Skip to main content

Home/ Advanced Concepts Team/ Group items tagged actuator

Rss Feed Group items tagged

ESA ACT

Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles -- Aliev et al. 323 (5921): ... - 0 views

  •  
    Looks very interesting: Anisotropic stiffness and tensile strenght, actuation, ...
Guido de Croon

Will robots be smarter than humans by 2029? - 2 views

  •  
    Nice discussion about the singularity. Made me think of drinking coffee with Luis... It raises some issues such as the necessity of embodiment, etc.
  • ...9 more comments...
  •  
    "Kurzweilians"... LOL. Still not sold on embodiment, btw.
  •  
    The biggest problem with embodiment is that, since the passive walkers (with which it all started), it hasn't delivered anything really interesting...
  •  
    The problem with embodiment is that it's done wrong. Embodiment needs to be treated like big data. More sensors, more data, more processing. Just putting a computer in a robot with a camera and microphone is not embodiment.
  •  
    I like how he attacks Moore's Law. It always looks a bit naive to me if people start to (ab)use it to make their point. No strong opinion about embodiment.
  •  
    @Paul: How would embodiment be done RIGHT?
  •  
    Embodiment has some obvious advantages. For example, in the vision domain many hard problems become easy when you have a body with which you can take actions (like looking at an object you don't immediately recognize from a different angle) - a point already made by researchers such as Aloimonos.and Ballard in the end 80s / beginning 90s. However, embodiment goes further than gathering information and "mental" recognition. In this respect, the evolutionary robotics work by for example Beer is interesting, where an agent discriminates between diamonds and circles by avoiding one and catching the other, without there being a clear "moment" in which the recognition takes place. "Recognition" is a behavioral property there, for which embodiment is obviously important. With embodiment the effort for recognizing an object behaviorally can be divided between the brain and the body, resulting in less computation for the brain. Also the article "Behavioural Categorisation: Behaviour makes up for bad vision" is interesting in this respect. In the field of embodied cognitive science, some say that recognition is constituted by the activation of sensorimotor correlations. I wonder to which extent this is true, and if it is valid for extremely simple creatures to more advanced ones, but it is an interesting idea nonetheless. This being said, if "embodiment" implies having a physical body, then I would argue that it is not a necessary requirement for intelligence. "Situatedness", being able to take (virtual or real) "actions" that influence the "inputs", may be.
  •  
    @Paul While I completely agree about the "embodiment done wrong" (or at least "not exactly correct") part, what you say goes exactly against one of the major claims which are connected with the notion of embodiment (google for "representational bottleneck"). The fact is your brain does *not* have resources to deal with big data. The idea therefore is that it is the body what helps to deal with what to a computer scientist appears like "big data". Understanding how this happens is key. Whether it is the problem of scale or of actually understanding what happens should be quite conclusively shown by the outcomes of the Blue Brain project.
  •  
    Wouldn't one expect that to produce consciousness (even in a lower form) an approach resembling that of nature would be essential? All animals grow from a very simple initial state (just a few cells) and have only a very limited number of sensors AND processing units. This would allow for a fairly simple way to create simple neural networks and to start up stable neural excitation patterns. Over time as complexity of the body (sensors, processors, actuators) increases the system should be able to adapt in a continuous manner and increase its degree of self-awareness and consciousness. On the other hand, building a simulated brain that resembles (parts of) the human one in its final state seems to me like taking a person who is just dead and trying to restart the brain by means of electric shocks.
  •  
    Actually on a neuronal level all information gets processed. Not all of it makes it into "conscious" processing or attention. Whatever makes it into conscious processing is a highly reduced representation of the data you get. However that doesn't get lost. Basic, low processed data forms the basis of proprioception and reflexes. Every step you take is a macro command your brain issues to the intricate sensory-motor system that puts your legs in motion by actuating every muscle and correcting every step deviation from its desired trajectory using the complicated system of nerve endings and motor commands. Reflexes which were build over the years, as those massive amounts of data slowly get integrated into the nervous system and the the incipient parts of the brain. But without all those sensors scattered throughout the body, all the little inputs in massive amounts that slowly get filtered through, you would not be able to experience your body, and experience the world. Every concept that you conjure up from your mind is a sort of loose association of your sensorimotor input. How can a robot understand the concept of a strawberry if all it can perceive of it is its shape and color and maybe the sound that it makes as it gets squished? How can you understand the "abstract" notion of strawberry without the incredibly sensible tactile feel, without the act of ripping off the stem, without the motor action of taking it to our mouths, without its texture and taste? When we as humans summon the strawberry thought, all of these concepts and ideas converge (distributed throughout the neurons in our minds) to form this abstract concept formed out of all of these many many correlations. A robot with no touch, no taste, no delicate articulate motions, no "serious" way to interact with and perceive its environment, no massive flow of information from which to chose and and reduce, will never attain human level intelligence. That's point 1. Point 2 is that mere pattern recogn
  •  
    All information *that gets processed* gets processed but now we arrived at a tautology. The whole problem is ultimately nobody knows what gets processed (not to mention how). In fact an absolute statement "all information" gets processed is very easy to dismiss because the characteristics of our sensors are such that a lot of information is filtered out already at the input level (e.g. eyes). I'm not saying it's not a valid and even interesting assumption, but it's still just an assumption and the next step is to explore scientifically where it leads you. And until you show its superiority experimentally it's as good as all other alternative assumptions you can make. I only wanted to point out is that "more processing" is not exactly compatible with some of the fundamental assumptions of the embodiment. I recommend Wilson, 2002 as a crash course.
  •  
    These deal with different things in human intelligence. One is the depth of the intelligence (how much of the bigger picture can you see, how abstract can you form concept and ideas), another is the breadth of the intelligence (how well can you actually generalize, how encompassing those concepts are and what is the level of detail in which you perceive all the information you have) and another is the relevance of the information (this is where the embodiment comes in. What you do is to a purpose, tied into the environment and ultimately linked to survival). As far as I see it, these form the pillars of human intelligence, and of the intelligence of biological beings. They are quite contradictory to each other mainly due to physical constraints (such as for example energy usage, and training time). "More processing" is not exactly compatible with some aspects of embodiment, but it is important for human level intelligence. Embodiment is necessary for establishing an environmental context of actions, a constraint space if you will, failure of human minds (i.e. schizophrenia) is ultimately a failure of perceived embodiment. What we do know is that we perform a lot of compression and a lot of integration on a lot of data in an environmental coupling. Imo, take any of these parts out, and you cannot attain human+ intelligence. Vary the quantities and you'll obtain different manifestations of intelligence, from cockroach to cat to google to random quake bot. Increase them all beyond human levels and you're on your way towards the singularity.
Juxi Leitner

Academics and Research: Virginia Tech Students Build Humanoid | Robotics Trends - 0 views

  •  
    CHARLI is the first untethered, autonomous, full-sized, walking, humanoid robot with four moving limbs and a head, built in the United States. His two long legs and arms can move and gesture thanks to a combination of pulleys, springs, carbon fiber rods, and actuators. CHARLI soon will be able to talk as well.
pacome delva

Physics - Optomechanics - 0 views

  •  
    Could there be some need in space for ultrasensitive force sensors/actuators ?
ESA ACT

Printable robots - 0 views

  •  
    and electro-actuated polymers, EAP, (synthetic muscles).
dejanpetkow

Torsional Carbon Nanotube Artificial Muscles - 0 views

  • Actuator materials producing rotation are rare and demonstrated rotations are small, though rotary systems like electric motors, pumps, turbines and compressors are widely needed and utilized. Present motors can be rather complex and, therefore, difficult to miniaturize. We show that a short electrolyte-filled twist spun carbon nanotube yarn, which is much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions/minute. A hydrostatic actuation mechanism, like for nature’s muscular hydrostats, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. Use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
  •  
    I have no access to the pdf, but abstract sounds interesting.
Luzi Bergamin

First circuit breaker for high voltage direct current - 2 views

  •  
    Doesn't really sound sexy, but this is of utmost importance for next generation grids for renewable energy.
  •  
    I agree on the significance indeed - a small boost also for my favourite Desertec project ... Though their language is a bit too "grandiose": "ABB has successfully designed and developed a hybrid DC breaker after years of research, functional testing and simulation in the R&D laboratories. This breaker is a breakthrough that solves a technical challenge that has been unresolved for over a hundred years and was perhaps one the main influencers in the 'war of currents' outcome. The 'hybrid' breaker combines mechanical and power electronics switching that enables it to interrupt power flows equivalent to the output of a nuclear power station within 5 milliseconds - that's as fast as a honey bee takes per flap of its wing - and more than 30 times faster than the reaction time of an Olympic 100-meter medalist to react to the starter's gun! But its not just about speed. The challenge was to do it 'ultra-fast' with minimal operational losses and this has been achieved by combining advanced ultrafast mechanical actuators with our inhouse semiconductor IGBT valve technologies or power electronics (watch video: Hybrid HVDC Breaker - How does it work). In terms of significance, this breaker is a 'game changer'. It removes a significant stumbling block in the development of HVDC transmission grids where planning can start now. These grids will enable interconnection and load balancing between HVDC power superhighways integrating renewables and transporting bulk power across long distances with minimal losses. DC grids will enable sharing of resources like lines and converter stations that provides reliability and redundancy in a power network in an economically viable manner with minimal losses. ABB's new Hybrid HVDC breaker, in simple terms will enable the transmission system to maintain power flow even if there is a fault on one of the lines. This is a major achievement for the global R&D team in ABB who have worked for years on the challeng
Tobias Seidl

Self-assembled artificial cilia - PNAS - 1 views

  •  
    Cilia are hairs driven by molecular motors. They are found in monocellular organisms, etc. If we can build such things artificially, we have micro-pumps etc. Any space usability?
  •  
    carlo's distributed actuator study originally considered cilia as well as peristaltic motion if i remember right. i suppose you might still think about debris transport for digging applications. Originally there was an idea for thermal transport aswell which, it turns out, was bollocks.
Tobias Seidl

Hygromorphs: from pine cones to biomimetic bilayers - Interface - 0 views

  •  
    This is about biological and technical hygromorphs, i.e. structures that change shape according to humidity. Next to pine cones, there is also a cool study on wheat awns which drill themselves into the soil just by daily variance of air humidity. Biomimetics would be passively controlled acutators or humidity driven valves in space station to open/close dehumidification devices.
  •  
    Interesting, but only an abstract... do you have the full paper ?
  •  
    Not yet. There is also some other nice mechanism of wheat awns and how they use changes in humidity to anchor in soil. Would maybe fit with the above mentioned work of oisin.
ESA ACT

Hydraulic Linear Actuators reference item relating to Scuola Superiore Sant Anna, - 0 views

  •  
    Some news on our roots project. Are we mentioned? No.
jcunha

Dynamic flat lens with metasurface actuated with MEMS - 2 views

  •  
    Great engineering feat from Capasso's idea - an integrated flat lens electrically controlled enabling dynamic beam steering. Reconfigurabilility is the aim. The lens can be used microscope systems, holographic and projection imaging, LIDAR and laser printing. Besides working now on the mid-IR, visible light is the target.
icheibas

NASA Is Developing 'Soft Robots' to Help Explore Other Worlds | Space - 2 views

  •  
    interns at NASA are looking into soft robot actuators
1 - 14 of 14
Showing 20 items per page