Skip to main content

Home/ Advanced Concepts Team/ Group items matching "e-learning" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
LeopoldS

physicists explain what AI researchers are actually doing - 5 views

  •  
    love this one ... it seems to take physicist to explain to the AI crowd what they are actually doing ... Deep learning is a broad set of techniques that uses multiple layers of representation to automatically learn relevant features directly from structured data. Recently, such techniques have yielded record-breaking results on a diverse set of difficult machine learning tasks in computer vision, speech recognition, and natural language processing. Despite the enormous success of deep learning, relatively little is understood theoretically about why these techniques are so successful at feature learning and compression. Here, we show that deep learning is intimately related to one of the most important and successful techniques in theoretical physics, the renormalization group (RG). RG is an iterative coarse-graining scheme that allows for the extraction of relevant features (i.e. operators) as a physical system is examined at different length scales. We construct an exact mapping from the variational renormalization group, first introduced by Kadanoff, and deep learning architectures based on Restricted Boltzmann Machines (RBMs). We illustrate these ideas using the nearest-neighbor Ising Model in one and two-dimensions. Our results suggests that deep learning algorithms may be employing a generalized RG-like scheme to learn relevant features from data.
tvinko

Massively collaborative mathematics : Article : Nature - 28 views

  •  
    peer-to-peer theorem-proving
  • ...14 more comments...
  •  
    Or: mathematicians catch up with open-source software developers :)
  •  
    "Similar open-source techniques could be applied in fields such as [...] computer science, where the raw materials are informational and can be freely shared online." ... or we could reach the point, unthinkable only few years ago, of being able to exchange text messages in almost real time! OMG, think of the possibilities! Seriously, does the author even browse the internet?
  •  
    I do not agree with you F., you are citing out of context! Sharing messages does not make a collaboration, nor does a forum, .... You need a set of rules and a common objective. This is clearly observable in "some team", where these rules are lacking, making team work inexistent. The additional difficulties here are that it involves people that are almost strangers to each other, and the immateriality of the project. The support they are using (web, wiki) is only secondary. What they achieved is remarkable, disregarding the subject!
  •  
    I think we will just have to agree to disagree then :) Open source developers have been organizing themselves with emails since the early '90s, and most projects (e.g., the Linux kernel) still do not use anything else today. The Linux kernel mailing list gets around 400 messages per day, and they are managing just fine to scale as the number of contributors increases. I agree that what they achieved is remarkable, but it is more for "what" they achieved than "how". What they did does not remotely qualify as "massively" collaborative: again, many open source projects are managed collaboratively by thousands of people, and many of them are in the multi-million lines of code range. My personal opinion of why in the scientific world these open models are having so many difficulties is that the scientific community today is (globally, of course there are many exceptions) a closed, mostly conservative circle of people who are scared of changes. There is also the fact that the barrier of entry in a scientific community is very high, but I think that this should merely scale down the number of people involved and not change the community "qualitatively". I do not think that many research activities are so much more difficult than, e.g., writing an O(1) scheduler for an Operating System or writing a new balancing tree algorithm for efficiently storing files on a filesystem. Then there is the whole issue of scientific publishing, which, in its current form, is nothing more than a racket. No wonder traditional journals are scared to death by these open-science movements.
  •  
    here we go ... nice controversy! but maybe too many things mixed up together - open science journals vs traditional journals, conservatism of science community wrt programmers (to me one of the reasons for this might be the average age of both groups, which is probably more than 10 years apart ...) and then using emailing wrt other collaboration tools .... .... will have to look at the paper now more carefully ... (I am surprised to see no comment from José or Marek here :-)
  •  
    My point about your initial comment is that it is simplistic to infer that emails imply collaborative work. You actually use the word "organize", what does it mean indeed. In the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review). Mailing is just a coordination mean. In collaborations and team work, it is about rules, not only about the technology you use to potentially collaborate. Otherwise, all projects would be successful, and we would noy learn management at school! They did not write they managed the colloboration exclusively because of wikipedia and emails (or other 2.0 technology)! You are missing the part that makes it successful and remarkable as a project. On his blog the guy put a list of 12 rules for this project. None are related to emails, wikipedia, forums ... because that would be lame and your comment would make sense. Following your argumentation, the tools would be sufficient for collaboration. In the ACT, we have plenty of tools, but no team work. QED
  •  
    the question on the ACT team work is one that is coming back continuously and it always so far has boiled down to the question of how much there need and should be a team project to which everybody inthe team contributes in his / her way or how much we should leave smaller, flexible teams within the team form and progress, more following a bottom-up initiative than imposing one from top-down. At this very moment, there are at least 4 to 5 teams with their own tools and mechanisms which are active and operating within the team. - but hey, if there is a real will for one larger project of the team to which all or most members want to contribute, lets go for it .... but in my view, it should be on a convince rather than oblige basis ...
  •  
    It is, though, indicative that some of the team member do not see all the collaboration and team work happening around them. We always leave the small and agile sub-teams to form and organize themselves spontaneously, but clearly this method leaves out some people (be it for their own personal attitude or be it for pure chance) For those cases which we could think to provide the possibility to participate in an alternative, more structured, team work where we actually manage the hierachy, meritocracy and perform the project review (to use Joris words).
  •  
    I am, and was, involved in "collaboration" but I can say from experience that we are mostly a sum of individuals. In the end, it is always one or two individuals doing the job, and other waiting. Sometimes even, some people don't do what they are supposed to do, so nothing happens ... this could not be defined as team work. Don't get me wrong, this is the dynamic of the team and I am OK with it ... in the end it is less work for me :) team = 3 members or more. I am personally not looking for a 15 member team work, and it is not what I meant. Anyway, this is not exactly the subject of the paper.
  •  
    My opinion about this is that a research team, like the ACT, is a group of _people_ and not only brains. What I mean is that people have feelings, hate, anger, envy, sympathy, love, etc about the others. Unfortunately(?), this could lead to situations, where, in theory, a group of brains could work together, but not the same group of people. As far as I am concerned, this happened many times during my ACT period. And this is happening now with me in Delft, where I have the chance to be in an even more international group than the ACT. I do efficient collaborations with those people who are "close" to me not only in scientific interest, but also in some private sense. And I have people around me who have interesting topics and they might need my help and knowledge, but somehow, it just does not work. Simply lack of sympathy. You know what I mean, don't you? About the article: there is nothing new, indeed. However, why it worked: only brains and not the people worked together on a very specific problem. Plus maybe they were motivated by the idea of e-collaboration. No revolution.
  •  
    Joris, maybe I made myself not clear enough, but my point was only tangentially related to the tools. Indeed, it is the original article mention of "development of new online tools" which prompted my reply about emails. Let me try to say it more clearly: my point is that what they accomplished is nothing new methodologically (i.e., online collaboration of a loosely knit group of people), it is something that has been done countless times before. Do you think that now that it is mathematicians who are doing it makes it somehow special or different? Personally, I don't. You should come over to some mailing lists of mathematical open-source software (e.g., SAGE, Pari, ...), there's plenty of online collaborative research going on there :) I also disagree that, as you say, "in the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review)". First of all I think the main engine of any collaboration like this is the objective, i.e., wanting to get something done. Rules emerge from self-organization later on, and they may be completely different from project to project, ranging from almost anarchy to BDFL (benevolent dictator for life) style. Given this kind of variety that can be observed in open-source projects today, I am very skeptical that any kind of management rule can be said to be universal (and I am pretty sure that the overwhelming majority of project organizers never went to any "management school"). Then there is the social aspect that Tamas mentions above. From my personal experience, communities that put technical merit above everything else tend to remain very small and generally become irrelevant. The ability to work and collaborate with others is the main asset the a participant of a community can bring. I've seen many times on the Linux kernel mailing list contributions deemed "technically superior" being disregarded and not considered for inclusion in the kernel because it was clear that
  •  
    hey, just catched up the discussion. For me what is very new is mainly the framework where this collaborative (open) work is applied. I haven't seen this kind of working openly in any other field of academic research (except for the Boinc type project which are very different, because relying on non specialists for the work to be done). This raise several problems, and mainly the one of the credit, which has not really been solved as I read in the wiki (is an article is written, who writes it, what are the names on the paper). They chose to refer to the project, and not to the individual researchers, as a temporary solution... It is not so surprising for me that this type of work has been first done in the domain of mathematics. Perhaps I have an ideal view of this community but it seems that the result obtained is more important than who obtained it... In many areas of research this is not the case, and one reason is how the research is financed. To obtain money you need to have (scientific) credit, and to have credit you need to have papers with your name on it... so this model of research does not fit in my opinion with the way research is governed. Anyway we had a discussion on the Ariadnet on how to use it, and one idea was to do this kind of collaborative research; idea that was quickly abandoned...
  •  
    I don't really see much the problem with giving credit. It is not the first time a group of researchers collectively take credit for a result under a group umbrella, e.g., see Nicolas Bourbaki: http://en.wikipedia.org/wiki/Bourbaki Again, if the research process is completely transparent and publicly accessible there's no way to fake contributions or to give undue credit, and one could cite without problems a group paper in his/her CV, research grant application, etc.
  •  
    Well my point was more that it could be a problem with how the actual system works. Let say you want a grant or a position, then the jury will count the number of papers with you as a first author, and the other papers (at least in France)... and look at the impact factor of these journals. Then you would have to set up a rule for classifying the authors (endless and pointless discussions), and give an impact factor to the group...?
  •  
    it seems that i should visit you guys at estec... :-)
  •  
    urgently!! btw: we will have the ACT christmas dinner on the 9th in the evening ... are you coming?
Dario Izzo

Stacked Approximated Regression Machine: A Simple Deep Learning Approach - 5 views

  •  
    from one of the reddit threads discussing this: "bit fishy, crazy if real". "Incredible claims: - Train only using about 10% of imagenet-12, i.e. around 120k images (i.e. they use 6k images per arm) - get to the same or better accuracy as the equivalent VGG net - Training is not via backprop but more simpler PCA + Sparsity regime (see section 4.1), shouldn't take more than 10 hours just on CPU probably "
  •  
    clicking the link says the manuscript was withdrawn :))
  •  
    This "one-shot learning" paper by Googe Deepmind also claims to be able to learn from very few training data. Thought it might be interesting for you guys: https://arxiv.org/pdf/1605.06065v1.pdf
jcunha

When AI is made by AI, results are impressive - 6 views

  •  
    This has been around for over a year. The current trend in deep learning is "deeper is better". But a consequence of this is that for a given network depth, we can only feasibly evaluate a tiny fraction of the "search space" of NN architectures. The current approach to choosing a network architecture is to iteratively add more layers/units and keeping the architecture which gives an increase in the accuracy on some held-out data set i.e. we have the following information: {NN, accuracy}. Clearly, this process can be automated by using the accuracy as a 'signal' to a learning algorithm. The novelty in this work is they use reinforcement learning with a recurrent neural network controller which is trained by a policy gradient - a gradient-based method. Previously, evolutionary algorithms would typically be used. In summary, yes, the results are impressive - BUT this was only possible because they had access to Google's resources. An evolutionary approach would probably end up with the same architecture - it would just take longer. This is part of a broader research area in deep learning called 'meta-learning' which seeks to automate all aspects of neural network training.
  •  
    Btw that techxplore article was cringing to read - if interested read this article instead: https://research.googleblog.com/2017/05/using-machine-learning-to-explore.html
Dario Izzo

Bold title ..... - 3 views

  •  
    I got a fever. And the only prescription is more cat faces! ...../\_/\ ...(=^_^) ..\\(___) The article sounds quite interesting, though. I think the idea of a "fake" agent that tries to trick the classifier while both co-evolve is nice as it allows the classifier to first cope with the lower order complexity of the problem. As the fake agent mimics the real agent better and better the classifier has time to add complexity to itself instead of trying to do it all at once. It would be interesting if this is later reflected in the neural nets structure, i.e. having core regions that deal with lower order approximation / classification and peripheral regions (added at a later stage) that deal with nuances as they become apparent. Also this approach will develop not just a classifier for agent behavior but at the same time a model of the same. The later may be useful in itself and might in same cases be the actual goal of the "researcher". I suspect, however, that the problem of producing / evolving the "fake agent" model might in most case be at least as hard as producing a working classifier...
  •  
    This paper from 2014 seems discribe something pretty similar (except for not using physical robots, etc...): https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
  •  
    Yes, this IS basically adversarial learning. Except the generator part instead of being a neural net is some kind of swarm parametrization. I just love how they rebranded it, though. :))
Guido de Croon

Will robots be smarter than humans by 2029? - 2 views

  •  
    Nice discussion about the singularity. Made me think of drinking coffee with Luis... It raises some issues such as the necessity of embodiment, etc.
  • ...9 more comments...
  •  
    "Kurzweilians"... LOL. Still not sold on embodiment, btw.
  •  
    The biggest problem with embodiment is that, since the passive walkers (with which it all started), it hasn't delivered anything really interesting...
  •  
    The problem with embodiment is that it's done wrong. Embodiment needs to be treated like big data. More sensors, more data, more processing. Just putting a computer in a robot with a camera and microphone is not embodiment.
  •  
    I like how he attacks Moore's Law. It always looks a bit naive to me if people start to (ab)use it to make their point. No strong opinion about embodiment.
  •  
    @Paul: How would embodiment be done RIGHT?
  •  
    Embodiment has some obvious advantages. For example, in the vision domain many hard problems become easy when you have a body with which you can take actions (like looking at an object you don't immediately recognize from a different angle) - a point already made by researchers such as Aloimonos.and Ballard in the end 80s / beginning 90s. However, embodiment goes further than gathering information and "mental" recognition. In this respect, the evolutionary robotics work by for example Beer is interesting, where an agent discriminates between diamonds and circles by avoiding one and catching the other, without there being a clear "moment" in which the recognition takes place. "Recognition" is a behavioral property there, for which embodiment is obviously important. With embodiment the effort for recognizing an object behaviorally can be divided between the brain and the body, resulting in less computation for the brain. Also the article "Behavioural Categorisation: Behaviour makes up for bad vision" is interesting in this respect. In the field of embodied cognitive science, some say that recognition is constituted by the activation of sensorimotor correlations. I wonder to which extent this is true, and if it is valid for extremely simple creatures to more advanced ones, but it is an interesting idea nonetheless. This being said, if "embodiment" implies having a physical body, then I would argue that it is not a necessary requirement for intelligence. "Situatedness", being able to take (virtual or real) "actions" that influence the "inputs", may be.
  •  
    @Paul While I completely agree about the "embodiment done wrong" (or at least "not exactly correct") part, what you say goes exactly against one of the major claims which are connected with the notion of embodiment (google for "representational bottleneck"). The fact is your brain does *not* have resources to deal with big data. The idea therefore is that it is the body what helps to deal with what to a computer scientist appears like "big data". Understanding how this happens is key. Whether it is the problem of scale or of actually understanding what happens should be quite conclusively shown by the outcomes of the Blue Brain project.
  •  
    Wouldn't one expect that to produce consciousness (even in a lower form) an approach resembling that of nature would be essential? All animals grow from a very simple initial state (just a few cells) and have only a very limited number of sensors AND processing units. This would allow for a fairly simple way to create simple neural networks and to start up stable neural excitation patterns. Over time as complexity of the body (sensors, processors, actuators) increases the system should be able to adapt in a continuous manner and increase its degree of self-awareness and consciousness. On the other hand, building a simulated brain that resembles (parts of) the human one in its final state seems to me like taking a person who is just dead and trying to restart the brain by means of electric shocks.
  •  
    Actually on a neuronal level all information gets processed. Not all of it makes it into "conscious" processing or attention. Whatever makes it into conscious processing is a highly reduced representation of the data you get. However that doesn't get lost. Basic, low processed data forms the basis of proprioception and reflexes. Every step you take is a macro command your brain issues to the intricate sensory-motor system that puts your legs in motion by actuating every muscle and correcting every step deviation from its desired trajectory using the complicated system of nerve endings and motor commands. Reflexes which were build over the years, as those massive amounts of data slowly get integrated into the nervous system and the the incipient parts of the brain. But without all those sensors scattered throughout the body, all the little inputs in massive amounts that slowly get filtered through, you would not be able to experience your body, and experience the world. Every concept that you conjure up from your mind is a sort of loose association of your sensorimotor input. How can a robot understand the concept of a strawberry if all it can perceive of it is its shape and color and maybe the sound that it makes as it gets squished? How can you understand the "abstract" notion of strawberry without the incredibly sensible tactile feel, without the act of ripping off the stem, without the motor action of taking it to our mouths, without its texture and taste? When we as humans summon the strawberry thought, all of these concepts and ideas converge (distributed throughout the neurons in our minds) to form this abstract concept formed out of all of these many many correlations. A robot with no touch, no taste, no delicate articulate motions, no "serious" way to interact with and perceive its environment, no massive flow of information from which to chose and and reduce, will never attain human level intelligence. That's point 1. Point 2 is that mere pattern recogn
  •  
    All information *that gets processed* gets processed but now we arrived at a tautology. The whole problem is ultimately nobody knows what gets processed (not to mention how). In fact an absolute statement "all information" gets processed is very easy to dismiss because the characteristics of our sensors are such that a lot of information is filtered out already at the input level (e.g. eyes). I'm not saying it's not a valid and even interesting assumption, but it's still just an assumption and the next step is to explore scientifically where it leads you. And until you show its superiority experimentally it's as good as all other alternative assumptions you can make. I only wanted to point out is that "more processing" is not exactly compatible with some of the fundamental assumptions of the embodiment. I recommend Wilson, 2002 as a crash course.
  •  
    These deal with different things in human intelligence. One is the depth of the intelligence (how much of the bigger picture can you see, how abstract can you form concept and ideas), another is the breadth of the intelligence (how well can you actually generalize, how encompassing those concepts are and what is the level of detail in which you perceive all the information you have) and another is the relevance of the information (this is where the embodiment comes in. What you do is to a purpose, tied into the environment and ultimately linked to survival). As far as I see it, these form the pillars of human intelligence, and of the intelligence of biological beings. They are quite contradictory to each other mainly due to physical constraints (such as for example energy usage, and training time). "More processing" is not exactly compatible with some aspects of embodiment, but it is important for human level intelligence. Embodiment is necessary for establishing an environmental context of actions, a constraint space if you will, failure of human minds (i.e. schizophrenia) is ultimately a failure of perceived embodiment. What we do know is that we perform a lot of compression and a lot of integration on a lot of data in an environmental coupling. Imo, take any of these parts out, and you cannot attain human+ intelligence. Vary the quantities and you'll obtain different manifestations of intelligence, from cockroach to cat to google to random quake bot. Increase them all beyond human levels and you're on your way towards the singularity.
Ma Ru

Learn to dock ATV the astronaut way - 3 views

  •  
    "Two sets of [ ATV docking training for astronauts ] lessons are now available for the home user to try." And in case you wonder *where* in the earth are they available, the links are on the right-hand column (also known as ESA's scorn on usability). As usual for the material located there, I took me a few minutes to find them...
  •  
    Well I tried and could not locate the app to download from these links and sent them a feedback on what I thought a wrong error - though the email bounced :-) So, what is the right link to the app then?
  •  
    Leo, I'm not iEnabled, so I can't help you with the app. Using other links you can try the PC version (so 20th-century-ish, I know), of course assuming you have somewhere one with Internet Explorer :-)
Francesco Biscani

STLport: An Interview with A. Stepanov - 2 views

  • Generic programming is a programming method that is based in finding the most abstract representations of efficient algorithms.
  • I spent several months programming in Java.
  • for the first time in my life programming in a new language did not bring me new insights
  • ...2 more annotations...
  • it has no intellectual value whatsoever
  • Java is clearly an example of a money oriented programming (MOP).
  •  
    One of the authors of the STL (C++'s Standard Template Library) explains generic programming and slams Java.
  • ...6 more comments...
  •  
    "Java is clearly an example of a money oriented programming (MOP)." Exactly. And for the industry it's the money that matters. Whatever mathematicians think about it.
  •  
    It is actually a good thing that it is "MOP" (even though I do not agree with this term): that is what makes it inter-operable, light and easy to learn. There is no point in writing fancy codes, if it does not bring anything to the end-user, but only for geeks to discuss incomprehensible things in forums. Anyway, I am pretty sure we can find a Java guy slamming C++ ;)
  •  
    Personally, I never understood what the point of Java is, given that: 1) I do not know of any developer (maybe Marek?) that uses it for intellectual pleasure/curiosity/fun whatever, given the possibility of choice - this to me speaks loudly on the objective qualities of the language more than any industrial-corporate marketing bullshit (for the record, I argue that Python is more interoperable, lighter and easier to learn than Java - which is why, e.g., Google is using it heavily); 2) I have used a software developed in Java maybe a total of 5 times on any computer/laptop I owned over 15 years. I cannot name of one single Java project that I find necessary or even useful; for my usage of computers, Java could disappear overnight without even noticing. Then of course one can argue as much as one wants about the "industry choosing Java", to which I would counterargue with examples of industry doing stupid things and making absurd choices. But I suppose it would be a kind of pointless discussion, so I'll just stop here :)
  •  
    "At Google, python is one of the 3 "official languages" alongside with C++ and Java". Java runs everywhere (the byte code itself) that is I think the only reason it became famous. Python, I guess, is more heavy if it were to run on your web browser! I think every language has its pros and cons, but I agree Java is not the answer to everything... Java is used in MATLAB, some web applications, mobile phones apps, ... I would be a bit in trouble if it were to disappear today :(
  •  
    I personally do not believe in interoperability :)
  •  
    Well, I bet you'd notice an overnight disappearance of java, because half of the internet would vanish... J2EE technologies are just omnipresent there... I'd rather not even *think* about developing a web application/webservice/web-whatever in standard C++... is it actually possible?? Perhaps with some weird Microsoft solutions... I bet your bank online services are written in Java. Certainly not in PHP+MySQL :) Industry has chosen Java not because of industrial-corporate marketing bullshit, but because of economics... it enables you develop robustly, reliably, error-prone, modular, well integrated etc... software. And the costs? Well, using java technologies you can set-up enterprise-quality web application servers, get a fully featured development environment (which is better than ANY C/C++/whatever development environment I've EVER seen) at the cost of exactly 0 (zero!) USD/GBP/EUR... Since many years now, the central issue in software development is not implementing algorithms, it's building applications. And that's where Java outperforms many other technologies. The final remark, because I may be mistakenly taken for an apostle of Java or something... I love the idea of generic programming, C++ is my favourite programming language (and I used to read Stroustroup before sleep), at leisure time I write programs in Python... But if I were to start a software development company, then, apart from some very niche applications like computer games, it most probably would use Java as main technology.
  •  
    "I'd rather not even *think* about developing a web application/webservice/web-whatever in standard C++... is it actually possible?? Perhaps with some weird Microsoft solutions... I bet your bank online services are written in Java. Certainly not in PHP+MySQL :)" Doing in C++ would be awesomely crazy, I agree :) But as I see it there are lots of huge websites that operate on PHP, see for instance Facebook. For the banks and the enterprise market, as a general rule I tend to take with a grain of salt whatever spin comes out from them; in the end behind every corporate IT decision there is a little smurf just trying to survive and have the back covered :) As they used to say in the old times, "No one ever got fired for buying IBM". "Industry has chosen Java not because of industrial-corporate marketing bullshit, but because of economics... it enables you develop robustly, reliably, error-prone, modular, well integrated etc... software. And the costs? Well, using java technologies you can set-up enterprise-quality web application servers, get a fully featured development environment (which is better than ANY C/C++/whatever development environment I've EVER seen) at the cost of exactly 0 (zero!) USD/GBP/EUR... Since many years now, the central issue in software development is not implementing algorithms, it's building applications. And that's where Java outperforms many other technologies." Apart from the IDE considerations (on which I cannot comment, since I'm not a IDE user myself), I do not see how Java beats the competition in this regard (again, Python and the huge software ecosystem surrounding it). My impression is that Java's success is mostly due to Sun pushing it like there is no tomorrow and bundling it with their hardware business.
  •  
    OK, I think there is a bit of everything, wrong and right, but you have to acknowledge that Python is not always the simplest. For info, Facebook uses Java (if you upload picture for instance), and PHP is very limited. So definitely, in company, engineers like you and me select the language, it is not a marketing or political thing. And in the case of fb, they come up with the conclusion that PHP, and Java don't do everything but complement each other. As you say Python as many things around, but it might be too much for simple applications. Otherwise, I would seriously be interested by a study of how to implement a Python-like system on-board spacecrafts and what are the advantages over mixing C, Ada and Java.
Francesco Biscani

The End Of Gravity As a Fundamental Force - 6 views

  •  
    "At a symposium at the Dutch Spinoza-instituut on 8 December, 2009, string theorist Erik Verlinde introduced a theory that derives Newton's classical mechanics. In his theory, gravity exists because of a difference in concentration of information in the empty space between two masses and its surroundings. He does not consider gravity as fundamental, but as an emergent phenomenon that arises from a deeper microscropic reality. A relativistic extension of his argument leads directly to Einstein's equations."
  • ...8 more comments...
  •  
    Diffcult for me to fully understand / believe in the holographic principle at macroscopical scales ... potentially it looks though as a revolutionary idea.....
  •  
    never heard about it... seems interesting. At first sight it seems that it is based on fundamental principle that could lead to a new phenomenology, so that could be tested. Perhaps Luzi knows more about this ? Did we ever work on this concept ?
  •  
    The paper is quite long and I don't have the time right now to read it in detail. Just a few comments: * We (ACT) definitely never did anything in this direction? But: is there a new phenomenology? I'm not sure, if the aim is just to get Einstein's theory as emergent theory, then GR should not change (or only change in extreme conditions.) * Emergent gravity is not new, also Erik admits that. The claim to have found a solution appears quite frequently, but most proposals actually are not emergent at all. At least, I have the impression that Erik is aware of the relevant steps to be performed. * It's very difficult to judge from a short glance at the paper, up to which point the claims are serious and where it just starts to be advertisments. Section 6 is pretty much a collection of self-praise. * Most importantly: I don't understand how exactly space and time should be emergent. I think it's not new to observe that space is related to special canonical variables in thermodynamics. If anybody can see anything "emergent" in the first paragraphs of section 3, then please explain me. For me, this is not emergent space, but space introduced with a "sledge hammer." Time anyway seems to be a precondition, else there is nothing like energy and nothing like dynamics. * Finally, holography appears to be a precondition, to my knowledge no proof exists that normal (non-supersymmetric, non-stringy, non-whatever) GR has a holographic dual.
  •  
    Update: meanwhile I understood roughly what this should be about. It's well known that BH physics follow the laws of theormodynamics, suggesting the existence of underlying microstates. But if this is true, shouldn't the gravitational force then be emergent from these microstates in the same way as any theromdynamical effect is emergent from the behavior of its constituents (e.g. a gas)? If this can be prooven, then indeed gravity is emergent. Problem: one has to proof that *any* configuration in GR may be interpreted as thermodynamical, not just BHs. That's probably where holography comes into the play. To me this smells pretty much like N=4 SYM vs. QCD. The former is not QCD, but can be solved, so all stringy people study just that one and claim to learn something about QCD. Here, we look at holographic models, GR is not holographic, but who cares... Engineering problems...
  •  
    is there any experimental or observational evidence that points to this "solution"?
  •  
    Are you joking??? :D
  •  
    I was a bit fast to say it could be tested... apparently we don't even know a theory that is holographic, perhaps a string theory (see http://arxiv.org/abs/hep-th/9409089v2). So very far from any test...
  •  
    Luzi, I miss you!!!
  •  
    Leo, do you mean you liked my comment on your question more than Pacome's? Well, the ACT has to evolve and fledge, so no bullshitting anymore, but serious and calculating answers... :-) Sorry Pacome, nothing against you!! I just LOVE this Diigo because it gives me the opportunity for a happy revival of my ACT mood.
  •  
    haha, today would have been great to show your mood... we had a talk on the connection between mind and matter !!
Luís F. Simões

Bitcoin P2P Currency: The Most Dangerous Project We've Ever Seen - 10 views

  • After month of research and discovery, we’ve learned the following:1. Bitcoin is a technologically sound project.2. Bitcoin is unstoppable without end-user prosecution.3. Bitcoin is the most dangerous open-source project ever created.4. Bitcoin may be the most dangerous technological project since the internet itself.5. Bitcoin is a political statement by technotarians (technological libertarians).*6. Bitcoins will change the world unless governments ban them with harsh penalties.
  • The benefits of a currency like this:a) Your coins can’t be frozen (like a Paypal account can be)b) Your coins can’t be trackedc) Your coins can’t be taxedd) Transaction costs are extremely low (sorry credit card companies)
  • An individual with the name -- or perhaps handle -- of Satoshi Nakamoto first wrote about bitcoins in a paper called Bitcoin: A Peer-to-Peer Electronic Cash System.
  • ...1 more annotation...
  • * We made this term up to describe the “good people” of the internet who believe in the fundamental rights of individuals to be free, have free speech, fight hypocrisy and stand behind logic, technology and science over religion, political structure and tradition. These are the people who build and support things like Wikileaks, Anonymous, Linux and Wikipedia. They think that people can, and should, govern themselves. They are against external forms of control such as DRM, laws that are bought and sold by lobbyists, and religions like Scientology. They include splinter groups that enforce these ideals in the form of hacktivism, such as the takedown of the Sony Playstation Network after Sony tried to prosecute a hacker for unlocking its console.
  •  
    Sounds good!
  • ...9 more comments...
  •  
    wow it's frigthening! it's the dream of every anarchist, every drug, arm, human dealer! the world made as a global fiscal paradise... the idea is clever however it will not replace real money because 1 - no one will build a fortune on bitcoin if a technological breakthrough can ruin them 2 - government never allowed parallel money to flourish on their territory, so it will be almost impossible to change bitcoin against euros or dollars
  •  
    interesting stuff anyone read cryptonomicon by neal stephenson? similar theme.
  •  
    :) yes. One of the comments on reddit was precisely drawing the parallels with Neal Stephenson's Snowcrash / Diamond Age / Cryptonomicon. Interesting stuff indeed. It has a lot of potential for misuse, but also opens up new possibilities. We've discussed recently how emerging technologies will drive social change. Whether it's the likes of NSA / CIA who will benefit the most from the Twitters, Facebooks and so on, by gaining greater power for control, or whether individuals are being empowered to at least an identical degree. We saw last year VISA / PayPal censoring WikiLeaks... Well, here's a way for any individual to support such an organization, in a fully anonymous and uncontrollable way...
  •  
    One of my colleagues has made a nice, short write-up about BitCoin: http://www.pds.ewi.tudelft.nl/~victor/bitcoin.html
  •  
    very nice analysis indeed - thanks Tamas for sharing it!
  •  
    mmm I'm not an expert but it seemed to me that, even if these criticisms are true, there is one fundamental difference between the money you exchange on internet via your bank, and bitcoins. The first one is virtual money and the second one aims at being real, physical, money, even if digital, in the same way as banknotes, coins, or gold.
  •  
    An algorithm wanna-be central bank issuing untraceable tax free money between internet users? not more likely than the end of the world supposed to take place tomorrow, in my opinion. Algorithms don't usually assault women though !:P
  •  
    well, most money is anyway just virtual and only based on expectations and trust ... (see e.g. http://en.wikipedia.org/wiki/Money_supply) and thus if people trust that this "money" has some value in the sense that they can get something of value to them in exchange, then not much more is needed it seems to me ...
  •  
    @Leopold: ok let's use the rigth words then. Bitcoin aim at being a currency ("physical objects generally accepted as a medium of exchange" from wikipedia), different than the "demand deposit". In the article proposed by Tamas he compares what cannot be compared (currencies, demand deposits and their mean of exchange). The interesting question is wether one can create a digital currency which is too difficult to counterfeit. As far as I know, there is no existing digital currency except this bitcoins (and maybe the currencies from games as second life and others, but which are of limited use in real world).
  •  
    well of course money is trust, and even more loans and credit and even more stock and bond markets. It all represents trust and expectations. However since the first banks 500 years ago and the first loans etc. etc., and as well the fact that bonds and currencies bring down whole countries (Greece lately), and are mainly controlled by large financial centres and (central) banks, banks have always been on the winning side no matter what and that isn't going to change easily. So if you are talking about these new currencies it would be a new era, not just a new currency. So should Greece convert its debt to bitcoins ;P ?
  •  
    well, from 1936 to 1993 the central bank of france was owned by the state and was supposed to serve the general interest...
1 - 10 of 10
Showing 20 items per page