Skip to main content

Home/ TOK Friends/ Group items tagged neuron

Rss Feed Group items tagged

anonymous

Paying attention as the eyes move -- ScienceDaily - 0 views

  • The visual system optimally maintains attention on relevant objects even as eye movements are made, shows a study by the German Primate Center.
  • Their study shows that the rhesus macaque's brain quickly and efficiently shifts attention with each eye-movement in a well-synchronized manner. Since humans and monkeys exhibit very similar eye-movements and visual function, these findings are likely to generalize to the human brain. These results may help understand disorders like schizophrenia, visual neglect and other attention deficit disorders.
  • Since different locations on the retina stimulate different visual neurons in the brain, this means that one set of visual neurons responds to the child before the eye-movement, while a different second set of neurons responds to the child after the eye-movement. Thus, to optimally maintain attention on the child, the brain has to enhance the responses of the first set of neurons right until the eye-movement begins and then switch to enhance the responses of the second set of neurons right around when the eye-movement ends.
  • ...1 more annotation...
  • To measure the activity of single neurons, the scientists inserted electrodes thinner than a human hair into the monkey's brain and recorded the neurons' electrical activity. Because the brain is not pain-sensitive, this insertion of electrodes is painless for the animal. By recording from single neurons in an area of the monkey's brain known as area MT, the scientists were able to show that attentional enhancement indeed switches from the first set of neurons to the second set of neurons in a fast and saccade-synchronized manner. Attentional enhancement in the brain is therefore well-timed to maintain spatial attention on relevant stimuli, so that they can be optimally tracked and processed across saccades.
Javier E

How Humans Ended Up With Freakishly Huge Brains | WIRED - 0 views

  • paleontologists documented one of the most dramatic transitions in human evolution. We might call it the Brain Boom. Humans, chimps and bonobos split from their last common ancestor between 6 and 8 million years ago.
  • Starting around 3 million years ago, however, the hominin brain began a massive expansion. By the time our species, Homo sapiens, emerged about 200,000 years ago, the human brain had swelled from about 350 grams to more than 1,300 grams.
  • n that 3-million-year sprint, the human brain almost quadrupled the size its predecessors had attained over the previous 60 million years of primate evolution.
  • ...19 more annotations...
  • There are plenty of theories, of course, especially regarding why: increasingly complex social networks, a culture built around tool use and collaboration, the challenge of adapting to a mercurial and often harsh climate
  • Although these possibilities are fascinating, they are extremely difficult to test.
  • Although it makes up only 2 percent of body weight, the human brain consumes a whopping 20 percent of the body’s total energy at rest. In contrast, the chimpanzee brain needs only half that.
  • contrary to long-standing assumptions, larger mammalian brains do not always have more neurons, and the ones they do have are not always distributed in the same way.
  • The human brain has 86 billion neurons in all: 69 billion in the cerebellum, a dense lump at the back of the brain that helps orchestrate basic bodily functions and movement; 16 billion in the cerebral cortex, the brain’s thick corona and the seat of our most sophisticated mental talents, such as self-awareness, language, problem solving and abstract thought; and 1 billion in the brain stem and its extensions into the core of the brain
  • In contrast, the elephant brain, which is three times the size of our own, has 251 billion neurons in its cerebellum, which helps manage a giant, versatile trunk, and only 5.6 billion in its cortex
  • primates evolved a way to pack far more neurons into the cerebral cortex than other mammals did
  • The great apes are tiny compared to elephants and whales, yet their cortices are far denser: Orangutans and gorillas have 9 billion cortical neurons, and chimps have 6 billion. Of all the great apes, we have the largest brains, so we come out on top with our 16 billion neurons in the cortex.
  • “What kinds of mutations occurred, and what did they do? We’re starting to get answers and a deeper appreciation for just how complicated this process was.”
  • there was a strong evolutionary pressure to modify the human regulatory regions in a way that sapped energy from muscle and channeled it to the brain.
  • Accounting for body size and weight, the chimps and macaques were twice as strong as the humans. It’s not entirely clear why, but it is possible that our primate cousins get more power out of their muscles than we get out of ours because they feed their muscles more energy. “Compared to other primates, we lost muscle power in favor of sparing energy for our brains,” Bozek said. “It doesn’t mean that our muscles are inherently weaker. We might just have a different metabolism.
  • a pioneering experiment. Not only were they going to identify relevant genetic mutations from our brain’s evolutionary past, they were also going to weave those mutations into the genomes of lab mice and observe the consequences.
  • Silver and Wray introduced the chimpanzee copy of HARE5 into one group of mice and the human edition into a separate group. They then observed how the embryonic mice brains grew.
  • After nine days of development, mice embryos begin to form a cortex, the outer wrinkly layer of the brain associated with the most sophisticated mental talents. On day 10, the human version of HARE5 was much more active in the budding mice brains than the chimp copy, ultimately producing a brain that was 12 percent larger
  • “It wasn’t just a couple mutations and—bam!—you get a bigger brain. As we learn more about the changes between human and chimp brains, we realize there will be lots and lots of genes involved, each contributing a piece to that. The door is now open to get in there and really start understanding. The brain is modified in so many subtle and nonobvious ways.”
  • As recent research on whale and elephant brains makes clear, size is not everything, but it certainly counts for something. The reason we have so many more cortical neurons than our great-ape cousins is not that we have denser brains, but rather that we evolved ways to support brains that are large enough to accommodate all those extra cells.
  • There’s a danger, though, in becoming too enamored with our own big heads. Yes, a large brain packed with neurons is essential to what we consider high intelligence. But it’s not sufficient
  • No matter how large the human brain grew, or how much energy we lavished upon it, it would have been useless without the right body. Three particularly crucial adaptations worked in tandem with our burgeoning brain to dramatically increase our overall intelligence: bipedalism, which freed up our hands for tool making, fire building and hunting; manual dexterity surpassing that of any other animal; and a vocal tract that allowed us to speak and sing.
  • Human intelligence, then, cannot be traced to a single organ, no matter how large; it emerged from a serendipitous confluence of adaptations throughout the body. Despite our ongoing obsession with the size of our noggins, the fact is that our intelligence has always been so much bigger than our brain.
knudsenlu

Study: Does Adult Neurogenesis Exist in Humans? - The Atlantic - 0 views

  • In 1928, Santiago Ramón y Cajal, the father of modern neuroscience, proclaimed that the brains of adult humans never make new neurons. “Once development was ended,” he wrote, “the founts of growth and regeneration ... dried up irrevocably. In the adult centers the nerve paths are something fixed, ended and immutable. Everything must die, nothing may be regenerated.”
  • For decades, scientists believed that neurogenesis—the creation of new neurons—whirs along nicely in the brains of embryos and infants, but grinds to a halt by adulthood. But from the 1980s onward, this dogma started to falter. Researchers showed that neurogenesis does occur in the brains of various adult animals, and eventually found signs of newly formed neurons in the adult human brain.
  • Finally, Gage and others say that several other lines of evidence suggest that adult neurogenesis in humans is real. For example, in 1998, he and his colleagues studied the brains of five cancer patients who had been injected with BrdU—a chemical that gets incorporated into newly created DNA. They found traces of this substance in the hippocampus, which they took as a sign that the cells there are dividing and creating new neurons.
  • ...2 more annotations...
  • Greg Sutherland from the University of Sydney agrees. In 2016, he came to similar conclusions as Alvarez-Buylla’s team, using similar methods. “Depending on your inherent biases, two scientists can look at sparse events in the adult brain and come to different conclusions,” he says. “But when faced with the stark difference between infant and adult human brains, we can only conclude that [neurogenesis] is a vestigial process in the latter.”
  • Alvarez-Buylla agrees that there’s still plenty of work to do. Even if neurogenesis is a fiction in adult humans, it’s real in infants, and in other animals. If we really don’t make any new neurons as adults, how do we learn new things? And is there any way of restoring that lost ability to create new neurons in cases of stroke, Alzheimer’s, or other degenerative diseases? “Neurogenesis is precisely what we want to induce in cases of brain damage,” Alvarez-Buylla says. “If it isn’t there to begin with, how might you induce it?”
Javier E

Learning How Little We Know About the Brain - NYTimes.com - 0 views

  • So many large and small questions remain unanswered. How is information encoded and transferred from cell to cell or from network to network of cells?
  • Science found a genetic code but there is no brain-wide neural code; no electrical or chemical alphabet exists that can be recombined to say “red” or “fear” or “wink” or “run.” And no one knows whether information is encoded differently in various parts of the brain.
  • Single neurons, he said, are fairly well understood, as are small circuits of neurons.The question now on his mind, and that of many neuroscientists, is how larger groups, thousands of neurons, work together — whether to produce an action, like reaching for a cup, or to perceive something, like a flower.
  • ...6 more annotations...
  • A decade ago, he moved from Brandeis to Columbia, which now has one of the biggest groups of theoretical neuroscientists in the world, he says, and which has a new university-wide focus on integrating brain science with other disciplines.
  • a “pioneer of computational neuroscience.” Mr. Abbott brought the mathematical skills of a physicist to the field, but he is able to plunge right into the difficulties of dealing with actual brain experiments
  • the goal is to discover the physiological mechanism in the data.
  • For example, he asks why does one pattern of neurons firing “make you jump off the couch and run out the door and others make you just sit there and do nothing?” It could be, Dr. Abbott says, that simultaneous firing of all the neurons causes you to take action. Or it could be that it is the number of neurons firing that prompts an action.
  • “We’ve looked at the nervous system from the two ends in,” Dr. Abbott said, meaning sensations that flow into the brain and actions that are initiated there. “Somewhere in the middle is really intelligence, right? That’s where the action is.”
  • In the brain, somehow, stored memories and desires like hunger or thirst are added to information about the world, and actions are the result. This is the case for all sorts of animals, not just humans. It is thinking, at the most basic level.
kaylynfreeman

How the brain paralyzes you while you sleep -- ScienceDaily - 1 views

  • In reality though, narcolepsy, cataplexy, and rapid eye movement (REM) sleep behavior disorder are all serious sleep-related illnesses. Researchers at the University of Tsukuba led by Professor Takeshi Sakurai have found neurons in the brain that link all three disorders and could provide a target for treatments.
  • In reality though, narcolepsy, cataplexy, and rapid eye movement (REM) sleep behavior disorder are all serious sleep-related illnesses. Researchers at the University of Tsukuba led by Professor Takeshi Sakurai have found neurons in the brain that link all three disorders and could provide a target for treatments.
    • margogramiak
       
      Cures or fixes to these disorders would change a lot of peoples lives.
  • Instead of being still during REM sleep, muscles move around, often going as far as to stand up and jump, yell, or punch.
    • margogramiak
       
      It makes sense that this would lead to poor sleep!
  • ...6 more annotations...
  • When the researchers blocked the input to these neurons, the mice began moving during their sleep, just like someone with REM sleep behavior disorder.
    • margogramiak
       
      It's really cool that they found a source! How is this information applicable to a cure? Where do they go now?
  • Narcolepsy is characterized by suddenly falling asleep at any time during the day, even in mid-sentence. Cataplexy is a related illness in which people suddenly lose muscle tone and collapse.
    • margogramiak
       
      Are they associated with REM?
  • They tested their hypothesis using a mouse model of narcolepsy in which cataplexic attacks could be triggered by chocolate. "We found that silencing the SLD-to-ventral medial medulla reduced the number of cataplexic bouts,"
    • margogramiak
       
      Interesting
  • The glycinergic neurons we have identified in the ventral medial medulla could be a good target for drug therapies for people with narcolepsy, cataplexy, or REM sleep behavior disorder,
    • margogramiak
       
      Cool! So there's a shot at a fix.
  • "They were connected to neurons that control voluntary movements, but not those that control muscles in the eyes or internal organs. Importantly, they were inhibitory, meaning that they can prevent muscle movement when active."
  • "The glycinergic neurons we have identified in the ventral medial medulla could be a good target for drug therapies for people with narcolepsy, cataplexy, or REM sleep behavior disorder,"
grayton downing

Snakes on a Visual Plane | The Scientist Magazine® - 0 views

  • primates have a remarkable ability to detect snakes, even in a chaotic visual environment.
  • first evidence of snake-selective neurons in the primate brain that I’m aware of,
  • recorded pulvinar neuronal activity via electrodes implanted into the brains of two adult macaques—one male, one female—as they were shown images of monkey faces, monkey hands, geometric shapes, and snakes. The brains of both monkeys—which were raised at a national monkey farm in Amami Island, Japan, and had no known encounters with snakes before the experiment—showed preferential activity of neurons in the medial and dorsolateral pulvinar to images of snakes, as compared with the other stimuli. Further, snakes elicited the fastest and strongest responses from these neurons.
  • ...3 more annotations...
  • neurobiological evidence of pulvinar neuron responses to a potential predation threat is convincing, Dobson noted more work is needed to support a role for snakes in primate evolution.
  • “fear module” in the primate brain—a construct that enables “quick responses to stimuli that signal danger, such as predators and threatening faces”
  • “Since they [the authors] haven’t—to my knowledge—tested the same stimuli on various other parts of the visual system, they don’t have evidence that these putatively selective cells are a specialization of the ‘fear module’ at all,”
grayton downing

Measuring Consciousness | The Scientist Magazine® - 0 views

  • General anesthesia has transformed surgery from a ghastly ordeal to a procedure in which the patient feels no pain.
  • “integrated-information theory,” which holds that consciousness relies on communication between different brain areas, and fades as that communication breaks down.
  • neural markers of consciousness—or more precisely, the loss of consciousness—a group led by Patrick Purdon
  • ...9 more annotations...
  • The purpose of the surgery was to remove electrodes that had previously been implanted in the patients’ brains to monitor seizures. But before they were taken out, the electrodes enabled the researchers to study the activity of individual neurons in the cortex, in addition to large-scale brain activity from EEG recordings.
  • importance of communication between discrete groups of neurons, both within the cortex and across brain regions, is analogous to a band playing music, said George Mashour, a neuroscientist and anesthesiologist at the University of Michigan, Ann Arbor. “You need musical information to come together either in time or space to really make sense,”
  • “Consciousness and cognitive activity may be similar. If different areas of the brain aren’t in synch or if a critical area that normally integrates cognitive activity isn’t functioning, you could be rendered unconscious.”
  • , Purdon and colleagues were able to discern a more detailed neural signature of loss of unconsciousness, this time by using EEG alone. Monitoring brain activity in healthy patients for 2 hours as they underwent propofol-induced anesthesia, they observed that as responsiveness fades, high-frequency brain waves (12–35 hertz) rippling across the cortex and the thalamus were replaced by two different brain waves superimposed on top on one another: a low-frequency (<1 hertz) wave and an alpha frequency (8–12 hertz) wave. “These two waves pretty much come at loss of consciousness,”
  • “We’ve started to teach our anesthesiologists how to read this signature on the EEG”
  • Anesthesia is not the only state in which consciousness is lost, of course
  • o measure the gradual breakdown of connectivity between neural networks during natural REM sleep and anesthesia, as well as in brain-injured, unresponsive patients. Using an electromagnetic coil to activate neurons in a small patch of the human cortex, then recording EEG output to track the propagation of those signals to other neuronal groups, the researchers can measure the connectivity between collections of neurons in the cortex and other brain regions.
  • minimally conscious patients, the magnetically stimulated signals propagated fairly far and wide, occasionally reaching distant cortical areas, much like activations seen in locked-in but conscious patients. In patients in a persistent vegetative state, on the other hand, propagation was severely limited—a breakdown of connectivity similar to that observed in previous tests of anesthetized patients. What’s more, in three vegetative patients that later recovered consciousness, the test picked up signs of increased connectivity before clinical signs of improvement became evident.
  • “I think understanding consciousness itself is going to help us find successful [measurement] approaches that are universally applicable,” said Pearce.
anonymous

Smarter brains run on sparsely connected neurons -- ScienceDaily - 0 views

  • The more intelligent a person, the fewer connections there are between the neurons in his cerebral cortex.
  • Subsequently, the researchers associated the gathered data with each other and found out: the more intelligent a person, the fewer dendrites there are in their cerebral cortex.
  • For one, it had been previously ascertained that intelligent people tend to have larger brains. "The assumption has been that larger brains contain more neurons and, consequently, possess more computational power," says Erhan Genç. However, other studies had shown that -- despite their comparatively high number of neurons -- the brains of intelligent people demonstrated less neuronal activity during an IQ test than the brains of less intelligent individuals.
manhefnawi

How your brain links people and places | Science | AAAS - 0 views

  • Even after one exposure to the composites, neurons that had previously fired exclusively in response to one picture—like that of Eastwood—significantly increased their firing rate  when exposed to the image with which it had been combined—in one case, by 230%, Fried and colleagues report today in the journal Neuron. The fact that an individual neuron can adapt its firing rate so quickly could help explain how large, dynamic neuronal networks form complicated memories of past events, Fried says.
Javier E

Colonic electrical stimulation promotes colonic motility through regeneration of myente... - 0 views

  • Slow transit constipation (STC) is a common disease characterized by markedly delayed colonic transit time as a result of colonic motility dysfunction. It is well established that STC is mostly caused by disorders of relevant nerves, especially the enteric nervous system (ENS).
  • After 5 weeks of treatment, CES could enhance the colonic electromyogram (EMG) signal to promote colonic motility, thereby improving the colonic content emptying of STC beagles. HE staining and transmission electron microscopy confirmed that CES could regenerate ganglia and synaptic vesicles in the myenteric plexus.
  • Taken together, pulse train CES could induce the regeneration of myenteric plexus neurons, thereby promoting the colonic motility in STC beagles.
  • ...20 more annotations...
  • onic constipation, a functional bowel disorder, affects approximately 14% of adults worldwide [1]. Slow transit constipation (STC) is the major cause of chronic constipation which is characterized by markedly prolonged colonic transit time as a result of the colonic motility function disorde
  • Usually, patients with STC suffer from a common sense of abdominal pain, nausea, depression and sickness, which seriously influence their social ability and health-related quality of life [4–6
  • Current clinical treatments include cathartics, prokinetics and aggressive surgery which can increase bowel movement frequency to a certain degree.
  • However, pharmacological interventions is prone to drug dependency and relapse after drug withdrawal [3]
  • Surgical treatments such as subtotal colectomy and total colectomy in STC patients may adversely affect the quality of life due to the risk of postoperative diarrhea or incontinence, and result in a heavy healthcare burden
  • The enteric nervous system (ENS), located in the intestinal wall, regulates various functions including contraction of intestine, homeostasis and blood flow [10]. As the ‘second brain’, the ENS contains large amounts of neurons working independently from the central nervous system [11]. Researches have identified that STCs are mostly caused by disorders of the relevant nerves, especially the ENS [12,13].
  • McCallum et al. [35] found that gastric electrical stimulation in combination with pharmacological treatment could also enhance emptying in patients with gastroparesis. Especially, gastric electrical stimulation has been approved as a clinical therapy method for gastroparesis and obesity in European and American countries [36].
  • we employed pulse train stimulation and implanted electrodes at the proximal colon in dogs.
  • After CES treatment, we observed the colonic transit time of the sham treatment group was longer than that of CES treatment and control groups, and electrical stimulation significantly enhanced the colonic electromyogram (EMG) signal.
  • histopathology and TEM analysis showed increased ganglia and synaptic vesicles existing in the colon myenteric plexus of the CES treatment group as compared with that of the sham CES group
  • Our results suggested that CES might reduce the degeneration of the myenteric plexus neurons, thereby contributing to the therapeutic effect on STC beagles.
  • the defecating frequency and the feces characteristics of STC beagles returned to normal after CES treatment. The result indicated that CES could improve the symptoms of STC.
  • The colonic EMG signal was strongly promoted by CES
  • Especially, the colonic EMG signal of the beagles with STC was remarkably enhanced by CES (Figure 3), indicating that CES could not only improve the colonic content emptying, but also enhance the EMG signal to promote colonic motility.
  • Colonic electrical stimulation (CES), a valuable alternative for the treatment of STC, was reported to improve the colon motility by adjusting the bioelectrical activity in animal models or patients with STC [17]. However, little report focuses on the underlying nervous mechanism to normalize the delayed colonic emptying and relieve symptoms. We hypothesized that CES may also repair the disorders of the relevant nerves and then improve the colonic motility.
  • The first study regarding the CES to modulate colonic motility was performed by Hughes et al. [37]. Since then, many researchers employed short-pulse CES in canine descending colon or pig cecum [20,21,38]. Researchers also applied long-pulse CES to stimulate the colon of human or animals [39]
  • Recently, studies showed that the prokinetic effect of pulse train CES is better than that of short-pulse CES or long-pulse CES [25]
  • Our study indicated that CES could enhance the colonic motility, and then accelerate the colonic content emptying. Thereafter, we investigated the underlying mechanism and presumed that CES might improve the STC symptom through the repairment of the ENS.
  • The neuropathy in ENS is considered to be responsible for various kinds of disordered motility including STC and the related pathophysiologic symptoms [40]. In agreement with this view, our study discovered the decreased number of ganglia in the myenteric plexus, as well as the destruction of the enteric nerve axon terminals and synaptic vesicles in the sham CES group beagles
  • The present study proves that CES with pulse trains has curative effects on the colonic motility and content emptying in STC beagles. The up-regulation of intestinal nerve related proteins such as SYP, PGP9.5, CAD and S-100B in the colonic myenteric plexus suggests that CES might reduce the degeneration of the myenteric plexus neurons, thereby producing the therapeutic effect on STC beagles. Further investigation for the underlying mechanism of nerve regeneration is necessary to better understand how CES promotes the recovery of delayed colonic motility induced by STC.
grayton downing

Genetic Diversity in the Brain | The Scientist Magazine® - 0 views

  • Genomic analyses of single human neurons—either from postmortem brains or those derived in culture—reveal a considerable degree of DNA copy number variation, according to a paper
  • likely that these genetic differences affect brain cell function, and they may even shape our personalities, academic abilities, and susceptibilities to neurological diseases.
  • There was a really long-standing hypothesis that given the huge diversity of cell types in the brain, there might be [genetic] mechanisms . . . to generate [the] diversity,” Hall explained.
  • ...2 more annotations...
  • found similar copy number variations in neurons derived in culture from human induced pluripotent stem cells (iPSCs)
  • neural progenitor cells derived from the same iPSC lines did not exhibit such abundant diversity. This suggested that the genetic variation in neurons occurred only at later stages of differentiation. And that the variation developed in a short space of time—the seven weeks it took to differentiate neurons from neural progenitors. Furthermore, the results implied that genetic variations seen in adult postmortem brains were unlikely to be a mere side effect of aging.
Javier E

Big Think Interview With Nicholas Carr | Nicholas Carr | Big Think - 0 views

  • Neurologically, how does our brain adapt itself to new technologies? Nicholas Carr: A couple of types of adaptations take place in your brain. One is a strengthening of the synaptical connections between the neurons involved in using that instrument, in using that tool. And basically these are chemical – neural chemical changes. So you know, cells in our brain communicate by transmitting electrical signals between them and those electrical signals are actually activated by the exchange of chemicals, neurotransmitters in our synapses. And so when you begin to use a tool, for instance, you have much stronger electrochemical signals being processed in those – through those synaptical connections. And then the second, and even more interesting adaptation is in actual physical changes,anatomical changes. Your neurons, you may grow new neurons that are then recruited into these circuits or your existing neurons may grow new synaptical terminals. And again, that also serves to strengthen the activity in those, in those particular pathways that are being used – new pathways. On the other hand, you know, the brain likes to be efficient and so even as its strengthening the pathways you’re exercising, it’s pulling – it’s weakening the connections in other ways between the cells that supported old ways of thinking or working or behaving, or whatever that you’re not exercising so much.
  • And it was only in around the year 800 or 900 that we saw the introduction of word spaces. And suddenly reading became, in a sense, easier and suddenly you had to arrival of silent reading, which changed the act of reading from just transcription of speech to something that every individual did on their own. And suddenly you had this whole deal of the silent solitary reader who was improving their mind, expanding their horizons, and so forth. And when Guttenberg invented the printing press around 1450, what that served to do was take this new very attentive, very deep form of reading, which had been limited to just, you know, monasteries and universities, and by making books much cheaper and much more available, spread that way of reading out to a much larger mass of audience. And so we saw, for the last 500 years or so, one of the central facts of culture was deep solitary reading.
  • What the book does as a technology is shield us from distraction. The only thinggoing on is the, you know, the progression of words and sentences across page after page and so suddenly we see this immersive kind of very attentive thinking, whether you are paying attention to a story or to an argument, or whatever. And what we know about the brain is the brain adapts to these types of tools.
  • ...12 more annotations...
  • we adapt to the environment of the internet, which is an environment of kind of constant immersion and information and constant distractions, interruptions, juggling lots of messages, lots of bits of information.
  • Because it’s no longer just a matter of personal choice, of personal discipline, though obviously those things are always important, but what we’re seeing and we see this over and over again in the history of technology, is that the technology – the technology of the web, the technology of digital media, gets entwined very, very deeply into social processes, into expectations. So more and more, for instance in our work lives. You know, if our boss and all our colleagues are constantly exchanging messages, constantly checking email on their Blackberry or iPhone or their Droid or whatever, then it becomes very difficult to say, I’m not going to be as connected because you feel like you’re career is going to take a hit.
  • With the arrival – with the transfer now of text more and more onto screens, we see, I think, a new and in some ways more primitive way of reading. In order to take in information off a screen, when you are also being bombarded with all sort of other information and when there links in the text where you have to think even for just a fraction of a second, you know, do I click on this link or not. Suddenly reading again becomes a more cognitively intensive act, the way it was back when there were no spaces between words.
  • If all your friends are planning their social lives through texts and Facebook and Twitter and so forth, then to back away from that means to feel socially isolated. And of course for all people, particularly for young people, there’s kind of nothing worse than feeling socially isolated, that your friends are you know, having these conversations and you’re not involved. So it’s easy to say the solution, which is to, you know, becomes a little bit more disconnected. What’s hard it actually doing that.
  • if you want to change your brain, you change your habits. You change your habits of thinking. And that means, you know, setting aside time to engage in more contemplative, more reflective ways of thinking and that means, you know, setting aside time to engage in more contemplative, more reflective ways of thinking, to be – to screen out distractions. And that means retreating from digital media and from the web and from Smart Phones and texting and Facebook and Tweeting and everything else.
  • The Thinker was, you know, in a contemplative pose and was concentrating deeply, and wasn’t you know, multi-tasking. And because that is something that, until recently anyway, people always thought was the deepest and most distinctly human way of thinking.
  • we may end up finding that those are actually the most valuable ways of thinking that are available to us as human beings.
  • the ability to pay attention also is very important for our ability to build memories, to transfer information from our short-term memory to our long-term memory. And only when we do that do we weave new information into everything else we have stored in our brains. All the other facts we’ve learned, all the other experiences we’ve had, emotions we’ve felt. And that’s how you build, I think, a rich intellect and a rich intellectual life.
  • On the other hand, there is a cost. We lose – we begin to lose the facilities that we don’t exercise. So adaptation has both a very, very positive side, but also a potentially negative side because ultimately our brain is qualitatively neutral. It doesn’t pare what it’s strengthening or what it’s weakening, it just responds to the way we’re exercising our mind.
  • the book in some ways is the most interesting from our own present standpoint, particularly when we want to think about the way the internet is changing us. It’s interesting to think about how the book changed us.
  • So we become, after the arrival of the printing press in general, more attentive more attuned to contemplative ways of thinking. And that’s a very unnatural way of using our mind. You know, paying attention, filtering out distractions.
  • what we lose is the ability to pay deep attention to one thing for a sustained period of time, to filter out distractions.
julia rhodes

Brainlike Computers, Learning From Experience - NYTimes.com - 0 views

  • Computers have entered the age when they are able to learn from their own mistakes, a development that is about to turn the digital world on its head.
  • Not only can it automate tasks that now require painstaking programming — for example, moving a robot’s arm smoothly and efficiently — but it can also sidestep and even tolerate errors, potentially making the term “computer crash” obsolete.
  • The new computing approach, already in use by some large technology companies, is based on the biological nervous system, specifically on how neurons react to stimuli and connect with other neurons to interpret information.
  • ...6 more annotations...
  • In coming years, the approach will make possible a new generation of artificial intelligence systems that will perform some functions that humans do with ease: see, speak, listen, navigate, manipulate and control.
  • “We’re moving from engineering computing systems to something that has many of the characteristics of biological computing,” said Larry Smarr
  • The new approach, used in both hardware and software, is being driven by the explosion of scientific knowledge about the brain. Kwabena Boahen, a computer scientist who leads Stanford’s Brains in Silicon research program, said that is also its limitation, as scientists are far from fully understanding how brains function.
  • They are not “programmed.” Rather the connections between the circuits are “weighted” according to correlations in data that the processor has already “learned.” Those weights are then altered as data flows in to the chip, causing them to change their values and to “spike.” That generates a signal that travels to other components and, in reaction, changes the neural network, in essence programming the next actions much the same way that information alters human thoughts and actions.
  • Traditional computers are also remarkably energy inefficient, especially when compared to actual brains, which the new neurons are built to mimic. I.B.M. announced last year that it had built a supercomputer simulation of the brain that encompassed roughly 10 billion neurons — more than 10 percent of a human brain. It ran about 1,500 times more slowly than an actual brain. Further, it required several megawatts of power, compared with just 20 watts of power used by the biological brain.
  • Running the program, known as Compass, which attempts to simulate a brain, at the speed of a human brain would require a flow of electricity in a conventional computer that is equivalent to what is needed to power both San Francisco and New York, Dr. Modha said.
caelengrubb

How Our Brains Make Memories | Science | Smithsonian Magazine - 0 views

  • Most people have so-called flashbulb memories of where they were and what they were doing when something momentous happened: the assassination of President John F. Kennedy, say, or the explosion of the space shuttle Challenger.
  • But as clear and detailed as these memories feel, psychologists find they are surprisingly inaccurate.
  • Nader believes he may have an explanation for such quirks of memory. His ideas are unconventional within neuroscience, and they have caused researchers to reconsider some of their most basic assumptions about how memory works
  • ...9 more annotations...
  • In short, Nader believes that the very act of remembering can change our memories
  • Much of his research is on rats, but he says the same basic principles apply to human memory as well. In fact, he says, it may be impossible for humans or any other animal to bring a memory to mind without altering it in some way.
  • Memories surrounding a major event like September 11 might be especially susceptible, he says, because we tend to replay them over and over in our minds and in conversation with others—with each repetition having the potential to alter them
  • cientists have long known that recording a memory requires adjusting the connections between neurons
  • Each memory tweaks some tiny subset of the neurons in the brain (the human brain has 100 billion neurons in all), changing the way they communicate. Neurons send messages to one another across narrow gaps called synapses
  • According to this view, the brain’s memory system works something like a pen and notebook. For a brief time before the ink dries, it’s possible to smudge what’s written
  • Researchers had found that a memory could be weakened if they gave an animal an electric shock or a drug that interferes with a particular neurotransmitter just after they prompted the animal to recall the memory. This suggested that memories were vulnerable to disruption even after they had been consolidated.
  • If memories are consolidated just once, when they are first created, he reasoned, the drug would have no effect on the rat’s memory of the tone or on the way it would respond to the tone in the future.
  • Perhaps it’s better if we can rewrite our memories every time we recall them. Nader suggests that reconsolidation may be the brain’s mechanism for recasting old memories in the light of everything that has happened since. In other words, it just might be what keeps us from living in the past.
tongoscar

A Pattern Recognition Theory of Mind | Praxis - 0 views

  • the pace of improvement in technology would become a runaway phenomenon that would transform all aspects of human civilization.
  • the structure and functioning of the human brain is actually quite simple, a basic unit of cognition repeated millions of times. Therefore, creating an artificial brain will not require simulating the human brain at every level of detail. It will only require reverse engineering this basic repeating unit.
  • our memories are organized in discrete segments. If you try to start mid-segment, you’ll struggle for a bit until your sequential memory kicks in.
  • ...13 more annotations...
  • your memories are sequential, like symbols on a ticker tape. They are designed to be read in a certain direction and in order.
  • your memories are nested. Every action and thought is made up of smaller actions and thoughts.
  • the cortical column, a basic structure that is repeated throughout the neocortex. Each of the approximately 500,000 cortical columns is about two millimeters high and a half millimeter wide, and contains about 60,000 neurons (for a total of about 30 billion neurons in the neocortex).
  • The human brain has evolved to recognize patterns, perhaps more than any other single function. Our brain is weak at processing logic, remembering facts, and making calculations, but pattern recognition is its deep core capability.
  • The neocortex is an elaborately folded sheath of tissue covering the whole top and front of the brain, making up nearly 80% of its weight.
  • The basic structure and functioning of the human brain is hierarchical. This may not seem intuitive at first. It sounds like how a computer works.
  • For our purposes, the most important thing to understand about the neocortex is that it has an extremely uniform structure.
  • Mountcastle also believed there must be smaller sub-units, but that couldn’t be confirmed until years later. These “mini-columns” are so tightly interwoven it is impossible to distinguish them, but they constitute the fundamental component of the neocortex. Thus, they constitute the fundamental component of human thought.
  • The basic structure of a PR has three parts: the input, the name, and the output.
  • The first part is the input – dendrites coming from other PRs that signal the presence of lower-level patterns
  • The third part is the output – axons emerging from the PR that signal the presence of its designated pattern.
  • When the inputs to a PR cross a certain threshold, it fires. That is, it emits a nerve impulse to the higher-level PRs it connects to. This is essentially the “A” PR shouting “Hey guys! I just saw the letter “A”!” When the PR for “Apple” hears such signals for a, p, p again, l, and e, it fires itself, shouting “Hey guys! I just saw “Apple!” And so on up the hierarchy.
  • “neurons that fire together, wire together,” which emphasizes the plasticity of individual neurons and is known as the Hebbian Theory, may be incorrect.
johnsonel7

Scientists Identify Neurons That Help the Brain Forget - The New York Times - 0 views

  • One afternoon in April 1929, a journalist from a Moscow newspaper turned up in Alexander Luria’s office with an unusual problem: He never forgot things.Dr. Luria, a neuropsychologist, proceeded to test the man, who later became known as subject S., by spouting long strings of numbers and words, foreign poems and scientific formulas, all of which S. recited back without fail. Decades later, S. still remembered the lists of numbers perfectly whenever Dr. Luria retested him.
  • “We’re inundated with so much information every day, and much of that information is turned into memories in the brain,” said Ronald Davis, a neurobiologist at the Scripps Research Institute in Jupiter, Fla. “We simply cannot deal with all of it.”
  • Researchers like Dr. Davis argue that forgetting is an active mechanism that the brain employs to clear out unnecessary pieces of information so we can retain new ones. Others have gone a step further, suggesting that forgetting is required for the mental flexibility inherent in creative thinking and imagination.
  • ...2 more annotations...
  • These results suggest that hypothalamic M.C.H. neurons help the brain actively forget new information that is not important,” Dr. Yamanaka said. And because the neurons are most active during R.E.M. sleep, they may explain why humans usually do not remember their dreams when they wake up. “The neurons may be clearing up memory resources for the next day,”
  • If the memory is really important to the organism, or to us as humans, then this attention or emotional interest will come in and act like a judge, telling the brain, ‘Keep this one, protect it
Javier E

How Did Consciousness Evolve? - The Atlantic - 0 views

  • Theories of consciousness come from religion, from philosophy, from cognitive science, but not so much from evolutionary biology. Maybe that’s why so few theories have been able to tackle basic questions such as: What is the adaptive value of consciousness? When did it evolve and what animals have it?
  • The Attention Schema Theory (AST), developed over the past five years, may be able to answer those questions.
  • The theory suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others, and in the AST, consciousness is the ultimate result of that evolutionary sequence
  • ...23 more annotations...
  • Even before the evolution of a central brain, nervous systems took advantage of a simple computing trick: competition.
  • It coordinates something called overt attention – aiming the satellite dishes of the eyes, ears, and nose toward anything important.
  • Selective enhancement therefore probably evolved sometime between hydras and arthropods—between about 700 and 600 million years ago, close to the beginning of complex, multicellular life
  • The next evolutionary advance was a centralized controller for attention that could coordinate among all senses. In many animals, that central controller is a brain area called the tectum
  • At any moment only a few neurons win that intense competition, their signals rising up above the noise and impacting the animal’s behavior. This process is called selective signal enhancement, and without it, a nervous system can do almost nothing.
  • All vertebrates—fish, reptiles, birds, and mammals—have a tectum. Even lampreys have one, and they appeared so early in evolution that they don’t even have a lower jaw. But as far as anyone knows, the tectum is absent from all invertebrates
  • According to fossil and genetic evidence, vertebrates evolved around 520 million years ago. The tectum and the central control of attention probably evolved around then, during the so-called Cambrian Explosion when vertebrates were tiny wriggling creatures competing with a vast range of invertebrates in the sea.
  • The tectum is a beautiful piece of engineering. To control the head and the eyes efficiently, it constructs something called an internal model, a feature well known to engineers. An internal model is a simulation that keeps track of whatever is being controlled and allows for predictions and planning.
  • The tectum’s internal model is a set of information encoded in the complex pattern of activity of the neurons. That information simulates the current state of the eyes, head, and other major body parts, making predictions about how these body parts will move next and about the consequences of their movement
  • In fish and amphibians, the tectum is the pinnacle of sophistication and the largest part of the brain. A frog has a pretty good simulation of itself.
  • With the evolution of reptiles around 350 to 300 million years ago, a new brain structure began to emerge – the wulst. Birds inherited a wulst from their reptile ancestors. Mammals did too, but our version is usually called the cerebral cortex and has expanded enormously
  • The cortex also takes in sensory signals and coordinates movement, but it has a more flexible repertoire. Depending on context, you might look toward, look away, make a sound, do a dance, or simply store the sensory event in memory in case the information is useful for the future.
  • The most important difference between the cortex and the tectum may be the kind of attention they control. The tectum is the master of overt attention—pointing the sensory apparatus toward anything important. The cortex ups the ante with something called covert attention. You don’t need to look directly at something to covertly attend to it. Even if you’ve turned your back on an object, your cortex can still focus its processing resources on it
  • The cortex needs to control that virtual movement, and therefore like any efficient controller it needs an internal model. Unlike the tectum, which models concrete objects like the eyes and the head, the cortex must model something much more abstract. According to the AST, it does so by constructing an attention schema—a constantly updated set of information that describes what covert attention is doing moment-by-moment and what its consequences are
  • Covert attention isn’t intangible. It has a physical basis, but that physical basis lies in the microscopic details of neurons, synapses, and signals. The brain has no need to know those details. The attention schema is therefore strategically vague. It depicts covert attention in a physically incoherent way, as a non-physical essence
  • this, according to the theory, is the origin of consciousness. We say we have consciousness because deep in the brain, something quite primitive is computing that semi-magical self-description.
  • I’m reminded of Teddy Roosevelt’s famous quote, “Do what you can with what you have where you are.” Evolution is the master of that kind of opportunism. Fins become feet. Gill arches become jaws. And self-models become models of others. In the AST, the attention schema first evolved as a model of one’s own covert attention. But once the basic mechanism was in place, according to the theory, it was further adapted to model the attentional states of others, to allow for social prediction. Not only could the brain attribute consciousness to itself, it began to attribute consciousness to others.
  • In the AST’s evolutionary story, social cognition begins to ramp up shortly after the reptilian wulst evolved. Crocodiles may not be the most socially complex creatures on earth, but they live in large communities, care for their young, and can make loyal if somewhat dangerous pets.
  • If AST is correct, 300 million years of reptilian, avian, and mammalian evolution have allowed the self-model and the social model to evolve in tandem, each influencing the other. We understand other people by projecting ourselves onto them. But we also understand ourselves by considering the way other people might see us.
  • t the cortical networks in the human brain that allow us to attribute consciousness to others overlap extensively with the networks that construct our own sense of consciousness.
  • Language is perhaps the most recent big leap in the evolution of consciousness. Nobody knows when human language first evolved. Certainly we had it by 70 thousand years ago when people began to disperse around the world, since all dispersed groups have a sophisticated language. The relationship between language and consciousness is often debated, but we can be sure of at least this much: once we developed language, we could talk about consciousness and compare notes
  • Maybe partly because of language and culture, humans have a hair-trigger tendency to attribute consciousness to everything around us. We attribute consciousness to characters in a story, puppets and dolls, storms, rivers, empty spaces, ghosts and gods. Justin Barrett called it the Hyperactive Agency Detection Device, or HADD
  • the HADD goes way beyond detecting predators. It’s a consequence of our hyper-social nature. Evolution turned up the amplitude on our tendency to model others and now we’re supremely attuned to each other’s mind states. It gives us our adaptive edge. The inevitable side effect is the detection of false positives, or ghosts.
kushnerha

New Ways Into the Brain's 'Music Room' - The New York Times - 5 views

  • Every culture ever studied has been found to make music, and among the oldest artistic objects known are slender flutes carved from mammoth bone some 43,000 years ago — 24,000 years before the cave paintings of Lascaux.
  • , many researchers had long assumed that the human brain must be equipped with some sort of music room, a distinctive piece of cortical architecture dedicated to detecting and interpreting the dulcet signals of song. Yet for years, scientists failed to find any clear evidence of a music-specific domain through conventional brain-scanning technology
  • devised a radical new approach to brain imaging that reveals what past studies had missed. By mathematically analyzing scans of the auditory cortex and grouping clusters of brain cells with similar activation patterns, the scientists have identified neural pathways that react almost exclusively to the sound of music — any music. It may be Bach, bluegrass, hip-hop, big band, sitar or Julie Andrews. A listener may relish the sampled genre or revile it. No matter. When a musical passage is played, a distinct set of neurons tucked inside a furrow of a listener’s auditory cortex will fire in response.Other sounds, by contrast — a dog barking, a car skidding, a toilet flushing — leave the musical circuits unmoved.
  • ...11 more annotations...
  • “Why do we have music?” Dr. Kanwisher said in an interview. “Why do we enjoy it so much and want to dance when we hear it? How early in development can we see this sensitivity to music, and is it tunable with experience? These are the really cool first-order questions we can begin to address.”
  • Dr. McDermott said the new method could be used to computationally dissect any scans from a functional magnetic resonance imaging device, or F.M.R.I. — the trendy workhorse of contemporary neuroscience — and so may end up divulging other hidden gems of cortical specialization. As proof of principle, the researchers showed that their analytical protocol had detected a second neural pathway in the brain for which scientists already had evidence — this one tuned to the sounds of human speech.
  • Importantly, the M.I.T. team demonstrated that the speech and music circuits are in different parts of the brain’s sprawling auditory cortex, where all sound signals are interpreted, and that each is largely deaf to the other’s sonic cues, although there is some overlap when it comes to responding to songs with lyrics.
  • In fact, Dr. Rauschecker said, music sensitivity may be more fundamental to the human brain than is speech perception. “There are theories that music is older than speech or language,” he said. “Some even argue that speech evolved from music.”
  • And though the survival value that music held for our ancestors may not be as immediately obvious as the power to recognize words, Dr. Rauschecker added, “music works as a group cohesive. Music-making with other people in your tribe is a very ancient, human thing to do.”
  • when previous neuroscientists failed to find any anatomically distinct music center in the brain, they came up with any number of rationales to explain the results.“The story was, oh, what’s special about music perception is how it recruits areas from all over the brain, how it draws on the motor system, speech circuitry, social understanding, and brings it all together,” she said. Some researchers dismissed music as “auditory cheesecake,” a pastime that co-opted other essential communicative urges. “This paper says, no, when you peer below the cruder level seen with some methodologies, you find very specific circuitry that responds to music over speech.”
  • The researchers wondered if the auditory system might be similarly organized to make sense of the soundscape through a categorical screen. If so, what would the salient categories be? What are the aural equivalents of a human face or a human leg — sounds or sound elements so essential the brain assigns a bit of gray matter to the task of detecting them?
  • Focusing on the brain’s auditory region — located, appropriately enough, in the temporal lobes right above the ears — the scientists analyzed voxels, or three-dimensional pixels, of the images mathematically to detect similar patterns of neuronal excitement or quietude.“The strength of our method is that it’s hypothesis-neutral,” Dr. McDermott said. “We just present a bunch of sounds and let the data do the talking.”
  • Matching sound clips to activation patterns, the researchers determined that four of the patterns were linked to general physical properties of sound, like pitch and frequency. The fifth traced the brain’s perception of speech, and for the sixth the data turned operatic, disclosing a neuronal hot spot in the major crevice, or sulcus, of the auditory cortex that attended to every music clip the researchers had played.
  • “The sound of a solo drummer, whistling, pop songs, rap, almost everything that has a musical quality to it, melodic or rhythmic, would activate it,” Dr. Norman-Haignere said. “That’s one reason the result surprised us. The signals of speech are so much more homogeneous.”
  • The researchers have yet to determine exactly which acoustic features of music stimulate its dedicated pathway. The relative constancy of a musical note’s pitch? Its harmonic overlays? Even saying what music is can be tricky.
Javier E

Eric Kandel's Visions - The Chronicle Review - The Chronicle of Higher Education - 0 views

  • Judith, "barely clothed and fresh from the seduction and slaying of Holofernes, glows in her voluptuousness. Her hair is a dark sky between the golden branches of Assyrian trees, fertility symbols that represent her eroticism. This young, ecstatic, extravagantly made-up woman confronts the viewer through half-closed eyes in what appears to be a reverie of orgasmic rapture," writes Eric Kandel in his new book, The Age of Insight. Wait a minute. Writes who? Eric Kandel, the Nobel-winning neuroscientist who's spent most of his career fixated on the generously sized neurons of sea snails
  • Kandel goes on to speculate, in a bravura paragraph a few hundred pages later, on the exact neurochemical cognitive circuitry of the painting's viewer:
  • "At a base level, the aesthetics of the image's luminous gold surface, the soft rendering of the body, and the overall harmonious combination of colors could activate the pleasure circuits, triggering the release of dopamine. If Judith's smooth skin and exposed breast trigger the release of endorphins, oxytocin, and vasopressin, one might feel sexual excitement. The latent violence of Holofernes's decapitated head, as well as Judith's own sadistic gaze and upturned lip, could cause the release of norepinephrine, resulting in increased heart rate and blood pressure and triggering the fight-or-flight response. In contrast, the soft brushwork and repetitive, almost meditative, patterning may stimulate the release of serotonin. As the beholder takes in the image and its multifaceted emotional content, the release of acetylcholine to the hippocampus contributes to the storing of the image in the viewer's memory. What ultimately makes an image like Klimt's 'Judith' so irresistible and dynamic is its complexity, the way it activates a number of distinct and often conflicting emotional signals in the brain and combines them to produce a staggeringly complex and fascinating swirl of emotions."
  • ...18 more annotations...
  • His key findings on the snail, for which he shared the 2000 Nobel Prize in Physiology or Medicine, showed that learning and memory change not the neuron's basic structure but rather the nature, strength, and number of its synaptic connections. Further, through focus on the molecular biology involved in a learned reflex like Aplysia's gill retraction, Kandel demonstrated that experience alters nerve cells' synapses by changing their pattern of gene expression. In other words, learning doesn't change what neurons are, but rather what they do.
  • In Search of Memory (Norton), Kandel offered what sounded at the time like a vague research agenda for future generations in the budding field of neuroaesthetics, saying that the science of memory storage lay "at the foothills of a great mountain range." Experts grasp the "cellular and molecular mechanisms," he wrote, but need to move to the level of neural circuits to answer the question, "How are internal representations of a face, a scene, a melody, or an experience encoded in the brain?
  • Since giving a talk on the matter in 2001, he has been piecing together his own thoughts in relation to his favorite European artists
  • The field of neuroaesthetics, says one of its founders, Semir Zeki, of University College London, is just 10 to 15 years old. Through brain imaging and other studies, scholars like Zeki have explored the cognitive responses to, say, color contrasts or ambiguities of line or perspective in works by Titian, Michelangelo, Cubists, and Abstract Expressionists. Researchers have also examined the brain's pleasure centers in response to appealing landscapes.
  • it is fundamental to an understanding of human cognition and motivation. Art isn't, as Kandel paraphrases a concept from the late philosopher of art Denis Dutton, "a byproduct of evolution, but rather an evolutionary adaptation—an instinctual trait—that helps us survive because it is crucial to our well-being." The arts encode information, stories, and perspectives that allow us to appraise courses of action and the feelings and motives of others in a palatable, low-risk way.
  • "as far as activity in the brain is concerned, there is a faculty of beauty that is not dependent on the modality through which it is conveyed but which can be activated by at least two sources—musical and visual—and probably by other sources as well." Specifically, in this "brain-based theory of beauty," the paper says, that faculty is associated with activity in the medial orbitofrontal cortex.
  • It also enables Kandel—building on the work of Gombrich and the psychoanalyst and art historian Ernst Kris, among others—to compare the painters' rendering of emotion, the unconscious, and the libido with contemporaneous psychological insights from Freud about latent aggression, pleasure and death instincts, and other primal drives.
  • Kandel views the Expressionists' art through the powerful multiple lenses of turn-of-the-century Vienna's cultural mores and psychological insights. But then he refracts them further, through later discoveries in cognitive science. He seeks to reassure those who fear that the empirical and chemical will diminish the paintings' poetic power. "In art, as in science," he writes, "reductionism does not trivialize our perception—of color, light, and perspective—but allows us to see each of these components in a new way. Indeed, artists, particularly modern artists, have intentionally limited the scope and vocabulary of their expression to convey, as Mark Rothko and Ad Reinhardt do, the most essential, even spiritual ideas of their art."
  • The author of a classic textbook on neuroscience, he seems here to have written a layman's cognition textbook wrapped within a work of art history.
  • "our initial response to the most salient features of the paintings of the Austrian Modernists, like our response to a dangerous animal, is automatic. ... The answer to James's question of how an object simply perceived turns into an object emotionally felt, then, is that the portraits are never objects simply perceived. They are more like the dangerous animal at a distance—both perceived and felt."
  • If imaging is key to gauging therapeutic practices, it will be key to neuroaesthetics as well, Kandel predicts—a broad, intense array of "imaging experiments to see what happens with exaggeration, distorted faces, in the human brain and the monkey brain," viewers' responses to "mixed eroticism and aggression," and the like.
  • while the visual-perception literature might be richer at the moment, there's no reason that neuroaesthetics should restrict its emphasis to the purely visual arts at the expense of music, dance, film, and theater.
  • although Kandel considers The Age of Insight to be more a work of intellectual history than of science, the book summarizes centuries of research on perception. And so you'll find, in those hundreds of pages between Kandel's introduction to Klimt's "Judith" and the neurochemical cadenza about the viewer's response to it, dossiers on vision as information processing; the brain's three-dimensional-space mapping and its interpretations of two-dimensional renderings; face recognition; the mirror neurons that enable us to empathize and physically reflect the affect and intentions we see in others; and many related topics. Kandel elsewhere describes the scientific evidence that creativity is nurtured by spells of relaxation, which foster a connection between conscious and unconscious cognition.
  • Zeki's message to art historians, aesthetic philosophers, and others who chafe at that idea is twofold. The more diplomatic pitch is that neuroaesthetics is different, complementary, and not oppositional to other forms of arts scholarship. But "the stick," as he puts it, is that if arts scholars "want to be taken seriously" by neurobiologists, they need to take advantage of the discoveries of the past half-century. If they don't, he says, "it's a bit like the guys who said to Galileo that we'd rather not look through your telescope."
  • Matthews, a co-author of The Bard on the Brain: Understanding the Mind Through the Art of Shakespeare and the Science of Brain Imaging (Dana Press, 2003), seems open to the elucidations that science and the humanities can cast on each other. The neural pathways of our aesthetic responses are "good explanations," he says. But "does one [type of] explanation supersede all the others? I would argue that they don't, because there's a fundamental disconnection still between ... explanations of neural correlates of conscious experience and conscious experience" itself.
  • There are, Matthews says, "certain kinds of problems that are fundamentally interesting to us as a species: What is love? What motivates us to anger?" Writers put their observations on such matters into idiosyncratic stories, psychologists conceive their observations in a more formalized framework, and neuroscientists like Zeki monitor them at the level of functional changes in the brain. All of those approaches to human experience "intersect," Matthews says, "but no one of them is the explanation."
  • "Conscious experience," he says, "is something we cannot even interrogate in ourselves adequately. What we're always trying to do in effect is capture the conscious experience of the last moment. ... As we think about it, we have no way of capturing more than one part of it."
  • Kandel sees art and art history as "parent disciplines" and psychology and brain science as "antidisciplines," to be drawn together in an E.O. Wilson-like synthesis toward "consilience as an attempt to open a discussion between restricted areas of knowledge." Kandel approvingly cites Stephen Jay Gould's wish for "the sciences and humanities to become the greatest of pals ... but to keep their ineluctably different aims and logics separate as they ply their joint projects and learn from each other."
summertyler

Forget what you think you know about how memory works | Genetic Literacy Project - 0 views

  • Where do memories come from?
  • For quite some time the science of memories seemed focused on one pathway, but now there is new research indicating that this is only part of a larger story
  • There’s a kind of fashion about memory – like many mental models constructed for difficult concepts, the signs of the times inform how the current models approach the inquiry.
  • ...8 more annotations...
  • movement in the nervous system created memories
  • memories are the encoding of experiences on webs of neurons in the brain
  • memory involved molecular changes via neurotransmitters in the brain
  • the neuron cell bodies themselves have some connection to the memory and control over the development and sustainment of synapses.
  • “Long-term memory is not stored at the synapse,”
  • part of memory is stored within the cells (neurons) themselves, and that they are using this memory storage to determine how many synapses to form and where.
  • Long-term memory is a function of the growth of new synaptic connections caused by the serotonin
  • As long-term memories are formed, the brain creates new proteins that are involved in making new synapses. If that process is disrupted — for example by a concussion or other injury — the proteins may not be synthesized and long-term memories cannot form. This is why people cannot remember what happened moments before a concussion.
  •  
    How memory works.
1 - 20 of 119 Next › Last »
Showing 20 items per page