Skip to main content

Home/ Artificial Intelligence Research/ Group items tagged MIT

Rss Feed Group items tagged

1More

Being No One - The MIT Press - 0 views

  •  
    According to Thomas Metzinger, no such things as selves exist in the world: nobody ever had or was a self. All that exists are phenomenal selves, as they appear in conscious experience. The phenomenal self, however, is not a thing but an ongoing process; it is the content of a "transparent self-model." In Being No One, Metzinger, a German philosopher, draws strongly on neuroscientific research to present a representationalist and functional analysis of what a consciously experienced first-person perspective actually is. Building a bridge between the humanities and the empirical sciences of the mind, he develops new conceptual toolkits and metaphors; uses case studies of unusual states of mind such as agnosia, neglect, blindsight, and hallucinations; and offers new sets of multilevel constraints for the concept of consciousness. Metzinger's central question is: How exactly does strong, consciously experienced subjectivity emerge out of objective events in the natural world? His epistemic goal is to determine whether conscious experience, in particular the experience of being someone that results from the emergence of a phenomenal self, can be analyzed on subpersonal levels of description. He also asks if and how our Cartesian intuitions that subjective experiences as such can never be reductively explained are themselves ultimately rooted in the deeper representational structure of our conscious minds.
1More

Aigur.dev - A free and opensource (MIT) library to compose and invoke fully typed Gener... - 0 views

  •  
    Aigur.dev: A free and opensource (MIT) library to compose and invoke fully typed Generative Artificial Intelligence pipelines (client.aigur.dev). Aigur.dev: Library to compose generative Artificial Intelligence pipelines (client.aigur.dev).
9More

Mapping the brain - MIT news - 2 views

  • To find connectomes, researchers will need to employ vast computing power to process images of the brain. But first, they need to teach the computers what to look for.
  • to manually trace connections between neurons
  • want to speed up the process dramatically by enlisting the help of high-powered computers.
  • ...5 more annotations...
  • To do that, they are teaching the computers to analyze the brain slices, using a common computer science technique called automated machine learning, which allows computers to change their behavior in response to new data.
  • With machine learning, the researchers teach computers to learn by example. They feed their computer electron micrographs as well as human tracings of these images. The computer then searches for an algorithm that allows it to imitate human performance.
  • Their eventual goal is to use computers to process the bulk of the images needed to create connectomes, but they expect that humans will still need to proofread the computers’ work.
  • Last year, the National Institutes of Health announced a five-year, $30 million Human Connectome Project to develop new techniques to figure out the connectivity of the human brain. That project is focused mainly on higher level, region-to-region connections. Sporns says he believes that a good draft of higher-level connections could be achieved within the five-year timeline of the NIH project, and that significant progress will also be made toward a neuron-to-neuron map.
    • Matvey Ezhov
       
      draft of human connectome within five years
  • Though only a handful of labs around the world are working on the connectome right now, Jain and Turaga expect that to change as tools for diagramming the brain improve. “It’s a common pattern in neuroscience: A few people will come up with new technology and pioneer some applications, and then everybody else will start to adopt it,” says Jain.
4More

Time-keeping Brain Neurons Discovered - 3 views

  • An MIT team led by Institute Professor Ann Graybiel has found groups of neurons in the primate brain that code time with extreme precision.
  • The neurons are located in the prefrontal cortex and the striatum, both of which play important roles in learning, movement and thought control.
  • The research team trained two macaque monkeys to perform a simple eye-movement task. After receiving the "go" signal, the monkeys were free to perform the task at their own speed. The researchers found neurons that consistently fired at specific times -- 100 milliseconds, 110 milliseconds, 150 milliseconds and so on -- after the "go" signal.
  •  
    Its would be difficult, if neurons of that kind have not be discovered. Obliviously, we have millions of it in our brains. For make time-keeping neurons we need (in simplest case) only 2 neurons with reciprocal connections. More units in circle - more time to delay - more time to "keep". Also, not single "time keeping neurons" but time keeping circles. Such clear understating of processes on neuronal level is completely impossible without Brainbug play experience. Think about it!
1 - 7 of 7
Showing 20 items per page