Skip to main content

Home/ Aasemoon'z Cluster/ Group items tagged Microfluids

Rss Feed Group items tagged

Aasemoon =)

Scientists Combine Optics and Microfluidics to Make Lab-on-a-Chip More Practical - 0 views

  • The marriage of high performance optics with microfluidics could prove the perfect match for making lab-on-a-chip technologies more practical. Microfluidics, the ability to manipulate tiny volumes of liquid, is at the heart of many lab-on-a-chip devices. Such platforms can automatically mix and filter chemicals, making them ideal for disease detection and environmental sensing. The performance of these devices, however, is typically inferior to larger scale laboratory equipment. While lab-on-a-chip systems can deliver and manipulate millions of liquid drops, there is not an equally scalable and efficient way to detect the activity, such as biological reactions, within the drops.
Aasemoon =)

Diode propulsion could power microbots - tech - 15 March 2007 - New Scientist - 0 views

  • A new form of propulsion that could allow microrobots to explore human bodies has been discovered. The technique would be used to power robots and other devices such as microfluidic pumps from a distance. Finding a propulsion mechanism that works on the microscopic scale is one of the key challenges for developing microrobots. Another is to find a way to supply such a device with energy because there is so little room to carry on-board fuel or batteries. Now a team lead by Orlin Velev at North Carolina State University in Raleigh, US, has found that a simple electronic diode could overcome both these problems. Velev and Vesselin Paunov from the University of Hull, UK, floated a diode in a tank of salt water and zapped the set-up with an alternating electric field.
  • A new form of propulsion that could allow microrobots to explore human bodies has been discovered. The technique would be used to power robots and other devices such as microfluidic pumps from a distance. Finding a propulsion mechanism that works on the microscopic scale is one of the key challenges for developing microrobots. Another is to find a way to supply such a device with energy because there is so little room to carry on-board fuel or batteries. Now a team lead by Orlin Velev at North Carolina State University in Raleigh, US, has found that a simple electronic diode could overcome both these problems. Velev and Vesselin Paunov from the University of Hull, UK, floated a diode in a tank of salt water and zapped the set-up with an alternating electric field.
Aasemoon =)

IEEE Spectrum: Carbon Nanotubes Enable Pumpless Liquid Cooling System for Computers - 0 views

  • Researchers at Purdue University have developed a new design employing carbon nanotubes and small copper spheres that wicks water passively towards hot electronics that could meet the challenges brought on by increasing frequency speeds in chips. The problem of overheating electronics is well-documented and in the past the issue has been addressed with bigger and bigger fans. But with chip features shrinking below 50 nanometers the fan solution is just not cutting it. The Purdue researchers, led by Suresh V. Garimella, came up with a design that uses water as the coolant liquid and transfers the water to an ultrathin thermal ground plane. The design naturally pushes the water through obviating the need for a pump and through the use of microfluidic design is able to boil the water fully, which allows the wicking away of more heat.
1 - 3 of 3
Showing 20 items per page