Skip to main content

Home/ beyondwebct/ Group items tagged science math

Rss Feed Group items tagged

Barbara Lindsey

My School, Meet MySpace: Social Networking at School | Edutopia - 0 views

  • Months before the newly hired teachers at Philadelphia's Science Leadership Academy (SLA) started their jobs, they began the consuming work of creating the high school of their dreams -- without meeting face to face. They articulated a vision, planned curriculum, designed assessment rubrics, debated discipline policies, and even hammered out daily schedules using the sort of networking tools -- messaging, file swapping, idea sharing, and blogging -- kids love on sites such as MySpace.
  • hen, weeks before the first day of school, the incoming students jumped onboard -- or, more precisely, onto the Science Leadership Academy Web site -- to meet, talk with their teachers, and share their hopes for their education. So began a conversation that still perks along 24/7 in SLA classrooms and cyberspace. It's a bold experiment to redefine learning spaces, the roles and relationships of teachers and students, and the mission of the modern high school.
  • When I hear people say it's our job to create the twenty-first-century workforce, it scares the hell out of me," says Chris Lehmann, SLA's founding principal. "Our job is to create twenty-first-century citizens. We need workers, yes, but we also need scholars, activists, parents -- compassionate, engaged people. We're not reinventing schools to create a new version of a trade school. We're reinventing schools to help kids be adaptable in a world that is changing at a blinding rate."
  • ...11 more annotations...
  • It's the spirit of science rather than hardcore curriculum that permeates SLA. "In science education, inquiry-based learning is the foothold," Lehmann says. "We asked, 'What does it mean to build a school where everything is based on the core values of science: inquiry, research, collaboration, presentation, and reflection?'"
  • It means the first-year curriculum is built around essential questions: Who am I? What influences my identity? How do I interact with my world? In addition to science, math, and engineering, core courses include African American history, Spanish, English, and a basic how-to class in technology that also covers Internet safety and the ethical use of information and software. Classes focus less on facts to be memorized and more on skills and knowledge for students to master independently and incorporate into their lives. Students rarely take tests; they write reflections and do "culminating" projects. Learning doesn't merely cross disciplines -- it shatters outdated departmental divisions. Recently, for instance, kids studied atomic weights in biochemistry (itself a homegrown interdisciplinary course), did mole calculations in algebra, and created Dalton models (diagrams that illustrate molecular structures) in art.
  • This is Dewey for the digital age, old-fashioned progressive education with a technological twist.
  • computers and networking are central to learning at, and shaping the culture of, SLA. "
  • he zest to experiment -- and the determination to use technology to run a school not better, but altogether differently -- began with Lehmann and the teachers last spring when they planned SLA online. Their use of Moodle, an open source course-management system, proved so easy and inspired such productive collaboration that Lehmann adopted it as the school's platform. It's rare to see a dog-eared textbook or pad of paper at SLA; everybody works on iBooks. Students do research on the Internet, post assignments on class Moodle sites, and share information through forums, chat, bookmarks, and new software they seem to discover every day.
  • Teachers continue to use Moodle to plan, dream, and learn, to log attendance and student performance, and to talk about everything -- from the student who shows up each morning without a winter coat to cool new software for tagging research sources. There's also a schoolwide forum called SLA Talk, a combination bulletin board, assembly, PA system, and rap session.
  • Web technology, of course, can do more than get people talking with those they see every day; people can communicate with anyone anywhere. Students at SLA are learning how to use social-networking tools to forge intellectual connections.
  • In October, Lehmann noticed that students were sorting themselves by race in the lunchroom and some clubs. He felt disturbed and started a passionate thread on self-segregation.
  • "Having the conversation changed the way kids looked at themselves," he says.
  • "What I like best about this school is the sense of community," says student Hannah Feldman. "You're not just here to learn, even though you do learn a lot. It's more like a second home."
  • As part of the study of memoirs, for example, Alexa Dunn's English class read Funny in Farsi, Firoozeh Dumas's account of growing up Iranian in the United States -- yes, the students do read books -- and talked with the author in California via Skype. The students also wrote their own memoirs and uploaded them to SLA's network for the teacher and class to read and edit. Then, digital arts teacher Marcie Hull showed the students GarageBand, which they used to turn their memoirs into podcasts. These they posted on the education social-networking site EduSpaces (formerly Elgg); they also posted blogs about the memoirs.
Barbara Lindsey

Khan Academy - 0 views

  •  
    Short video tutorials on math, science, chemistry, biology, banking, investing & history all with a cc license.
Barbara Lindsey

Educational Vodcasting - 0 views

  •  
    Two high school teachers give students chem materials to view prior to class. They believe this can help students in math, science and foreign languages.
Barbara Lindsey

Minds on Fire: Open Education, the Long Tail, and Learning 2.0 (EDUCAUSE Review) | EDUC... - 0 views

  • But at the same time that the world has become flatter, it has also become “spikier”: the places that are globally competitive are those that have robust local ecosystems of resources supporting innovation and productiveness.2
  • various initiatives launched over the past few years have created a series of building blocks that could provide the means for transforming the ways in which we provide education and support learning. Much of this activity has been enabled and inspired by the growth and evolution of the Internet, which has created a global “platform” that has vastly expanded access to all sorts of resources, including formal and informal educational materials. The Internet has also fostered a new culture of sharing, one in which content is freely contributed and distributed with few restrictions or costs.
  • the most visible impact of the Internet on education to date has been the Open Educational Resources (OER) movement, which has provided free access to a wide range of courses and other educational materials to anyone who wants to use them. The movement began in 2001 when the William and Flora Hewlett and the Andrew W. Mellon foundations jointly funded MIT’s OpenCourseWare (OCW) initiative, which today provides open access to undergraduate- and graduate-level materials and modules from more than 1,700 courses (covering virtually all of MIT’s curriculum). MIT’s initiative has inspired hundreds of other colleges and universities in the United States and abroad to join the movement and contribute their own open educational resources.4 The Internet has also been used to provide students with direct access to high-quality (and therefore scarce and expensive) tools like telescopes, scanning electron microscopes, and supercomputer simulation models, allowing students to engage personally in research.
  • ...29 more annotations...
  • most profound impact of the Internet, an impact that has yet to be fully realized, is its ability to support and expand the various aspects of social learning. What do we mean by “social learning”? Perhaps the simplest way to explain this concept is to note that social learning is based on the premise that our understanding of content is socially constructed through conversations about that content and through grounded interactions, especially with others, around problems or actions. The focus is not so much on what we are learning but on how we are learning.5
  • This perspective shifts the focus of our attention from the content of a subject to the learning activities and human interactions around which that content is situated. This perspective also helps to explain the effectiveness of study groups. Students in these groups can ask questions to clarify areas of uncertainty or confusion, can improve their grasp of the material by hearing the answers to questions from fellow students, and perhaps most powerfully, can take on the role of teacher to help other group members benefit from their understanding (one of the best ways to learn something is, after all, to teach it to others).
  • This encourages the practice of what John Dewey called “productive inquiry”—that is, the process of seeking the knowledge when it is needed in order to carry out a particular situated task.
  • ecoming a trusted contributor to Wikipedia involves a process of legitimate peripheral participation that is similar to the process in open source software communities. Any reader can modify the text of an entry or contribute new entries. But only more experienced and more trusted individuals are invited to become “administrators” who have access to higher-level editing tools.8
  • by clicking on tabs that appear on every page, a user can easily review the history of any article as well as contributors’ ongoing discussion of and sometimes fierce debates around its content, which offer useful insights into the practices and standards of the community that is responsible for creating that entry in Wikipedia. (In some cases, Wikipedia articles start with initial contributions by passionate amateurs, followed by contributions from professional scholars/researchers who weigh in on the “final” versions. Here is where the contested part of the material becomes most usefully evident.) In this open environment, both the content and the process by which it is created are equally visible, thereby enabling a new kind of critical reading—almost a new form of literacy—that invites the reader to join in the consideration of what information is reliable and/or important.
  • But viewing learning as the process of joining a community of practice reverses this pattern and allows new students to engage in “learning to be” even as they are mastering the content of a field.
  • Mastering a field of knowledge involves not only “learning about” the subject matter but also “learning to be” a full participant in the field. This involves acquiring the practices and the norms of established practitioners in that field or acculturating into a community of practice.
  • Another interesting experiment in Second Life was the Harvard Law School and Harvard Extension School fall 2006 course called “CyberOne: Law in the Court of Public Opinion.” The course was offered at three levels of participation. First, students enrolled in Harvard Law School were able to attend the class in person. Second, non–law school students could enroll in the class through the Harvard Extension School and could attend lectures, participate in discussions, and interact with faculty members during their office hours within Second Life. And at the third level, any participant in Second Life could review the lectures and other course materials online at no cost. This experiment suggests one way that the social life of Internet-based virtual education can coexist with and extend traditional education.
  • Digital StudyHall (DSH), which is designed to improve education for students in schools in rural areas and urban slums in India. The project is described by its developers as “the educational equivalent of Netflix + YouTube + Kazaa.”11 Lectures from model teachers are recorded on video and are then physically distributed via DVD to schools that typically lack well-trained instructors (as well as Internet connections). While the lectures are being played on a monitor (which is often powered by a battery, since many participating schools also lack reliable electricity), a “mediator,” who could be a local teacher or simply a bright student, periodically pauses the video and encourages engagement among the students by asking questions or initiating discussions about the material they are watching.
  • John King, the associate provost of the University of Michigan
  • For the past few years, he points out, incoming students have been bringing along their online social networks, allowing them to stay in touch with their old friends and former classmates through tools like SMS, IM, Facebook, and MySpace. Through these continuing connections, the University of Michigan students can extend the discussions, debates, bull sessions, and study groups that naturally arise on campus to include their broader networks. Even though these extended connections were not developed to serve educational purposes, they amplify the impact that the university is having while also benefiting students on campus.14 If King is right, it makes sense for colleges and universities to consider how they can leverage these new connections through the variety of social software platforms that are being established for other reasons.
  • The project’s website includes reports of how students, under the guidance of professional astronomers, are using the Faulkes telescopes to make small but meaningful contributions to astronomy.
  • “This is not education in which people come in and lecture in a classroom. We’re helping students work with real data.”16
  • HOU invites students to request observations from professional observatories and provides them with image-processing software to visualize and analyze their data, encouraging interaction between the students and scientists
  • The site is intended to serve as “an open forum for worldwide discussions on the Decameron and related topics.” Both scholars and students are invited to submit their own contributions as well as to access the existing resources on the site. The site serves as an apprenticeship platform for students by allowing them to observe how scholars in the field argue with each other and also to publish their own contributions, which can be relatively small—an example of the “legitimate peripheral participation” that is characteristic of open source communities. This allows students to “learn to be,” in this instance by participating in the kind of rigorous argumentation that is generated around a particular form of deep scholarship. A community like this, in which students can acculturate into a particular scholarly practice, can be seen as a virtual “spike”: a highly specialized site that can serve as a global resource for its field.
  • I posted a list of links to all the student blogs and mentioned the list on my own blog. I also encouraged the students to start reading one another's writing. The difference in the writing that next week was startling. Each student wrote significantly more than they had previously. Each piece was more thoughtful. Students commented on each other's writing and interlinked their pieces to show related or contradicting thoughts. Then one of the student assignments was commented on and linked to from a very prominent blogger. Many people read the student blogs and subscribed to some of them. When these outside comments showed up, indicating that the students really were plugging into the international community's discourse, the quality of the writing improved again. The power of peer review had been brought to bear on the assignments.17
  • for any topic that a student is passionate about, there is likely to be an online niche community of practice of others who share that passion.
  • Finding and joining a community that ignites a student’s passion can set the stage for the student to acquire both deep knowledge about a subject (“learning about”) and the ability to participate in the practice of a field through productive inquiry and peer-based learning (“learning to be”). These communities are harbingers of the emergence of a new form of technology-enhanced learning—Learning 2.0—which goes beyond providing free access to traditional course materials and educational tools and creates a participatory architecture for supporting communities of learners.
  • We need to construct shared, distributed, reflective practicums in which experiences are collected, vetted, clustered, commented on, and tried out in new contexts.
  • An example of such a practicum is the online Teaching and Learning Commons (http://commons.carnegiefoundation.org/) launched earlier this year by the Carnegie Foundation for the Advancement of Teaching
  • The Commons is an open forum where instructors at all levels (and from around the world) can post their own examples and can participate in an ongoing conversation about effective teaching practices, as a means of supporting a process of “creating/using/re-mixing (or creating/sharing/using).”20
  • The original World Wide Web—the “Web 1.0” that emerged in the mid-1990s—vastly expanded access to information. The Open Educational Resources movement is an example of the impact that the Web 1.0 has had on education.
  • But the Web 2.0, which has emerged in just the past few years, is sparking an even more far-reaching revolution. Tools such as blogs, wikis, social networks, tagging systems, mashups, and content-sharing sites are examples of a new user-centric information infrastructure that emphasizes participation (e.g., creating, re-mixing) over presentation, that encourages focused conversation and short briefs (often written in a less technical, public vernacular) rather than traditional publication, and that facilitates innovative explorations, experimentations, and purposeful tinkerings that often form the basis of a situated understanding emerging from action, not passivity.
  • In the twentieth century, the dominant approach to education focused on helping students to build stocks of knowledge and cognitive skills that could be deployed later in appropriate situations. This approach to education worked well in a relatively stable, slowly changing world in which careers typically lasted a lifetime. But the twenty-first century is quite different.
  • We now need a new approach to learning—one characterized by a demand-pull rather than the traditional supply-push mode of building up an inventory of knowledge in students’ heads. Demand-pull learning shifts the focus to enabling participation in flows of action, where the focus is both on “learning to be” through enculturation into a practice as well as on collateral learning.
  • The demand-pull approach is based on providing students with access to rich (sometimes virtual) learning communities built around a practice. It is passion-based learning, motivated by the student either wanting to become a member of a particular community of practice or just wanting to learn about, make, or perform something. Often the learning that transpires is informal rather than formally conducted in a structured setting. Learning occurs in part through a form of reflective practicum, but in this case the reflection comes from being embedded in a community of practice that may be supported by both a physical and a virtual presence and by collaboration between newcomers and professional practitioners/scholars.
  • The building blocks provided by the OER movement, along with e-Science and e-Humanities and the resources of the Web 2.0, are creating the conditions for the emergence of new kinds of open participatory learning ecosystems23 that will support active, passion-based learning: Learning 2.0.
  • As a graduate student at UC-Berkeley in the late 1970s, Treisman worked on the poor performance of African-Americans and Latinos in undergraduate calculus classes. He discovered the problem was not these students’ lack of motivation or inadequate preparation but rather their approach to studying. In contrast to Asian students, who, Treisman found, naturally formed “academic communities” in which they studied and learned together, African-Americans tended to separate their academic and social lives and studied completely on their own. Treisman developed a program that engaged these students in workshop-style study groups in which they collaborated on solving particularly challenging calculus problems. The program was so successful that it was adopted by many other colleges. See Uri Treisman, “Studying Students Studying Calculus: A Look at the Lives of Minority Mathematics Students in College,” College Mathematics Journal, vol. 23, no. 5 (November 1992), pp. 362–72, http://math.sfsu.edu/hsu/workshops/treisman.html.
  • In the early 1970s, Stanford University Professor James Gibbons developed a similar technique, which he called Tutored Videotape Instruction (TVI). Like DSH, TVI was based on showing recorded classroom lectures to groups of students, accompanied by a “tutor” whose job was to stop the tape periodically and ask questions. Evaluations of TVI showed that students’ learning from TVI was as good as or better than in-classroom learning and that the weakest students academically learned more from participating in TVI instruction than from attending lectures in person. See J. F. Gibbons, W. R. Kincheloe, and S. K. Down, “Tutored Video-tape Instruction: A New Use of Electronics Media in Education,” Science, vol. 195 (1977), pp. 1136–49.
Barbara Lindsey

A Fairy Tale? « Larry Cuban on School Reform and Classroom Practice - 0 views

  • what they had learned in school did not prepare them to face the problems of life, think clearly, be creative, or fulfill their civic duties.
  • So to give high schools the freedom to try new ways of schooling in a democracy, a small band of reformers convinced the best universities to waive their admission requirements and accept graduates from high schools that designed new programs.
  • Between 1933-1941, thirty high schools in the country and over 300 universities and colleges joined the experiment sponsored by the Progressive Education Association.
  • ...8 more annotations...
  • Called “The Eight Year Study,” each high school decided for itself what curricula, schedules, and class sizes would be. There were no college admission requirements or must-take tests. Old lesson plans were scrapped. One school sent classes into the West Virginia coal region to study unions. Science, history, art, and math were often combined in projects that students and teachers planned together.
  • A few principals blocked the experiment. Some school faculties divided into warring factions.
  • While there was much variation among the schools, there were also common elements. Many of the large public high schools (of the 30, fifteen were private) created small schools within the larger one. Principals increased the authority of teachers to design and steer the program; teachers crossed departmental boundaries and created a core curriculum (math/science and English/social studies), set aside three hours a day for teams to work with groups of students, and planned weekly units with students.
  • evaluators established 1,475 pairs of college students, each consisting of a graduate from an experimental school and one graduate of another high school matched as closely as possible as to age, sex, race, social class, and academic performance. They then compared their performance in college.
  • Evaluators found that graduates of the thirty schools earned a slightly higher grade average and more academic honors than those who attended regular high school. Furthermore, the “guinea pigs,” as they were called, were more precise in their thinking, displayed more ingenuity in meeting new situations, and demonstrated an active interest in national and world issues than their matched counterpart.
  • results showed over 70 years ago was that there was no one single best way of schooling teenagers.
  • Later generations of reformers seldom inquired or cared about this large-scale, non-federally funded experiment that showed convincingly that schools, given the freedom to experiment, could produce graduates that not only did well academically in college but, far more important, displayed an active interest in civic affairs, were resourceful in handling new situations, and could think clearly.
  • 1. When engaged teachers, administrators, and students are given the freedom to experiment and the help to do it, they will come through. 2. There is no one best way of schooling youth. 3. Students can graduate high school who are academically engaged, involved in their communities, and thoughtful problem-solvers. 4. Standards of excellence that work in schools are those that are set and done locally by adults and students—not imposed from the top-down.
Barbara Lindsey

Stanford University prepares for an amazing "bookless library" - San Jose Mercury News - 0 views

  • "The role of this new library is less to do with shelving and checking out books — and much more about research and discovery," said Andrew Herkovic, director of communications and development at Stanford Libraries.
  • It is only half the size of the current Engineering Library, but saves its space for people, not things. It features soft seating, "brainstorm islands," a digital bulletin board, and group event space. There are few shelves and it will feature a self-checkout system.
  • The sciences are the perfect place to test bookless libraries, librarians say. In math, online books tend to render formulas badly. And those in the humanities, arts and social sciences still embrace the serendipitous discoveries made while browsing. Johanna Drucker, UCLA professor of information studies, moreover asks: "What version of a work should be digitized as representative? Leo Tolstoy's original Russian text? Or the Maude translation? Should we digitize the sanitized version of Mark Twain's classics, or the originals?"
Celeste Arrieta

Wordle as a reading comprehension tool? - Middle School Portal - 1 views

  • I came across Wordle some time ago, thought it was pretty nifty, and then forgot about it. An article in the August 2009 issue of Learning & Leading with Technology ("Words in a Cloud" by Samantha Morra) made me reflect on the power of this fun tool. In the article, Morra describes using Wordle with her middle school students to visually analyze important documents, such as the Declaration of Independence. I began thinking about science and math class and wondered if the tool might help students identify the main concepts of a passage. However, I don't have access to any middle school textbooks to test this out!
  • If you want to use it as a pre-reading activity, copy and paste your text (or type a few paragraphs) into wordle to create the word cloud. The size of the words indicates the frequency of their use in the text. In essence, major concepts/terms will show up bigger than others. Have students create a prediction about the reading based on what appears in the word cloud.
  • If you want to use it as a post-reading activity, I have had students keep a running list of words that jump out at them while reading a particular passage (or you can give them a more specific purpose for selecting words). Then, they create their own word clouds. It's a nice formative assessment for teachers to see what students are noticing while reading (or NOT noticing...).
  • ...1 more annotation...
  • I have also asked students to write a beginning of the year letter to me about themselves. We then "wordle" the letter and print the graphic. I hang the graphics on the wall of the classrooms to show a snapshot of the different people in the class.
Inas Ayyoub

Curricula Designed to Meet 21st-Century Expectations | EDUCAUSE - 1 views

  • Faculty concerns perhaps center less on being "replaceable" and more on worrying that the teaching and learning enterprise will be reduced to students gathering information that can be easily downloaded, causing them to rely too heavily on technology instead of intellect.
  • First, traditional age students overwhelmingly prefer face-to-face contact with faculty to mediated communication. Second, technology used in the service of learning will require more—not less—sophistication on the part of students as they engage in processes of integration, translation, audience analysis, and critical judgment.
  • With such specific applications of technology and the limited use of other forms (for example, multimedia), students' low expectations for the use of technology in the curriculum is not surprising. Such constrained use of technology by the faculty in the curriculum and low student expectations may serve to limit innovation and creativity as well as the faculty's capacity to engage students more deeply in their subject matter.
    • Barbara Lindsey
       
      Your thoughts on this?
    • Chenwen Hong
       
      I completely agree. As a student, I don't think a text-based PowerPoint slide presentation would interest me too much, partcularly when there are too many words squeezed into just one slide. If a PowerPoint slide presentation is just a copy of texts, the use of technology makes nothing different from teaching with a blackboard and chalks. The use of technology must have, and then can serve, a pedagogical purpose.
    • Inas Ayyoub
       
      This remindes me of the first time stuents at my school started using powerpoints to make presentations and how exciting it was for them to see thier classmates ideas presented in front of them this way. Over using this and without really integraing sth new than their words written, showed boredom and disinterest later! So teachers should think here of using technology in a different way like turning the lesson into a digital story or using technology differently ! Being unexpected in the way you use technology in the classrooom, would make them always eager to learn and excited about it!!!
  • ...4 more annotations...
  • Today, these tools still provide middle school teachers with vehicles to enlarge their students' learning. Math and science problem sets are embedded in authentic stories that students understand because the stories reflect their everyday experiences. These authentic problem-solving exercises not only engage students in their learning but also stimulate them to want to learn more.
  • From the beginning, however, a problem arose in that those middle school students went on to high schools and later to colleges that did not (and do not) provide this type of rich learning experience—a learning experience that can best be achieved when technology is used in the service of learning.
  • Students need mastery in areas that include knowledge of human imagination and expression, global and cross-cultural communities, and modeling the natural world.
  • The assignment could take on a deeper dimension by using videoconferencing and e-mail to link teams to students living in the countries of origin of the groups being studied. Integrating real-time global experiences into the classroom can provide a new, first-person information source and engender debate about the validity of various sources of information used in conducting research.
    • Chenwen Hong
       
      I guess the project, with the Peace Corp., we saw during last Friday's session is the best example of technology engaging students with course materials by iintegrating real-time experiences with classroom studies.
Barbara Lindsey

iPads for College Classrooms? Not So Fast, Some Professors Say. - Technology - The Chro... - 3 views

  • But Mr. Steinhaus and other administrators soon realized that the iPad, with the slow finger-typing it requires, actually makes written course work more difficult, and that the devices wouldn't run all of the university's applications.
  • When the University of Notre Dame tested iPads in a management class, students said the finger-based interface on its glassy surface was not good for taking class notes and didn't allow them to mark up readings. For their online final exam, 39 of the 40 students put away their iPads in favor a laptop, because of concerns that the Apple tablet might not save their material.
  • iPads also foster collaboration. Students using them for group assignments in a math class at Pepperdine University were more in sync than were students in a section not using iPads. The iPad-equipped students worked at the same pace as one another and shared their screens to help one another solve tough problems, says Dana Hoover, assistant chief information officer for communications and planning.
  • ...4 more annotations...
  • At Reed College, having all the texts available in a political-science class on the iPad meant it was easier to refer to readings and pull in outside material for discussion, says Martin Ringle, the college's chief technology officer.
  • Course readings were converted to PDF's at Reed, which allowed students to mark them up using an application called iAnnotate, but Mr. Ringle acknowledges that this wouldn't work for all classes, because many texts can't easily be converted to PDF's, and many electronic textbooks don't allow annotation.
  • While Apple has promoted the iPad's ability to change learning, Ms. Simon says that as far as she knows, the company isn't working with leaders in the learning process: professors themselves.
  • but consumer decisions rather than educational ones will probably determine which tablets students purchase—and which ones colleges will support, he says.
    • Barbara Lindsey
       
      Should this concern us? Does this happen with technology in general?
1 - 9 of 9
Showing 20 items per page