergence of a publishing industry, intellectual property rights law, the augmentation of customized lectures with textbooks, and so forth.
  • Qualitative data were collected by means of focus groups and individual interviews. We interviewed undergraduate students, administrators, and individuals identified as experts in the field of student technology use in the classroom. Student focus groups and interviews of administrators were conducted at six of the thirteen schools participating in the study.
  • The institutions chosen represent a nonrepresentative mix of the different types of higher education institution in the United States, in terms of Carnegie class as well as location, source of funding, and levels of technology emphasis. Note, however, that we consider our findings to be instructive rather than conclusive of student experiences at different types of Carnegie institutions.
  • Both the ECAR study on faculty use of course management systems and this study of student experiences with information technology concluded that, while information technology is indeed making important inroads into classroom and learning activities, to date the effects are largely in the convenience of postsecondary teaching and learning and do not yet constitute a "learning revolution." This should not surprise us. The invention of moveable type enhanced, nearly immediately, access to published information and reduced the time needed to produce new publications. This invention did not itself change literacy levels, teaching styles, learning styles, or other key markers of a learning revolution. These changes, while catalyzed by the new technology, depended on slower social changes to institutions. I believe that is what we are witnessing in higher education today.
  • The qualitative data suggest a slightly different picture. Students have very basic office suite skills as well as e-mail and basic Web surfing skills. Moving beyond basic activities is problematic. It appears that they do not recognize the enhanced functionality of the applications they own and use.
  • It cannot be assumed that they come to college prepared to use advanced software applications.
  • 25.6 percent of the students preferred limited or no use of technology in the classroom.
  • "Information technology is just a tool. Like all tools, if used properly it can be an asset. If it is used improperly, it can become an obstacle to achieving its intended purpose. Never is it a panacea."
Barbara Lindsey

T+L Top Story - Banning school technology: A bad idea? - 0 views

  • Banning school technology: A bad idea? Educators ponder which technologies are pedagogically useful, say planning is the key to success
  • panelists in a session titled "Leveraging Banned Technologies to Create Ubiquitous Learning Environments" offered their advice to educators on why technology shouldn't be banned from classrooms--and why saying "yes" is worth the time and effort
  • 50 percent of participants said they had schoolwide wireless access; most said they don't allow students to bring their own technology devices to school; and many don't have a policy in place about students bringing their own devices to school
  • ...5 more annotations...
  • perhaps the most revealing data came from the next question: Do you allow cell phones in school? Most participants said students can carry cell phones as long as they keep them turned off during class; yet, most also agreed that cell phones could be useful for instruction. Participants also said that if students bring personal devices to school, 40 to 60 percent of those students bring a device with broadband access.
  • "Educators want their students to be able to use these technologies, but they don't know how they can be applied in the classroom."
  • "Schools first need to develop a plan of action for when new technologies are introduced and then determine their bandwidth needs. Then they'll be getting somewhere," she said.
  • Steve Hargadon, director of the K12 Open Technologies Initiative at the Consortium for School Networking, and founder of www.classroom20.com. Hargadon developed his social networking site for educators as a way to get educators used to the idea of social networking not always as a scary, educationally empty phenomenon. "We have to look at the tools and the devices behind popular technologies. Just because bad things sometimes happen on Facebook doesn't mean the technology itself can't be useful. It just depends how it's used," he said. Hargadon says that for educators, profile pages can be portfolios and background information for others to see. The "friends" you are making are really "colleagues," he said--and uploading content and adding commentary provides authentic feedback to your ideas. "Common interest groups can be turned into group projects, and the discussion forums allow for asking questions and getting engaged in meaningful conversation. The wisdom of the group will always help when trying to solve problems," he said.
    • Barbara Lindsey
       
      This is a good way to describe the 'Facebook-like' features to colleagues and admins as well as what some of the benefits are to using these environs.
  • For these panelists, the shift in education from a teacher-centric, factory-style model to a more dynamic model filled with ubiquitous access to information, newly created content, and personal devices is not a struggle if you start with a plan--because only by being open to new ideas will today's students be tomorrow's innovators.
    • Barbara Lindsey
       
      This is key.
Barbara Lindsey

The New Socialism: Global Collectivist Society Is Coming Online - 0 views

  • In his 2008 book, Here Comes Everybody, media theorist Clay Shirky suggests a useful hierarchy for sorting through these new social arrangements. Groups of people start off simply sharing and then progress to cooperation, collaboration, and finally collectivism. At each step, the amount of coordination increases. A survey of the online landscape reveals ample evidence of this phenomenon.
  • Second, other users benefit from an individual's tags, bookmarks, and so on. And this, in turn, often creates additional value that can come only from the group as a whole. For instance, tagged snapshots of the same scene from different angles can be assembled into a stunning 3-D rendering of the location. (Check out Microsoft's Photosynth.) In a curious way, this proposition exceeds the socialist promise of "from each according to his ability, to each according to his needs" because it betters what you contribute and delivers more than you need.
  • Instead of money, the peer producers who create the stuff gain credit, status, reputation, enjoyment, satisfaction, and experience.
  • ...3 more annotations...
  • The largely unarticulated but intuitively understood goal of communitarian technology is this: to maximize both individual autonomy and the power of people working together. Thus, digital socialism can be viewed as a third way that renders irrelevant the old debates.
  • Hybrid systems that blend market and nonmarket mechanisms are not new. For decades, researchers have studied the decentralized, socialized production methods of northern Italian and Basque industrial co-ops, in which employees are owners, selecting management and limiting profit distribution, independent of state control. But only since the arrival of low-cost, instantaneous, ubiquitous collaboration has it been possible to migrate the core of those ideas into diverse new realms, like writing enterprise software or reference books.
  • The increasingly common habit of sharing what you're thinking (Twitter), what you're reading (StumbleUpon), your finances (Wesabe), your everything (the Web) is becoming a foundation of our culture. Doing it while collaboratively building encyclopedias, news agencies, video archives, and software in groups that span continents, with people you don't know and whose class is irrelevant—that makes political socialism seem like the logical next step.
Barbara Lindsey

Steve's HR Technology - Journal - Welcome to the Company! Here is your iPhone - 0 views

  • The school distributed the iPhones with some specific, and fairly modest goals. Let students participate in class polls, have access to some information systems, etc.  These were important and valuable benefits.  But the students proceeded to leverage the technology to better connect with each other, to facilitate their own projects and group activities, and ultimately to derive more value than the administration had ever foreseen.
  • When technology is designed to promote adaptation, or is developed and consumed in ways that can support changes to configuration and flexible levels of personalization the opportunity for end users and employees to 'discover' new and better uses is significantly enhanced.
  • Abilene Christian certainly seems like an unlikely place to be at the forefront of an innovative, cutting edge technology-based project like this.  And it is.  But it shows that even from unlikely sources, ones without national reputations, and billion-dollar endowments, that fantastic innovations can arise.
  • ...1 more annotation...
  • How about next year, when your first batch of new recuits come marching in the door, you hand them a brand new iPhone, and encourage them to use it to connect, learn, share, and experiment? I know what you are thinking, where is the budget for that going to come from? I would bet the extra productivity you will get from the program will more than fund the phones over the year. Ask Abilene Christian if the investment was worth it, they have gotten more mileage as the 'iPhone College' than they ever bargained for.
  •  
    The school distributed the iPhones with some specific, and fairly modest goals. Let students participate in class polls, have access to some information systems, etc.  These were important and valuable benefits.  But the students proceeded to leverage the technology to better connect with each other, to facilitate their own projects and group activities, and ultimately to derive more value than the administration had ever foreseen.
Barbara Lindsey

Minds on Fire: Open Education, the Long Tail, and Learning 2.0 (EDUCAUSE Review) | EDUC... - 0 views

  • The most profound impact of the Internet, an impact that has yet to be fully realized, is its ability to support and expand the various aspects of social learning. What do we mean by “social learning”? Perhaps the simplest way to explain this concept is to note that social learning is based on the premise that our understanding of content is socially constructed through conversations about that content and through grounded interactions, especially with others, around problems or actions. The focus is not so much on what we are learning but on how we are learning.5
  • The openness of Wikipedia is instructive in another way: by clicking on tabs that appear on every page, a user can easily review the history of any article as well as contributors’ ongoing discussion of and sometimes fierce debates around its content, which offer useful insights into the practices and standards of the community that is responsible for creating that entry in Wikipedia. (In some cases, Wikipedia articles start with initial contributions by passionate amateurs, followed by contributions from professional scholars/researchers who weigh in on the “final” versions. Here is where the contested part of the material becomes most usefully evident.) In this open environment, both the content and the process by which it is created are equally visible, thereby enabling a new kind of critical reading—almost a new form of literacy—that invites the reader to join in the consideration of what information is reliable and/or important.
  • viewing learning as the process of joining a community of practice reverses this pattern and allows new students to engage in “learning to be” even as they are mastering the content of a field. This encourages the practice of what John Dewey called “productive inquiry”—that is, the process of seeking the knowledge when it is needed in order to carry out a particular situated task.
  • ...14 more annotations...
  • A very different sort of initiative that is using technology to leverage social learning is Digital StudyHall (DSH), which is designed to improve education for students in schools in rural areas and urban slums in India.
  • many students in the United States and in many other parts of the world are already involved with online social networks that include their friends. John King, the associate provost of the University of Michigan, has attempted to bring attention to this phenomenon by asking how many students are being taught each year by his institution. Although about 40,000 students are enrolled in classes on the university’s campus in Ann Arbor, King believes that the actual number of students being reached by the school today is closer to 250,000.13
  • Through these continuing connections, the University of Michigan students can extend the discussions, debates, bull sessions, and study groups that naturally arise on campus to include their broader networks. Even though these extended connections were not developed to serve educational purposes, they amplify the impact that the university is having while also benefiting students on campus.14 If King is right, it makes sense for colleges and universities to consider how they can leverage these new connections through the variety of social software platforms that are being established for other reasons.
  • Hands-On Universe (HOU) is also designed to promote collaborative learning in astronomy (http://www.handsonuniverse.org). Based at the Lawrence Hall of Science, University of California, Berkeley, HOU invites students to request observations from professional observatories and provides them with image-processing software to visualize and analyze their data, encouraging interaction between the students and scientists. According to Kyle Cudworth, the science director at Yerkes Observatory, which is part of the HOU network: “This is not education in which people come in and lecture in a classroom. We’re helping students work with real data.”16
  • the emphasis is on building a community of students and scholars as much as on providing access to educational content.
  • longtail
  • The power of peer review had been brought to bear on the assignments
  • The site serves as an apprenticeship platform for students by allowing them to observe how scholars in the field argue with each other and also to publish their own contributions, which can be relatively small—an example of the “legitimate peripheral participation” that is characteristic of open source communities. This allows students to “learn to be,” in this instance by participating in the kind of rigorous argumentation that is generated around a particular form of deep scholarship. A community like this, in which students can acculturate into a particular scholarly practice, can be seen as a virtual “spike”: a highly specialized site that can serve as a global resource for its field.
  • An example of such a practicum is the online Teaching and Learning Commons (http://commons.carnegiefoundation.org/) launched earlier this year by the Carnegie Foundation for the Advancement of Teaching.
  • The Commons is an open forum where instructors at all levels (and from around the world) can post their own examples and can participate in an ongoing conversation about effective teaching practices, as a means of supporting a process of “creating/using/re-mixing (or creating/sharing/using).”20
  • We are entering a world in which we all will have to acquire new knowledge and skills on an almost continuous basis.
  • Light discovered that one of the strongest determinants of students’ success in higher education—more important than the details of their instructors’ teaching styles—was their ability to form or participate in small study groups. Students who studied in groups, even only once a week, were more engaged in their studies, were better prepared for class, and learned significantly more than students who worked on their own.6
  • We need to construct shared, distributed, reflective practicums in which experiences are collected, vetted, clustered, commented on, and tried out in new contexts.
  • We now need a new approach to learning—one characterized by a demand-pull rather than the traditional supply-push mode of building up an inventory of knowledge in students’ heads.
Barbara Lindsey

Jean Lave, Etienne Wenger and communities of practice - 0 views

  • Supposing learning is social and comes largely from of our experience of participating in daily life? It was this thought that formed the basis of a significant rethinking of learning theory in the late 1980s and early 1990s by two researchers from very different disciplines - Jean Lave and Etienne Wenger. Their model of situated learning proposed that learning involved a process of engagement in a 'community of practice'. 
  • When looking closely at everyday activity, she has argued, it is clear that 'learning is ubiquitous in ongoing activity, though often unrecognized as such' (Lave 1993: 5).
  • Communities of practice are formed by people who engage in a process of collective learning in a shared domain of human endeavour: a tribe learning to survive, a band of artists seeking new forms of expression, a group of engineers working on similar problems, a clique of pupils defining their identity in the school, a network of surgeons exploring novel techniques, a gathering of first-time managers helping each other cope. In a nutshell: Communities of practice are groups of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. (Wenger circa 2007)
  • ...18 more annotations...
  • Over time, this collective learning results in practices that reflect both the pursuit of our enterprises and the attendant social relations. These practices are thus the property of a kind of community created over time by the sustained pursuit of a shared enterprise. It makes sense, therefore to call these kinds of communities communities of practice. (Wenger 1998: 45)
  • The characteristics of communities of practice According to Etienne Wenger (c 2007), three elements are crucial in distinguishing a community of practice from other groups and communities: The domain. A community of practice is is something more than a club of friends or a network of connections between people. 'It has an identity defined by a shared domain of interest. Membership therefore implies a commitment to the domain, and therefore a shared competence that distinguishes members from other people' (op. cit.). The community. 'In pursuing their interest in their domain, members engage in joint activities and discussions, help each other, and share information. They build relationships that enable them to learn from each other' (op. cit.). The practice. 'Members of a community of practice are practitioners. They develop a shared repertoire of resources: experiences, stories, tools, ways of addressing recurring problems—in short a shared practice. This takes time and sustained interaction' (op. cit.).
  • The fact that they are organizing around some particular area of knowledge and activity gives members a sense of joint enterprise and identity. For a community of practice to function it needs to generate and appropriate a shared repertoire of ideas, commitments and memories. It also needs to develop various resources such as tools, documents, routines, vocabulary and symbols that in some way carry the accumulated knowledge of the community.
  • The interactions involved, and the ability to undertake larger or more complex activities and projects though cooperation, bind people together and help to facilitate relationship and trust
  • Rather than looking to learning as the acquisition of certain forms of knowledge, Jean Lave and Etienne Wenger have tried to place it in social relationships – situations of co-participation.
  • It not so much that learners acquire structures or models to understand the world, but they participate in frameworks that that have structure. Learning involves participation in a community of practice. And that participation 'refers not just to local events of engagement in certain activities with certain people, but to a more encompassing process of being active participants in the practices of social communities and constructing identities in relation to these communities' (Wenger 1999: 4).
  • Initially people have to join communities and learn at the periphery. The things they are involved in, the tasks they do may be less key to the community than others.
  • Learning is, thus, not seen as the acquisition of knowledge by individuals so much as a process of social participation. The nature of the situation impacts significantly on the process.
  • What is more, and in contrast with learning as internalization, ‘learning as increasing participation in communities of practice concerns the whole person acting in the world’ (Lave and Wenger 1991: 49). The focus is on the ways in which learning is ‘an evolving, continuously renewed set of relations’ (ibid.: 50). In other words, this is a relational view of the person and learning (see the discussion of selfhood).
  • 'the purpose is not to learn from talk as a substitute for legitimate peripheral participation; it is to learn to talk as a key to legitimate peripheral participation'. This orientation has the definite advantage of drawing attention to the need to understand knowledge and learning in context. However, situated learning depends on two claims: It makes no sense to talk of knowledge that is decontextualized, abstract or general. New knowledge and learning are properly conceived as being located in communities of practice (Tennant 1997: 77).
  • There is a risk, as Jean Lave and Etienne Wenger acknowledge, of romanticizing communities of practice.
  • 'In their eagerness to debunk testing, formal education and formal accreditation, they do not analyse how their omission [of a range of questions and issues] affects power relations, access, public knowledge and public accountability' (Tennant 1997: 79).
  • Perhaps the most helpful of these explorations is that of Barbara Rogoff and her colleagues (2001). They examine the work of an innovative school in Salt Lake City and how teachers, students and parents were able to work together to develop an approach to schooling based around the principle that learning 'occurs through interested participation with other learners'.
  • Learning is in the relationships between people. As McDermott (in Murphy 1999:17) puts it: Learning traditionally gets measured as on the assumption that it is a possession of individuals that can be found inside their heads… [Here] learning is in the relationships between people. Learning is in the conditions that bring people together and organize a point of contact that allows for particular pieces of information to take on a relevance; without the points of contact, without the system of relevancies, there is not learning, and there is little memory. Learning does not belong to individual persons, but to the various conversations of which they are a part.
  • One of the implications for schools, as Barbara Rogoff and her colleagues suggest is that they must prioritize 'instruction that builds on children's interests in a collaborative way'. Such schools need also to be places where 'learning activities are planned by children as well as adults, and where parents and teachers not only foster children's learning but also learn from their own involvement with children' (2001: 3). Their example in this area have particular force as they are derived from actual school practice.
  • learning involves a deepening process of participation in a community of practice
  • Acknowledging that communities of practice affect performance is important in part because of their potential to overcome the inherent problems of a slow-moving traditional hierarchy in a fast-moving virtual economy. Communities also appear to be an effective way for organizations to handle unstructured problems and to share knowledge outside of the traditional structural boundaries. In addition, the community concept is acknowledged to be a means of developing and maintaining long-term organizational memory. These outcomes are an important, yet often unrecognized, supplement to the value that individual members of a community obtain in the form of enriched learning and higher motivation to apply what they learn. (Lesser and Storck 2001)
  • Educators need to reflect on their understanding of what constitutes knowledge and practice. Perhaps one of the most important things to grasp here is the extent to which education involves informed and committed action.
Barbara Lindsey

The Power of Wikis in Higher Ed - 0 views

  • Mader talks about powerful ways to use wikis in education, content ownership issues, and how wikis tend to be used--and why.
  • In higher ed, there are really three ways I think a wiki can be useful: teaching, research, and administration.
  • teachers can work together using a wiki to write curriculum and lesson plans for courses, to develop assignments, and so forth. If you have multiple teachers teaching sections of a course and they need to teach from the same materials, they have a central hub to which they can collaboratively contribute material ... and then from which they can teach and keep all their sections.
    • Barbara Lindsey
       
      What do you think about this example? Would this be useful in group collaborations in your sections?
  • ...1 more annotation...
  • For students, wikis are beneficial primarily as a collaborative tool for things like group assignments in courses.
  •  
    Stewart Mader describes how he uses wikis in higher ed environments.
Barbara Lindsey

Social Media is Killing the LMS Star - A Bootleg of Bryan Alexander's Lost Presentation... - 0 views

  • Unfortunately, this margin and that niche don’t map well onto each other, to the extent that education extends beyond single classes and connects with the world.
  • CMSes offer versions of most of these, but in a truncated way. Students can publish links to external objects, but can’t link back in. (In fact, a Blackboard class is a fine place to control access to content for one concerned about “deep linking”) An instructor can assign a reading group consisting of students in one’s class, but no one else. These virtual classes are like musical practice rooms, small chambers where one may try out the instrument in silent isolation. It is not connectivism but disconnectivism.
  • professors can readily built media criticism assignments into class spaces. These experiences are analogous to the pre-digital classroom, and can work well enough. But both refuse to engage with today’s realities, namely that media are deeply shaped by the social. Journaling privately, restricted to an audience not of the writer’s choosing, is unusual.
  • ...19 more annotations...
  • We’ve seen an explosion in computer-mediated teaching and learning practices based on Web 2.0, in variety and scope too broad to summarize here. Think of the range from class blogs to Wikipedia writing exercises, profcasting to Twitter class announcements, mashups and academic library folksonomies and researchers’ social bookmarking subscriptions. CMSes react in the following ways: first, by simply not recapitulating these functions; second, by imitating them in delayed, limited fashions; third, by attempting them in a marginal way (example: Blackboard’s Scholar.com). CMSes are retrograde in a Web 2.0 teaching world.
  • CMSes shift from being merely retrograde to being actively regressive if we consider the broader, subtler changes in the digital teaching landscape. Web 2.0 has rapidly grown an enormous amount of content through what Yochai Benkler calls “peer-based commons production.” One effect of this has been to grow a large area for informal learning, which students (and staff) access without our benign interference.
  • Moreover, those curious about teaching with social media have easy access to a growing, accessible community of experienced staff by means of those very media. A meta-community of Web 2.0 academic practitioners is now too vast to catalogue. Academics in every discipline blog about their work. Wikis record their efforts and thoughts, as do podcasts. The reverse is true of the CMS, the very architecture of which forbids such peer-to-peer information sharing. For example, the Resource Center for Cyberculture Studies (RCCS) has for many years maintained a descriptive listing of courses about digital culture across the disciplines. During the 1990s that number grew with each semester. But after the explosive growth of CMSes that number dwindled. Not the number of classes taught, but the number of classes which could even be described. According to the RCCS’ founder, David Silver (University of San Francisco), this is due to the isolation of class content in CMS containers.
  • If we focus on the copyright issue, then the CMS makes for an apparently adequate shield. It also represents an uncritical acceptance of one school of copyright practice, as it enforces one form of fair use through software. However, it does not open up the question of copyright. Compare, for example, with the Creative Commons option increasingly available to content authors in platforms such as Flickr or WordPress. That experiential, teachable moment of selecting one’s copyright stance is eliminated by the CMS.
  • Another argument in favor of CMSes over Web 2.0 concerns the latter’s open nature.
  • Campuses should run CMSes to create shielded environments,
  • Yet does this argument seem familiar, somehow? It was made during the 1990s, once the first Web ballooned, and new forms of information anxiety appeared. Mentioning this historicity is not intended as a point of style, but to remind the audience that, since this is an old problem, we have been steadily evolving solutions. Indeed, ever since the 20th century we can point to practices – out in the open, wild Web! – which help users cope with informational chaos. These include social sifting, information literacy, using the wisdom of crowds, and others. Such strategies are widely discussed, easily accessed, and continually revised and honed. Most of these skills are not well suited to the walled garden environment, but can be discussed there, of course. Without undue risk of exposure.
  • Put another way, we can sum up the CMS alternative to Web 2.0’s established and evolving pedagogies as a sort of corporate model. This doesn’t refer to the fact that the leading CMS is a business product, produced by a fairly energetic marketplace player. No, the architecture of CMSes recapitulates several aspects of modern business. It enforces copyright compliance. It resembles an intranet, akin to those run by many enterprises. It protects users from external challenges, in true walled garden style. Indeed, at present, radio CMS is the Clear Channel of online learning.
  • The academic uses of realtime search follow the pre-Web pedagogy of seeking timely references to a classroom topic. Think of a professor bringing a newspaper to class, carrying a report about the very subject under discussion. How can this be utilized practically? Faculty members can pick a Web service (Google News, Facebook, Twitter) and search themselves, sharing results; or students can run such queries themselves.
    • Barbara Lindsey
       
      This is very interesting
  • Over the past near-decade CMSes have not only grown in scale, but feature development. Consider the variety: gradebooks, registrar system integration, e-Reserve integration, discussion tools, drop boxes, news alerts. Consider too the growth of parallel Web 2.0 tools: wikis, blogs, social bookmarking, podcasting.
  • Now to compare CMSes and Web 2.0: imagine an alternate history, a counterfactual, whereby the world outside academia had Blackboard instead of Web 2.0: § White House health care reform debates: each citizen must log into a town-hall-associated “class,” registering by zip code and social security number. Information is exchanged between “town classes” via email. Relevant documents can be found, often in .doc format, by logging into one’s town class.
  • § Iranian activists collaborate via classes, frantically switching logins and handles to keep government authorities from registering and snooping. § “Citizen media” barely exist. Instead we rely on established authorities (CNN, BBC, Xinua, etc) to sift, select, and, eventually, republish rare selections of user-generated media. § Wikipedia, Flickr and Picasa, the blogosphere, Facebook and MySpace, the world of podcasting simply don’t exist. Instead, we rely on static, non-communicable Web documents, and consult the occasional e-Reserve, sometimes on a purchased DVD. § The Recording Industry Association of America (RIAA) maintains fan clubs, small, temporary groups where fans of certain bands and artists can sign in and listen to time-limited, DRM’d music. “It’s like tape trading, but legal!” says one promotional campaign.
  • Once we had Bertold Brecht writing plays for radio, neighborhood-based radio shows, and the stupendous Orson Wells; then we moved on, through payola, and onto Kasey Kasem and Clear Channel.
  • For now, the CMS landsape is a multi-institutional dark Web, an invisible, unsearchable, un-mash-up-able archipelago of hidden learning content.
  • Can the practice of using a CMS prepare either teacher or student to think critically about this new shape for information literacy? Moreover, can we use the traditional CMS to share thoughts and practices about this topic?
  • Now your iPhone can track your position on that custom map image as easily as it can on Google maps.”
  • What world is better placed to connect academia productively with such projects, the open social Web or the CMS?
  • CMS. What is it best used for? We have said little about its integration with campus information systems, but these are critical for class (not learning) management, from attendance to grading. Web 2.0 has yet to replace this function. So imagine the CMS function of every class much like class email, a necessary feature, but not by any means the broadest technological element. Similarly the e-reserves function is of immense practical value. There may be no better way to share copyrighted academic materials with a class, at this point. These logistical functions could well play on.
  • It makes for a separation from the social media world, a paused space, perhaps one fertile for reflection. If that works for some situations, then it works, and should be selected… consciously, not as a default or unreflective option, but as the result of a pedagogical decision process.
Barbara Lindsey

From Knowledgable to Knowledge-able: Learning in New Media Environments | Academic Commons - 0 views

  • The message of Wikipedia is not “trust authority” but “explore authority.” Authorized information is not beyond discussion on Wikipedia, information is authorized through discussion, and this discussion is available for the world to see and even participate in. This culture of discussion and participation is now available on any website with the emerging “second layer” of the web through applications like Diigo which allow you to add notes and tags to any website anywhere.
  • Many faculty may hope to subvert the system, but a variety of social structures work against them.
  • Our physical structures were built prior to an age of infinite information, our social structures formed to serve different purposes than those needed now, and the cognitive structures we have developed along the way now struggle to grapple with the emerging possibilities.
  • ...19 more annotations...
  • The physical structures are easiest to see, and are on prominent display in any large “state of the art” classroom. Rows of fixed chairs often face a stage or podium housing a computer from which the professor controls at least 786,432 points of light on a massive screen. Stadium seating, sound-absorbing panels and other acoustic technologies are designed to draw maximum attention to the professor at the front of the room. The “message” of this environment is that to learn is to acquire information, that information is scarce and hard to find (that's why you have to come to this room to get it), that you should trust authority for good information, and that good information is beyond discussion (that's why the chairs don't move or turn toward one another). In short, it tells students to trust authority and follow along.
  • at the base of this “information revolution” are new ways of relating to one another, new forms of discourse, new ways of interacting, new kinds of groups, and new ways of sharing, trading, and collaborating. Wikis, blogs, tagging, social networking and other developments that fall under the “Web 2.0” buzz are especially promising in this regard because they are inspired by a spirit of interactivity, participation, and collaboration. It is this “spirit” of Web 2.0 which is important to education. The technology is secondary. This is a social revolution, not a technological one, and its most revolutionary aspect may be the ways in which it empowers us to rethink education and the teacher-student relationship in an almost limitless variety of ways.
  • Even in situations in which a spirit of exploration and freedom exist, where faculty are free to experiment to work beyond physical and social constraints, our cognitive habits often get in the way
  • Most of our assumptions about information are based on characteristics of information on paper.
  • Even something as simple as the hyperlink taught us that information can be in more than one place at one time
  • Blogging came along and taught us that anybody can be a creator of information.
  • Our old assumption that information is hard to find, is trumped by the realization that if we set up our hyper-personalized digital network effectively, information can find us.
  • Taken together, this new media environment demonstrates to us that the idea of learning as acquiring information is no longer a message we can afford to send to our students, and that we need to start redesigning our learning environments to address, leverage, and harness the new media environment now permeating our classrooms.
  • Nothing good will come of these technologies if we do not first confront the crisis of significance and bring relevance back into education. In some ways these technologies act as magnifiers.
  • Usually our courses are arranged around “subjects.” Postman and Weingartner note that the notion of “subjects” has the unwelcome effect of teaching our students that “English is not History and History is not Science and Science is not Art . . . and a subject is something you 'take' and, when you have taken it, you have 'had' it.” Always aware of the hidden metaphors underlying our most basic assumptions, they suggest calling this “the Vaccination Theory of Education” as students are led to believe that once they have “had” a subject they are immune to it and need not take it again.5
  • As an alternative, I like to think that we are not teaching subjects but subjectivities: ways of approaching, understanding, and interacting with the world. Subjectivities cannot be taught. They involve an introspective intellectual throw-down in the minds of students. Learning a new subjectivity is often painful because it almost always involves what psychologist Thomas Szasz referred to as “an injury to one's self-esteem.”6 You have to unlearn perspectives that may have become central to your sense of self.
  • We can only create environments in which the practices and perspectives are nourished, encouraged, or inspired (and therefore continually practiced).
  • So while the course is set up much like a typical cultural anthropology course, moving through the same readings and topics, all of these learnings are ultimately focused around one big question, “How does the world work?”
  • Students are co-creators of every aspect of the simulation, and are asked to harness and leverage the new media environment to find information, theories, and tools we can use to answer our big question. Each student has a specific role and expertise to develop. A world map is superimposed on the class and each student is asked to become an expert on a specific aspect of the region in which they find themselves. Using this knowledge, they work in 15-20 small groups to create realistic cultures, step-by-step, as we go through each aspect of culture in class. This allows them to apply the knowledge they learn in the course and to recognize the ways different aspects of culture--economic, social, political, and religious practices and institutions--are integrated in a cultural system.
  • The World Simulation itself only takes 75-100 minutes and moves through 650 metaphorical years, 1450-2100. It is recorded by students on twenty digital video cameras and edited into one final "world history" video using clips from real world history to illustrate the correspondences. We watch the video together in the final weeks of the class, using it as a discussion starter for contemplating our world and our role in its future. By then it seems as if we have the whole world right before our eyes in one single classroom - profound cultural differences, profound economic differences, profound challenges for the future, and one humanity. We find ourselves not just as co-creators of a simulation, but as co-creators of the world itself, and the future is up to us.
  • I have often found myself writing content-based multiple-choice questions in a way that I hope will indicate that the student has mastered a new subjectivity or perspective. Of course, the results are not satisfactory. More importantly, these questions ask students to waste great amounts of mental energy memorizing content instead of exercising a new perspective in the pursuit of real and relevant questions.
  • When you watch somebody who is truly “in it,” somebody who has totally given themselves over to the learning process, or if you simply imagine those moments in which you were “in it” yourself, you immediately recognize that learning expands far beyond the mere cognitive dimension. Many of these dimensions were mentioned in the issue precis, “such as emotional and affective dimensions, capacities for risk-taking and uncertainty, creativity and invention,” and the list goes on. How will we assess these? I do not have the answers, but a renewed and spirited dedication to the creation of authentic learning environments that leverage the new media environment demands that we address it.
  • The new media environment provides new opportunities for us to create a community of learners with our students seeking important and meaningful questions.
  • This is what I have called elsewhere, “anti-teaching,” in which the focus is not on providing answers to be memorized, but on creating a learning environment more conducive to producing the types of questions that ask students to challenge their taken-for-granted assumptions and see their own underlying biases.
Barbara Lindsey

Let's get physical- - 0 views

  •  
    Some great language learning activities that involve physical activity. Got this from Resources for Languages Diigo Group.
Wessam Abedelaziz

Curricula Designed to Meet 21st-Century Expectations | Resources | EDUCAUSE - 0 views

  • W here students had once called a large number of their classes "death by lecture," she noted they were now calling them "death by PowerPoint." >
  • here students had once called a large number of their classes "death by lecture," she noted they were now calling them "death by PowerPoint."
    • Wessam Abedelaziz
       
      I think it is ' death by Powerpoint" is a good phrase as it automatically turns to a lecture form with the help of some slides. It is still boring if it is not mainpulated and being directed to be used effectively.
  • With such specific applications of technology and the limited use of other forms (for example, multimedia), students' low expectations for the use of technology in the curriculum is not surprising. Such constrained use of technology by the faculty in the curriculum and low student expectations may serve to limit innovation and creativity as well as the faculty's capacity to engage students more deeply in their subject matter. Like all organizations, colleges and universities respond to the demands placed upon them. Students' and institutions' low expectations for the use of technology for learning provide insufficient impetus for faculties to change their behavior and make broader, more innovative use of these tools in the service of learning.
  • ...13 more annotations...
  • Data obtained from these sessions with high school and college seniors in Indiana, Oregon, and Virginia
    • Barbara Lindsey
       
      Not representative sample
  • From the beginning, however, a problem arose in that those middle school students went on to high schools and later to colleges that did not (and do not) provide this type of rich learning experience—a learning experience that can best be achieved when technology is used in the service of learning.
  • Less attention has been given to how to help students achieve the desired learning outcomes through technology.
  • comparatively little support has been devoted to helping faculty use computers and other technologies in creative and innovative ways to deepen student learning.
  • institutional structures and practices to resolve technical problems that faculty invariably encounter are very limited or are not the type of aid needed. Such lack of support limits the amount of time faculty can spend on what they do best—building a compelling curriculum and integrating technology for more powerful learning.
  • To develop intentional learners, the curriculum must go beyond helping students gain knowledge for knowledge's sake to engaging students in the construction of knowledge for the sake of addressing the challenges faced by a complex, global society.
  • integrating study abroad into courses back on the home campus;
  • Consider this scenario:
  • Faculty concerns perhaps center less on being "replaceable" and more on worrying that the teaching and learning enterprise will be reduced to students gathering information that can be easily downloaded, causing them to rely too heavily on technology instead of intellect.
    • Barbara Lindsey
       
      Mentioned frequently by our group members.
  • First, traditional age students overwhelmingly prefer face-to-face contact with faculty to mediated communication. Second, technology used in the service of learning will require more—not less—sophistication on the part of students as they engage in processes of integration, translation, audience analysis, and critical judgment.
  • Faculty with expertise in one or more subjects, who have been exposed to what we know about how people learn, can determine how to enhance this learning through the use of technology. But simply understanding how to use technology will not provide the integration needed to reach the desired learning outcomes.
    • Barbara Lindsey
       
      Last sentence here most important.
  • There is a need for integrating technology that is in the service of learning throughout the curriculum. More intentional use of technology to capture what students know and are able to integrate in their learning is needed.
Nicole McClure

Learning Spaces | EDUCAUSE - 0 views

  • Over the past decade, higher education has invested millions of dollars in classroom technology. The addition of document cameras, DVD players, Internet access, and projectors (to name a few) has added new functionality to the classroom. It is now possible to bring much more diverse materials to the classroom, to present them in a variety of ways, and to devise new classroom activities for students. As a result, the concept of the classroom has expanded to include this set of new functions.
    • Nicole McClure
       
      I think it's interesting that putting some tech in the room makes it "new." Classrooms have always had new technology (relative to the time of course), but having a group of students stare at a projection screen is not that different than having them stare at a person. I'm more interested in the "new" classrooms that challenge the idea of space altogether.
Barbara Lindsey

Print: The Chronicle: 6/15/2007: The New Metrics of Scholarly Authority - 0 views

    • Barbara Lindsey
       
      Higher ed slow to respond.
  • Web 1.0,
  • garbed new business and publishing models in 20th-century clothes.
  • ...33 more annotations...
  • fundamental presumption is one of endless information abundance.
  • micromarkets
  • Flickr, YouTube
  • multiple demographics
  • Abundance leads to immediate context and fact checking, which changes the "authority market" substantially. The ability to participate in most online experiencesvia comments, votes, or ratingsis now presumed, and when it's not available, it's missed.
  • Web 2.0 is all about responding to abundance, which is a shift of profound significance.
  • Chefs simply couldn't exist in a world of universal scarcity
  • a time when scholarship, and how we make it available, will be affected by information abundance just as powerfully as food preparation has been.
  • Scholarly communication before the Internet required the intermediation of publishers. The costliness of publishing became an invisible constraint that drove nearly all of our decisions. It became the scholar's job to be a selector and interpreter of difficult-to-find primary and secondary sources; it was the scholarly publisher's job to identify the best scholars with the best perspective and the best access to scarce resources.
    • Barbara Lindsey
       
      Comments?
    • Barbara Lindsey
       
      Where critical analysis comes in
  • Google
  • Google
  • Google interprets a link from Page A to Page B as a vote, by Page A, for Page B. But, Google looks at more than the sheer volume of votes, or links a page receives; for example, it also analyzes the page that casts the vote. Votes cast by pages that are themselves 'important' weigh more heavily and help to make other pages 'important,'"
  • if scholarly output is locked away behind fire walls, or on hard drives, or in print only, it risks becoming invisible to the automated Web crawlers, indexers, and authority-interpreters that are being developed. Scholarly invisibility is rarely the path to scholarly authority.
    • Barbara Lindsey
       
      Your thoughts?
  • The challenge for all those sites pertains to abundance:
  • It has its limits, but it also both confers and confirms authority because people tend to point to authoritative sources to bolster their own work.
  • Such systems have not been framed to confer authority, but as they devise means to deal with predators, scum, and weirdos wanting to be a "friend," they are likely to expand into "trust," or "value," or "vouching for my friend" metrics — something close to authority — in the coming years.
  • ecently some more "authoritative" editors have been given authority to override whining ax grinders.
  • In many respects Boing Boing is an old-school edited resource. It doesn't incorporate feedback or comments, but rather is a publication constructed by five editor-writers
  • As the online environment matures, most social spaces in many disciplines will have their own "boingboings."
  • That kind of democratization of authority is nearly unique to wikis that are group edited, since not observation, but active participation in improvement, is the authority metric.
  • user-generated authority, many of which are based on algorithmic analysis of participatory engagement. The emphasis in such models is often not on finding scarce value, but on weeding abundance
  • They differ from current models mostly by their feasible computability in a digital environment where all elements can be weighted and measured, and where digital interconnections provide computable context.
  • In the very near future, if we're talking about a universe of hundreds of billions of documents, there will routinely be thousands, if not tens of thousands, if not hundreds of thousands, of documents that are very similar to any new document published on the Web. If you are writing a scholarly article about the trope of smallpox in Shakespearean drama, how do you ensure you'll be read? By competing in computability. Encourage your friends and colleagues to link to your online document. Encourage online back-and-forth with interested readers. Encourage free access to much or all of your scholarly work. Record and digitally archive all your scholarly activities. Recognize others' works via links, quotes, and other online tips of the hat. Take advantage of institutional repositories, as well as open-access publishers. The list could go on.
  • the new authority metrics, instead of relying on scholarly publishers to establish the importance of material for them.
  • cholarly publishers
  • They need to play a role in deciding not just what material will be made available online, but also how the public will be allowed to interact with the material. That requires a whole new mind-set.
  • Many of the values of scholarship are not well served yet by the Web: contemplation, abstract synthesis, construction of argument.
  • Traditional models of authority will probably hold sway in the scholarly arena for 10 to 15 years, while we work out the ways in which scholarly engagement and significance can be measured in new kinds of participatory spaces.
  • Online scholarly publishing in Web 1.0 mimicked those fundamental conceptions. The presumption was that information scarcity still ruled. Most content was closed to nonsubscribers; exceedingly high subscription costs for specialty journals were retained; libraries continued to be the primary market; and the "authoritative" version was untouched by comments from the uninitiated. Authority was measured in the same way it was in the scarcity world of paper: by number of citations to or quotations from a book or article, the quality of journals in which an article was published, the institutional affiliation of the author, etc.
  • Authority 3.0 will probably include (the list is long, which itself is a sign of how sophisticated our new authority makers will have to be): Prestige of the publisher (if any). Prestige of peer prereviewers (if any). Prestige of commenters and other participants. Percentage of a document quoted in other documents. Raw links to the document. Valued links, in which the values of the linker and all his or her other links are also considered. Obvious attention: discussions in blogspace, comments in posts, reclarification, and continued discussion. Nature of the language in comments: positive, negative, interconnective, expanded, clarified, reinterpreted. Quality of the context: What else is on the site that holds the document, and what's its authority status? Percentage of phrases that are valued by a disciplinary community. Quality of author's institutional affiliation(s). Significance of author's other work. Amount of author's participation in other valued projects, as commenter, editor, etc. Reference network: the significance rating of all the texts the author has touched, viewed, read. Length of time a document has existed. Inclusion of a document in lists of "best of," in syllabi, indexes, and other human-selected distillations. Types of tags assigned to it, the terms used, the authority of the taggers, the authority of the tagging system.
  • Most technophile thinkers out there believe that Web 3.0 will be driven by artificial intelligences — automated computer-assisted systems that can make reasonable decisions on their own, to preselect, precluster, and prepare material based on established metrics, while also attending very closely to the user's individual actions, desires, and historic interests, and adapting to them.
  •  
    When the system of scholarly communications was dependent on the physical movement of information goods, we did business in an era of information scarcity. As we become dependent on the digital movement of information goods, we find ourselves entering an era of information abundance. In the process, we are witnessing a radical shift in how we establish authority, significance, and even scholarly validity. That has major implications for, in particular, the humanities and social sciences.
Barbara Lindsey

The Chronicle: 10/28/2005: Lectures on the Go - 0 views

  • More and more professors, including Mr. Jackson, are turning to the technology to record their lectures and send them to their students, in what many are calling "coursecasting." The portability of coursecasting, its proponents say, makes the technology ideal for students who fall behind in class or those for whom English is a second language. And some advocates say that coursecasting can be more than just a review tool, that it can also enliven classroom interaction and help lecturers critique themselves.
  • One of the things you do by podcasting is participate in student culture," Mr. Jackson says
    • Barbara Lindsey
       
      Is this a good enough reason?
  • Make students listen to a podcast before class, and they will show up ready to converse.
    • Barbara Lindsey
       
      Do you think this would happen?
  • ...24 more annotations...
  • Purdue's podcasting project arose from a desire to let students study without being tethered to their computers, according to Michael Gay, the university's manager of broadcast networks and services for information technology. "We're trying to give people as many options as possible if they miss a course and need to catch up — or if they just want to review," he says.
  • Duke University
  • Drexel University
  • Purdue University
  • American University
  • University of Michigan at Ann Arbor's School of Dentistry
  • "Everybody knows that when you say something in class, the first time, not everybody is paying attention," Mr. Jackson says. "But if you make your lecture available as a podcast, students can relisten to troublesome passages, and it's easy for them to slow things down."
  • St. Mary's College, in California
  • For a graduate-level course in quantitative analysis, Ms. Herkenhoff creates two different series of podcasts, each recontextualizing highlights from her lectures.
  • "When I talked about this with my colleagues, the first thing they all said was 'well, no one's going to go to class,'" says G. Marc Loudon, a professor of medicinal chemistry at Purdue who has posted lectures for students as both audio and video files. Mr. Loudon offers a fairly unsympathetic rejoinder to those concerns: "If a podcast can capture everything you do in class, you deserve to have nobody coming."
  • started penalizing students a grade point for every class session they missed.
  • "Those of you who didn't come to class, but are listening to the podcast, should know that one of the answers to the next test is on the screen," he said. "But I'm not going to tell you what it is."
  • But most students are savvy enough to realize that coursecasts aren't an alternative to class,
  • "a great way to complement the presentation slides many professors already offer online."
  • Richard Smith, a lecturer in instructional technology at the University of Houston-Clear Lake, hosts a weekly podcast on scholarship and education. But he is not convinced that the technology can revitalize pedagogy — because, he says, there is little evidence that recorded lectures will hold students' interest.
  • "I don't think most professors, no matter how good they are in the classroom, can avoid being boring as hell when they're recorded."
  • Students reared on iPods and the Internet do not come to class expecting to sit through an hourlong lecture, he says. Instead, they want to gather information on their own terms and spend their class time in discussion, not rapt attention.
  • "The 'sage on the stage' is dying, if not dead already," Mr. Jackson says. "Faculty members are no longer privileged sources of knowledge, so our job should be to get people to think critically and independently about things."
  • Coursecasting, he says, can help that process along. In Mr. Jackson's own courses, he has put lectures online as podcasts and asked students to listen to them before they come to class, a technique he refers to as "distance learning with a twist." "Think about how much classroom time you would save if you didn't have to lecture anymore," Mr. Jackson says. "You free up all this interactive personal space between you and your students. It changes the classroom experience."
    • Barbara Lindsey
       
      Your thoughts?
  • The "decentered classroom," as Mr. Jackson calls it, can be unsettling for students who are not eager to let the lecture-hall experience bleed into their free time.
    • Barbara Lindsey
       
      Is this the resistance Jessie and others have encountered?
  • Richard Edwards, an assistant professor of communication at St. Mary's College, is building a course around a series of 30-minute podcasts about film-noir classics that he and a colleague had made. Students will listen to the podcasts and then elaborate on Mr. Edwards's talking points in class. "Instead of having to run through all of our thoughts on Double Indemnity," Mr. Edwards says, "we can actually start our discussion in the 31st minute, in media res, without setting up the movie for everyone."
  • Mr. Edwards has made the podcasts that will anchor his film-noir course available to the public free through a license from Creative Commons, a group dedicated to making scholarly and artistic material widely available online. "I want people to download this stuff so they can feel free to engage with it," he says.
    • Barbara Lindsey
       
      Would giving your content away freely like this be a problem for you?
  • Michigan's dentistry school, for example, keeps its coursecasts locked behind a firewall so that only students can listen.
  • Administrators received enough complaints that they formed a faculty committee that is now examining BoilerCast's intellectual-property implications. "The fundamental question is who owns a faculty member's lectures," Mr. Loudon says. "If these classes have intellectual value beyond the classroom, who owns that?"
1 - 20 of 39 Next ›
Showing 20 items per page