Skip to main content

Home/ BeyondwebctFall08/ Group items tagged compare

Rss Feed Group items tagged

Wessam Abedelaziz

Convenience, Communications, and Control: How Students Use Technology | Resources | EDU... - 0 views

  • They are characterized as preferring teamwork, experiential activities, and the use of technology
  • Doing is more important than knowing, and learning is accomplished through trial and error as opposed to a logical and rule-based approach.2 Similarly, Paul Hagner found that these students not only possess the skills necessary to use these new communication forms, but there is an ever increasing expectation on their part that these new communication paths be used
    • Nicole McClure
       
      This phrase makes me a little uneasy. I recognize that these students are different, but I understand this a difference in learning style, not content. "Doing is more important than knowing" implies, at least to me, that a full understanding of the content. There has to be a little of both.
    • Barbara Lindsey
       
      It's an interesting question. What is 'knowing'? And how do we know what we know?
    • Wessam Abedelaziz
       
      I guess doing is more important than knowing in the sense of actual research. We should have a theoritical background and KNOW what is behind but it is also important to try things out and make mistakes and have a feed back. I would say, it is more of an individual thing and it is up to the type of learners and how they learn things. They might be learners who learn by touching things and try it out or just by having a look at it and they will be fine
    • Wessam Abedelaziz
       
      Sorry, it is in the sense of ' Action Research" not 'actual reseach'
  • Much of the work to date, while interesting and compelling, is intuitive and largely based on qualitative data and observation.
  • ...38 more annotations...
  • There is an inexorable trend among college students to universal ownership, mobility, and access to technology.
  • Students were asked about the applications they used on their electronic devices. They reported that they use technology first for educational purposes, followed by communication.
    • Barbara Lindsey
       
      All self-reported. Would have been powerful if could have actually tracked a representative sample and compared actual use with reported use.
    • Wessam Abedelaziz
       
      I don't believe this line!!
  • presentation software was driven primarily by the requirements of the students' major and the curriculum.
  • Communications and entertainment are very much related to gender and age.
  • From student interviews, a picture emerged of student technology use driven by the demands of the major and the classes that students take. Seniors reported spending more time overall on a computer than do freshmen, and they reported greater use of a computer at a place of employment. Seniors spent more hours on the computer each week in support of their educational activities and also more time on more advanced applications—spreadsheets, presentations, and graphics.
  • Confirming what parents suspect, students with the lowest grade point averages (GPAs) spend significantly more time playing computer games; students with the highest GPAs spend more hours weekly using the computer in support of classroom activities. At the University of Minnesota, Crookston, students spent the most hours on the computer in support of classroom activities. This likely reflects the deliberate design of the curriculum to use a laptop extensively. In summary, the curriculum's technology requirements are major motivators for students to learn to use specialized software.
  • The interviews indicated that students are skilled with basic office suite applications but tend to know just enough technology functionality to accomplish their work; they have less in-depth application knowledge or problem solving skills.
  • According to McEuen, student technology skills can be likened to writing skills: Students come to college knowing how to write, but they are not developed writers. The analogy holds true for information technology, and McEuen suggested that colleges and universities approach information technology in the same way they approach writing.6
  • he major requires the development of higher-level skill sets with particular applications.
    • Barbara Lindsey
       
      Not really quantitative--self-reported data back by selected qualitative interviews
  • The comparative literature on student IT skill self-assessment suggests that students overrate their skills; freshmen overrate their skills more than seniors, and men overrate their skills more than women.7 Our data supports these conclusions. Judy Doherty, director of the Student Technologies Resource Group at Colgate University, remarked on student skill assessment, "Students state in their job applications that they are good if not very good, but when tested their skills are average to poor, and they need a lot of training."8
  • Mary Jane Smetanka of the Minneapolis–St. Paul Star Tribune reported that some students are so conditioned by punch-a-button problem solving on computers that they approach problems with a scattershot impulsiveness instead of methodically working them through. In turn, this leads to problem-solving difficulties.
  • We expected to find that the Net Generation student prefers classes that use technology. What we found instead is a bell curve with a preference for a moderate use of technology in the classroom (see Figure 1).
    • Barbara Lindsey
       
      More information needs to be given to find out why--may be tool and method not engaging.
  • It is not surprising that if technology is used well by the instructor, students will come to appreciate its benefits.
  • A student's major was also an important predictor of preferences for technology in the classroom (see Table 3), with engineering students having the highest preference for technology in the classroom (67.8 percent), followed by business students (64.3 percent).
  • we found that many of the students most skilled in the use of technology had mixed feelings about technology in the classroom.
  • he highest scores were given to improved communications, followed by factors related to the management of classroom activities. Lower impact activities had to do with comprehension of classroom materials (complex concepts).
  • The instructors' use of technology in my classes has increased my interest in the subject matter. 3.25 Classes that use information technology are more likely to focus on real-world tasks and examples.
  • I spend more time engaged in course activities in those courses that require me to use technology.
  • Interestingly, students do not feel that use of information technology in classes greatly increases the amount of time engaged with course activities (3.22 mean).12 This is in direct contrast to faculty perceptions reported in an earlier study, where 65 percent of faculty reported they perceived that students spend more time engaged with course materials
  • Only 12.7 percent said the most valuable benefit was improved learning; 3.7 percent perceived no benefit whatsoever. Note that students could only select one response, so more than 12.7 percent may have felt learning was improved, but it was not ranked highest. These findings compare favorably with a study done by Douglas Havelka at the University of Miami in Oxford, Ohio, who identified the top six benefits of the current implementation of IT as improving work efficiency, affecting the way people behave, improving communications, making life more convenient, saving time, and improving learning ability.14
    • Barbara Lindsey
       
      Would have been good to know exactly what kinds of technologies were meant here.
  • Our data suggest that we are at best at the cusp of technologies being employed to improve learning.
  • The interactive features least used by faculty were the features that students indicated contributed the most to their learning.
  • he students in this study called our attention to performance by noting an uneven diffusion of innovation using this technology. This may be due, in part, to faculty or student skill. It may also be due to a lack of institutional recognition of innovation, especially as the successful use of course management systems affects or does not affect faculty tenure, promotion, and merit decisions
  • Humanities 7.7% 47.9% 40.2
  • What we found was that many necessary skills had to be learned at the college or university and that the motivation for doing so was very much tied to the requirements of the curriculum. Similarly, the students in our survey had not gained the necessary skills to use technology in support of academic work outside the classroom. We found a significant need for further training in the use of information technology in support of learning and problem-solving skills.
  • Course management systems were used most by both faculty and students for communication of information and administrative activities and much less in support of learning.
  • In 1997, Michael Hooker proclaimed, "higher education is on the brink of a revolution." Hooker went on to note that two of the greatest challenges our institutions face are those of "harnessing the power of digital technology and responding to the information revolution."18 Hooker and many others, however, did not anticipate the likelihood that higher education's learning revolution would be a journey of a thousand miles rather than a discrete event. Indeed, a study of learning's last great revolution—the invention of moveable type—reveals, too, a revolution conducted over centuries leading to the emergence of a publishing industry, intellectual property rights law, the augmentation of customized lectures with textbooks, and so forth.
  • Qualitative data were collected by means of focus groups and individual interviews. We interviewed undergraduate students, administrators, and individuals identified as experts in the field of student technology use in the classroom. Student focus groups and interviews of administrators were conducted at six of the thirteen schools participating in the study.
  • The institutions chosen represent a nonrepresentative mix of the different types of higher education institution in the United States, in terms of Carnegie class as well as location, source of funding, and levels of technology emphasis. Note, however, that we consider our findings to be instructive rather than conclusive of student experiences at different types of Carnegie institutions.
  • Both the ECAR study on faculty use of course management systems and this study of student experiences with information technology concluded that, while information technology is indeed making important inroads into classroom and learning activities, to date the effects are largely in the convenience of postsecondary teaching and learning and do not yet constitute a "learning revolution." This should not surprise us. The invention of moveable type enhanced, nearly immediately, access to published information and reduced the time needed to produce new publications. This invention did not itself change literacy levels, teaching styles, learning styles, or other key markers of a learning revolution. These changes, while catalyzed by the new technology, depended on slower social changes to institutions. I believe that is what we are witnessing in higher education today.
  • The qualitative data suggest a slightly different picture. Students have very basic office suite skills as well as e-mail and basic Web surfing skills. Moving beyond basic activities is problematic. It appears that they do not recognize the enhanced functionality of the applications they own and use.
  • It cannot be assumed that they come to college prepared to use advanced software applications.
  • 25.6 percent of the students preferred limited or no use of technology in the classroom.
  • "Information technology is just a tool. Like all tools, if used properly it can be an asset. If it is used improperly, it can become an obstacle to achieving its intended purpose. Never is it a panacea."
Barbara Lindsey

Open for Learning: The CMS and the Open Learning Network | in education - 0 views

  • Through a series of comparative studies--in which students of different age groups studied different subject matters under different instructional conditions--Bloom established that the average student instructed individually by a tutor outperformed 98% of students instructed in a conventional classroom setting.
  • Bloom, B. S. (1984). The 2-Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One tutoring. Educational Researcher, 13(6), 4–16.
  • To be clear, our assertions about the weaknesses of the CMS paradigm should also be taken as critiques of the predominant pedagogical model in higher education
  • ...59 more annotations...
  • The OLN model is aimed at leveraging these affordances in ways that the CMS does not. For example, discussions that last longer than 50 minutes can be conducted online without prompting or intervention by the instructor. And such discussions can include more voices than those of the students formally enrolled in the class. Whatever connections students make with each other can be maintained via social networking applications of their choosing. And students can capture, annotate, and archive the content they assemble and create in their courses as well as in their less formal learning experiences. And since they are using their tools, they maintain control of and access to the content as long as they choose.
  • Given the ever increasing rate of change and improvement in learning technologies and approaches, committed teachers should be anxious to find and employ new, more effective tools to help their students learn more effectively.
  • The OLN also has the significant advantage of being time-persistent. Compared with the frequent starts and stops in the CMS (see Figure 2), much of what happens in the OLN allows learners to build their learning networks over time, since it is not bound to semesters, terms, or even the institution. And the artificial boundaries of the CMS are removed thereby allowing the learner to benefit from participation in a broader community of networked learners, further removing the limitations on learner network growth (see Figure 4).  
  • One of the primary aims of the OLN model is to reestablish teachers and learners at the center of learning activity (both inside and outside of courses).
  • By combining several functions into one application, the CMS has forced us to make a tradeoff that is suboptimal for learning. Because there is some confidential and proprietary data in the CMS, we have traditionally locked all course data behind a login screen, viewable only by an instructor and the officially enrolled members of his or her class - and then only for the duration of the semester or term. This is perhaps the most debilitating example of CMS technology being used to reinvent the past. The traditional classroom has always been a private, physically, and temporally bounded space. The natural inclination was to replicate that model within the CMS. However, doing so has imposed the limits of the old space in a new space where such limitations do not exist.
  • there are several key components of the OLN that should be private and secure, situated within an institution's intranet. These include student information systems (SISs), identity and role repositories, proprietary content stores, and secure online assessment applications. These are and should remain core components of the institutional IT infrastructure. Beyond these, however, there are several OLN components that need not be private. Faculty and student blogs, wikis, portfolios, and open courseware and open educational resource repositories can be open (at the option and discretion of individual faculty members and students). These functions can exist, spread across multiple applications and websites, in the cloud. Some applications might even be mashups of intranet and cloud-based applications.
  • Light's examination of the impact of group study among students at Harvard is particularly compelling. In Making the Most of College, Light presents evidence that "students who study outside of class in small groups of four to six students, even just once a week, benefit enormously. Group meetings are organized around discussions of the homework, and as a result of their study group discussion, students are far more engaged and better prepared for class, learning significantly more" (2001, 52).
  • Learning is not a simple acquisition activity. A large body of critical analysis and research concur that learning is at least as much a function of social discourse as it is solitary cognition (e.g., Vygotsky, 1962, 1978, or Schon, Brown, et al., 1989).
  • The same is true for the best educational content—it draws people into arguments, explorations, discussions, and relationships that add depth, meaning, and value to that content.
  • Brown & Adler have argued that, "The most profound impact of the Internet, an impact that has yet to be fully realized, is its ability to support and expand the various aspects of social learning" (2008, 18). This is in contrast to the prevailing "traditional Cartesian view" of instruction that focuses primarily on the transfer of knowledge—as if it were a substance—from teacher to learner (18). Educational theorists have long argued against the didactic approach. Freire critiqued what he called "banking education," a model in which student activity is limited to "receiving, filing, and storing the deposits" of information apportioned them by the instructor (1970, 72).
  • We may fruitfully update Freire's metaphor of "banking education" to a metaphor of "downloading learning." So much of what passes for innovative uses of instructional technology today, like the OpenCourseWare collections available from MIT and other universities, restricts learners to downloading files.
  • If "hyperlinks subvert hierarchy" (Levine, et al., 1999), Web 2.0 tools are making the learning space fundamentally and permanently flat. CIOs, academic leaders, and individual faculty members might argue that they need the structure and security of the CMS. We agree that some elements of the CMS should be maintained. But students, and a growing number of instructors, are engaging in rich, meaningful dialog, content creation, and sharing outside the CMS.
  • When students enter the walled garden of the CMS, they are largely "acted upon." Efficacious, self-regulating learners, on the other hand, "act" as they participate in and take ownership of their own learning activities and ultimately what they learn and how they employ that new learning in pursuit of their various life projects.
  • The center of gravity in the CMS is decidedly on institutional and instructor efficiency and convenience, not student participation and learning. This should not be surprising given Cuban's findings that educational technology is used largely to "maintain existing practices" rather than to "revolutionize," or even change in any substantial way, teaching and learning practices (2001).
  • But the CMS paradigm actually works against such a transformation of the relationship between teachers and learners because it privileges the role of the instructor and technically restricts individual students from contributing and to shaping courses in any meaningful way. Sclater has argued that the term "learning management system" itself suggests "disempowerment—an attempt to manage and control the activities of the student by the university" (2008, p. 2). The tendencies of the CMS are not, he argues, just "minor irritations" but rather forces that "may overtly or subtly align the institutional processes with the software rather than having the system serve the requirements of the institution" (p. 3).
  • Most (if not all) of these sorts of activities are absent from the typical CMS-based course. This is true primarily because there is no space provided for students to publish such content and engage in such activities of their own creation. Moreover, students engaged in such activities are unlikely to make the CMS the base of their activities because they would be walled off from the rest of the world, destined for deletion at the end of the semester.
  • 12-year-old home schooled girl, Heather Lawver, who created an online, fan-authored version of The Daily Prophet, the fictional newspaper in the Harry Potter series (see http://dprophet.com).
  • Jenkins argues that Lawver's activities, and those of the reporters she recruited, went far beyond a creative outlet for fans—participants acquired knowledge creation, knowledge pooling, and knowledge sharing skills, gained experiences sharing and comparing value systems, learned how to express and interpret feelings about a literary work, and developed Internet publishing skills (p. 185). Gee has argued that similarly transferable skills can be acquired in online role-playing games, where players learn to work well with team members, collaborate to solve problems, and hone individual skills in the context while understanding and appreciating others' skills, etc. (2009).
  • Learners as Co-Instructors, Instructors as Co-Learners
  • the overwhelming usage patterns of instructors indicate that the CMS has been used primarily to mimic the traditional, semester-based, lecture-driven, content-centric model of instruction - one of bestowing "course info" on students.
  • the CMS was designed primarily to support and enhance traditional teaching. It is not coincidental that the first incarnation of Blackboard was branded "CourseInfo."
  • While perhaps a bit stylized, the typical CMS-delivered, content-centric, lecture-driven course complete with multiple-choice midterm and final exams, does little to prepare students to succeed in a world in which there will always be more new knowledge created every day than they can possibly access, much less assimilate, master, and apply. Given the overwhelming flow of data all around us, our job should be increasingly less focussed on making our students "knowledgeable" and focused instead more on making them "knowledge-able" (Wesch, 2009).
  • When a student at Ryerson University convened a chemistry study group inside Facebook in 2007, the University threatened to expel him for academic misconduct. In his defense, the student observed that he was simply replicating online what was common practice in face-to-face study group and tutorial sessions (Schaffhauser, 2008). The difference between these face-to-face sessions and the groups the student created in Facebook, however, was that the online versions of the study groups would persist over time, perhaps far beyond the students' time at Ryerson. Access to Facebook, unlike access to live study sessions or to the CMS, does not expire when a student graduates.
  • mposing artificial time limits on learner access to course content and other learners, privileging the role of the instructor at the expense of the learner, and limiting the power of the network effect in the learning process.
  • Bush & Mott (2009) have argued that the failure of technology to transform learning stems from a preoccupation with "the tactical implementation of specific technologies which often simply automate the past" (p. 17).
  • such software has generally been focused primarily on helping teachers increase the efficiency of the administrative tasks of instruction (e.g., distribute documents, make assignments, give quizzes, initiate discussion boards, assign students to working groups, etc.).
  • tendency to use the CMS to improve instructional efficiency rather than effectiveness.
  • Self-Reported Function Usage in Blackboard by BYU Faculty Members (2004-2009)
  • CMS are "fundamentally a conservative technology ... [for] managing groups, providing tools, and delivering content" (2006, 1).
  • course content distribution and teacher-student communication platform
  • Cuban concluded that "teachers used technology to maintain existing practices" rather than to "revolutionize" the way they teach their students (p. 138).
  • course managment software leads universities to "think they are in the information industry" (356).
  • he industrial, course management model has its center of gravity in teachers generating content, teachers gathering resources, teachers grouping and sequencing information, and teachers giving the information to students (356). This is so, they argue, because teachers "often yield to the seductive appeal of a course management system, where it is easy enough to populate a weekly schedule with static resources and decontextualized tasks" which results in a "focus on content ... rather than the process of educating the student" (357).
  • the CMS continues to artificially situate instruction and learning inside walled gardens that are disconnected from the rich and vibrant networks of learners and content in the wider world.
  • the changes necessary to bridge the 2 sigma gap are at least as much cultural and pedagogical as they are technological.  
  • an unintended consequence of CMS deployment by artificially limiting the potential of the Web to keep students connected to each other and their content. While the CMS facilitates substantial interaction and community building around content within courses, the resulting learning communities are almost always limited to those formally enrolled in the course and those communities exist only for the duration of a particular semester or term. When each period of instruction draws to a close, CMS courses are routinely deactivated and sometimes even deleted to make way for the next semester's courses.
  • course-centric, content-driven model of instruction that dominates higher education.
  • no record left behind of the activity and learning that occurred within them. This is a pattern that repeats from semester to semester, throughout a student's learning career at a particular institution.
    • Barbara Lindsey
       
      Do you agree with this statement? Do you see any issues with this current situation?
  • These learning network disruptions are even more jarring for students who transfer from one institution to another or those who take courses from multiple institutions. Unless students fastidiously copy the content from their CMS courses and save the contact information of their classmates, the learning network connections they have made (both content and social) are essentially lost.
  • flocking to time-persistent social networking and media sharing sites like Facebook, Flickr, YouTube, GMail, and Google Docs.
  • blogs, and wikis
    • Barbara Lindsey
       
      What is your intial reaction to our public blog and wiki?
  • While we know of no formal research on the topic, we believe that knowing that the fruits of their efforts will be categorically deleted at the end of term is a significant negative motivation for students to contribute meaningfully within the CMS, particularly when the same effort invested elsewhere would persist indefinitely.
  • By eliminating access to the courses a student participates in within a CMS, an institution not only hampers them during their formal learning careers, but it takes away a potentially invaluable knowledge-able tool for continued success as a lifelong learner.
  • The old paradigm of making our students "knowingly prepared" is rapidly losing its value. We should instead help our students be "unknowingly prepared—to be unknowing but to possess the tools and skills to rapidly become 'knowing' at the moment-of-need" (p. 3).
  • No longer do students sit passively in the classroom, restricted only to the authority of the instructor and their textbook for the final word on the subject matter of a lecture. Now they can Google terms, concepts, and events mentioned by the instructor, they txt, Facebook, and Twitter each other about what's being said, and they carry their notes and even the lecture itself out of class with them, recorded on laptops, MP3 recorders, and digital pens to be reviewed and shared.
    • Barbara Lindsey
       
      Your reaction to this?
  • Between 2000 and 2008, the average licensing cost per campus for commercial CMS skyrocketed  500% (Delta Initiative, 2009; slide 11).
  • includes such factors as hosting, faculty development, curriculum and instructional course design, multimedia support, and help desk support while making literally no mention of student learning or student activity within the CMS (slide 21).
  • Where once the instructor was the sole (or at lease substantially privileged) possessor of content expertise and certainly the exclusive provider of course materials, learners are now instantaneously able to Google virtually any information about the content of a course (often during the lectures themselves), independently publish their thoughts about it, and interact with others (both inside and outside of the official course roster) about the course and it's subject matter.
  • instructors have largely employed the CMS to automate the past,
    • Barbara Lindsey
       
      What is so bad about 'automating the past'?
  • In a learning context, he argues that no educational information and communication technology can be "universally good." Rather, he asserts, "the best way to invest in instructional technologies is an instrumental approach that analyzes the natures of the curriculum, students, and teachers to select the appropriate tools, applications, media and environments" (59).
  • which learners select as they engage in their educational experiences (p. 59).
    • Barbara Lindsey
       
      Pretty radical approach, no?
  • we prefer to think of educational content as a campfire around which learners gather.
  • When combined with tools and environments that afford opportunities for social interaction, educational resources become semiotic tools that influence learners' actions and mediate the learning process.
    • Barbara Lindsey
       
      This is a key statement.
  • it seems paradoxical that we would we put hundreds, thousands, or millions of learners in front of advanced communications technology so that they can simply retrieve data instead of interacting with each other around that data.
  • We contend that its inadequacy stems from three specific weaknesses of the CMS—(1) the organization of learning experiences into discrete, artificially time-bound units, (2) the predominance of instructor-focused and content-centric tools in the CMS, and (3) the lack of persistent connections between learners, instructors, content, and the broader community across semesters and across class, program, and institutional boundaries.
  • these disruptions are likely to come from educational technologists and leaders exploring new tools and new approaches to learning.
  • while opening the space necessary for learners to act as co-instructors and for teachers to act as co-learners in a dynamically generated space (9).
  • Most institutions of higher education appear focused on . . . content coverage, course structure, and pre-existing time arrangments such as semesters and hours of credit than . . . issues such as learning and performance (
  • This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License.
Barbara Lindsey

Project New Media Literacies - 0 views

  •  
    A research initiative based within MIT's Comparative Media Studies Program. It explores how we might best equip young people with the social skills and cultural competencies required to become full participants in an emergent media landscape and raise public understanding about what it means to be literate in a globally interconnected, multicultural world.
Barbara Lindsey

What is the Future of Teaching? - 1 views

  • Students spending three hours per day in an online environment under the guidance of a great professor are likely, and not surprisingly, going to be better prepared than those spending an hour per week in a classroom with a mediocre one. And because the study’s results were correlational and not causal, it is impossible to say for certain whether it was actually the online learning environment that caused better tested performance. We can conclude that those in online learning environments tested better, but not necessarily why.
  • A major part of the job of a good educator is to equip students with the necessary mental tools to be able to continue learning on their own. Those skills are likely to be less developed in younger students, making face-to-face teacher intervention more necessary.
  • good teachers will always be necessary to draw out that knowledge and help students develop the skills needed to think critically about the information they consume. In other words, online learning tools are just like any other tools in a teacher’s bag of tricks: what matters is how they’re applied.
  • ...1 more annotation...
  • Shai Reshef of the University of the People, an online-only institution aiming to bring quality education to students, mostly in developing nations, for whom cost is a prohibitive barrier to traditional classroom learning. Reshef told me that his University really acts as a guide, helping people to organize the types of knowledge discovery and peer-to-peer teaching activities they’re already doing into a more formal program of study. And does the University of the People model still have room for teachers? You bet.
  •  
    Study comparing test performance scores of students in online vs face to face environments. Results are correlational, not causal.
Barbara Lindsey

Social Media is Killing the LMS Star - A Bootleg of Bryan Alexander's Lost Presentation... - 0 views

  • Unfortunately, this margin and that niche don’t map well onto each other, to the extent that education extends beyond single classes and connects with the world.
  • CMSes offer versions of most of these, but in a truncated way. Students can publish links to external objects, but can’t link back in. (In fact, a Blackboard class is a fine place to control access to content for one concerned about “deep linking”) An instructor can assign a reading group consisting of students in one’s class, but no one else. These virtual classes are like musical practice rooms, small chambers where one may try out the instrument in silent isolation. It is not connectivism but disconnectivism.
  • professors can readily built media criticism assignments into class spaces. These experiences are analogous to the pre-digital classroom, and can work well enough. But both refuse to engage with today’s realities, namely that media are deeply shaped by the social. Journaling privately, restricted to an audience not of the writer’s choosing, is unusual.
  • ...19 more annotations...
  • We’ve seen an explosion in computer-mediated teaching and learning practices based on Web 2.0, in variety and scope too broad to summarize here. Think of the range from class blogs to Wikipedia writing exercises, profcasting to Twitter class announcements, mashups and academic library folksonomies and researchers’ social bookmarking subscriptions. CMSes react in the following ways: first, by simply not recapitulating these functions; second, by imitating them in delayed, limited fashions; third, by attempting them in a marginal way (example: Blackboard’s Scholar.com). CMSes are retrograde in a Web 2.0 teaching world.
  • CMSes shift from being merely retrograde to being actively regressive if we consider the broader, subtler changes in the digital teaching landscape. Web 2.0 has rapidly grown an enormous amount of content through what Yochai Benkler calls “peer-based commons production.” One effect of this has been to grow a large area for informal learning, which students (and staff) access without our benign interference.
  • Moreover, those curious about teaching with social media have easy access to a growing, accessible community of experienced staff by means of those very media. A meta-community of Web 2.0 academic practitioners is now too vast to catalogue. Academics in every discipline blog about their work. Wikis record their efforts and thoughts, as do podcasts. The reverse is true of the CMS, the very architecture of which forbids such peer-to-peer information sharing. For example, the Resource Center for Cyberculture Studies (RCCS) has for many years maintained a descriptive listing of courses about digital culture across the disciplines. During the 1990s that number grew with each semester. But after the explosive growth of CMSes that number dwindled. Not the number of classes taught, but the number of classes which could even be described. According to the RCCS’ founder, David Silver (University of San Francisco), this is due to the isolation of class content in CMS containers.
  • If we focus on the copyright issue, then the CMS makes for an apparently adequate shield. It also represents an uncritical acceptance of one school of copyright practice, as it enforces one form of fair use through software. However, it does not open up the question of copyright. Compare, for example, with the Creative Commons option increasingly available to content authors in platforms such as Flickr or WordPress. That experiential, teachable moment of selecting one’s copyright stance is eliminated by the CMS.
  • Another argument in favor of CMSes over Web 2.0 concerns the latter’s open nature.
  • Campuses should run CMSes to create shielded environments,
  • Yet does this argument seem familiar, somehow? It was made during the 1990s, once the first Web ballooned, and new forms of information anxiety appeared. Mentioning this historicity is not intended as a point of style, but to remind the audience that, since this is an old problem, we have been steadily evolving solutions. Indeed, ever since the 20th century we can point to practices – out in the open, wild Web! – which help users cope with informational chaos. These include social sifting, information literacy, using the wisdom of crowds, and others. Such strategies are widely discussed, easily accessed, and continually revised and honed. Most of these skills are not well suited to the walled garden environment, but can be discussed there, of course. Without undue risk of exposure.
  • Put another way, we can sum up the CMS alternative to Web 2.0’s established and evolving pedagogies as a sort of corporate model. This doesn’t refer to the fact that the leading CMS is a business product, produced by a fairly energetic marketplace player. No, the architecture of CMSes recapitulates several aspects of modern business. It enforces copyright compliance. It resembles an intranet, akin to those run by many enterprises. It protects users from external challenges, in true walled garden style. Indeed, at present, radio CMS is the Clear Channel of online learning.
  • The academic uses of realtime search follow the pre-Web pedagogy of seeking timely references to a classroom topic. Think of a professor bringing a newspaper to class, carrying a report about the very subject under discussion. How can this be utilized practically? Faculty members can pick a Web service (Google News, Facebook, Twitter) and search themselves, sharing results; or students can run such queries themselves.
    • Barbara Lindsey
       
      This is very interesting
  • Over the past near-decade CMSes have not only grown in scale, but feature development. Consider the variety: gradebooks, registrar system integration, e-Reserve integration, discussion tools, drop boxes, news alerts. Consider too the growth of parallel Web 2.0 tools: wikis, blogs, social bookmarking, podcasting.
  • Now to compare CMSes and Web 2.0: imagine an alternate history, a counterfactual, whereby the world outside academia had Blackboard instead of Web 2.0: § White House health care reform debates: each citizen must log into a town-hall-associated “class,” registering by zip code and social security number. Information is exchanged between “town classes” via email. Relevant documents can be found, often in .doc format, by logging into one’s town class.
  • § Iranian activists collaborate via classes, frantically switching logins and handles to keep government authorities from registering and snooping. § “Citizen media” barely exist. Instead we rely on established authorities (CNN, BBC, Xinua, etc) to sift, select, and, eventually, republish rare selections of user-generated media. § Wikipedia, Flickr and Picasa, the blogosphere, Facebook and MySpace, the world of podcasting simply don’t exist. Instead, we rely on static, non-communicable Web documents, and consult the occasional e-Reserve, sometimes on a purchased DVD. § The Recording Industry Association of America (RIAA) maintains fan clubs, small, temporary groups where fans of certain bands and artists can sign in and listen to time-limited, DRM’d music. “It’s like tape trading, but legal!” says one promotional campaign.
  • Once we had Bertold Brecht writing plays for radio, neighborhood-based radio shows, and the stupendous Orson Wells; then we moved on, through payola, and onto Kasey Kasem and Clear Channel.
  • For now, the CMS landsape is a multi-institutional dark Web, an invisible, unsearchable, un-mash-up-able archipelago of hidden learning content.
  • Can the practice of using a CMS prepare either teacher or student to think critically about this new shape for information literacy? Moreover, can we use the traditional CMS to share thoughts and practices about this topic?
  • Now your iPhone can track your position on that custom map image as easily as it can on Google maps.”
  • What world is better placed to connect academia productively with such projects, the open social Web or the CMS?
  • CMS. What is it best used for? We have said little about its integration with campus information systems, but these are critical for class (not learning) management, from attendance to grading. Web 2.0 has yet to replace this function. So imagine the CMS function of every class much like class email, a necessary feature, but not by any means the broadest technological element. Similarly the e-reserves function is of immense practical value. There may be no better way to share copyrighted academic materials with a class, at this point. These logistical functions could well play on.
  • It makes for a separation from the social media world, a paused space, perhaps one fertile for reflection. If that works for some situations, then it works, and should be selected… consciously, not as a default or unreflective option, but as the result of a pedagogical decision process.
Wessam Abedelaziz

Curricula Designed to Meet 21st-Century Expectations | Resources | EDUCAUSE - 0 views

  • W here students had once called a large number of their classes "death by lecture," she noted they were now calling them "death by PowerPoint." >
  • here students had once called a large number of their classes "death by lecture," she noted they were now calling them "death by PowerPoint."
    • Wessam Abedelaziz
       
      I think it is ' death by Powerpoint" is a good phrase as it automatically turns to a lecture form with the help of some slides. It is still boring if it is not mainpulated and being directed to be used effectively.
  • With such specific applications of technology and the limited use of other forms (for example, multimedia), students' low expectations for the use of technology in the curriculum is not surprising. Such constrained use of technology by the faculty in the curriculum and low student expectations may serve to limit innovation and creativity as well as the faculty's capacity to engage students more deeply in their subject matter. Like all organizations, colleges and universities respond to the demands placed upon them. Students' and institutions' low expectations for the use of technology for learning provide insufficient impetus for faculties to change their behavior and make broader, more innovative use of these tools in the service of learning.
  • ...13 more annotations...
  • Data obtained from these sessions with high school and college seniors in Indiana, Oregon, and Virginia
    • Barbara Lindsey
       
      Not representative sample
  • From the beginning, however, a problem arose in that those middle school students went on to high schools and later to colleges that did not (and do not) provide this type of rich learning experience—a learning experience that can best be achieved when technology is used in the service of learning.
  • Less attention has been given to how to help students achieve the desired learning outcomes through technology.
  • comparatively little support has been devoted to helping faculty use computers and other technologies in creative and innovative ways to deepen student learning.
  • institutional structures and practices to resolve technical problems that faculty invariably encounter are very limited or are not the type of aid needed. Such lack of support limits the amount of time faculty can spend on what they do best—building a compelling curriculum and integrating technology for more powerful learning.
  • To develop intentional learners, the curriculum must go beyond helping students gain knowledge for knowledge's sake to engaging students in the construction of knowledge for the sake of addressing the challenges faced by a complex, global society.
  • integrating study abroad into courses back on the home campus;
  • Consider this scenario:
  • Faculty concerns perhaps center less on being "replaceable" and more on worrying that the teaching and learning enterprise will be reduced to students gathering information that can be easily downloaded, causing them to rely too heavily on technology instead of intellect.
    • Barbara Lindsey
       
      Mentioned frequently by our group members.
  • First, traditional age students overwhelmingly prefer face-to-face contact with faculty to mediated communication. Second, technology used in the service of learning will require more—not less—sophistication on the part of students as they engage in processes of integration, translation, audience analysis, and critical judgment.
  • Faculty with expertise in one or more subjects, who have been exposed to what we know about how people learn, can determine how to enhance this learning through the use of technology. But simply understanding how to use technology will not provide the integration needed to reach the desired learning outcomes.
    • Barbara Lindsey
       
      Last sentence here most important.
  • There is a need for integrating technology that is in the service of learning throughout the curriculum. More intentional use of technology to capture what students know and are able to integrate in their learning is needed.
Barbara Lindsey

Top News - Jr. colleges outpace 4-year schools in tech use - 0 views

  • To help institutions with its second recommendation, CDW-G is making available a technology assessment template that colleges and universities can download free of charge at www.21stcenturycampusindex.com. Campus leaders can complete the assessment, then enter the data on this web site to find out how they stack up against comparable institutions.
    • Barbara Lindsey
       
      Do you think UCONN would consider doing this and making (honest) results public?
Barbara Lindsey

Ping - Google Goggles, Searching by Image Alone - NYTimes.com - 0 views

  • It’s not hard to imagine a slew of commercial applications for this technology. You could compare prices of a product online, learn how to operate that old water heater whose manual you have lost or find out about the environmental record of a certain brand of tuna. But Goggles and similar products could also tell the history of a building, help travelers get around in a foreign country or even help blind people navigate their surroundings.
  • But recognizing images at what techies call “scale,” meaning thousands or even millions of images, is hugely difficult, partly because it requires enormous computing power. It turns out that Google, with its collection of massive data centers, has just that.
  •  
    Google unveiled a smartphone application called Goggles. It allows users to search the Web, not by typing or by speaking keywords, but by snapping an image with a cellphone and feeding it into Google's search engine.
1 - 9 of 9
Showing 20 items per page