Skip to main content

Home/ Kampers pro nuclear/ Group items tagged management

Rss Feed Group items tagged

potter

Materials Issues in Nuclear-Waste Management - 0 views

  • LONG-TERM PERFORMANCE ISSUES OF NUCLEAR-WASTE PACKAGE MATERIALS The longevity of manufactured materials in the repository environment over such long periods of time is subject to significant uncertainty. At the same time, the prediction of material performance is essential in the development and use of waste packages (waste forms and waste containers). In the absence of a good mechanistic understanding of a material’s performance and data that span a wide range of the expected performance and physicochemical conditions, extremely conservative assumptions need to be considered. Many of the performance predictions rely on data collected over a relatively limited range of test conditions; thus, extrapolation of these data requires good mechanistic understanding.16,26 Without proper data support, any benefits that the waste forms or container might provide could be ignored; hence, it is highly desirable to improve the predictability of the materials performance. This also requires demonstration of quality control of the product. Various technical issues must be addressed in the assessment of the long-term performance of the waste package in a geologic repository.27,28 As all components of a waste package may be altered in time within the repository environment, the environment for a waste package (both internal and external) must be well characterized. A demonstrated understanding of factors that might affect long-term service behavior is required for the characterization of materials for the waste-package components. These factors include variations in characteristics such as chemical composition, stress state, microstructure, fabrication or production history, and thermodynamic phase equilibria. Various interactions may be expected from gaseous or aqueous media that are in contact with the materials of the waste package. For metallic containers, various forms of corrosion that result from interactions with water and oxygen are important, as are the effects of hydrogen, which may result from radiolysis of water and vapor or galvanic coupling with borehole liner or container support structures. The environment may produce hydrostatic or lithostatic pressure, which may alter the stress state in waste-package components. Radiation will change the environment and create species with the potential for accelerated degradation of the waste-package components. Microbial species, if they are present in significant quantities, have the potential for interactions with the waste-package materials.29 The service life of the waste package must be determined based on the consideration of these interactions between the environment and the waste-package components, including joints, seals, and welds. For details on the experimental programs specific to Yucca Mountain, refer to Reference 21.
1 - 2 of 2
Showing 20 items per page